首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 947 毫秒
1.
A method has been developed for the isolation of outer membranes from Acinetobacter sp. strain MJT/F5/199A. Washed cells were broken in a French press and, after deoxyribonuclease and ribonuclease treatment, removal of intact cells, and four washes in 20 mosmol phosphate buffer, pH 7.4, with centrifugation at 25,000 x g for 10 min, preparations of cell wall fragments from which almost all pieces of plasma membrane had been removed resulted. Treatment of the cell walls with lysozyme and further washing, in the presence of 20 mM MgCl(2), yielded preparations of outer membranes. Electron microscopy of freeze-etched preparations shows that a regular pattern of subunits is present on the outer surfaces of intact cells. After negative staining, these subunits are visible on isolated walls and outer membranes; they can be removed by brief treatment with papain. In section, the cell wall structure is that typical of gram-negative bacteria, but the subunits are not detectable on the surface of the outer membrane. The outer membrane retains the appearance of a "unit membrane" in the cell wall, isolated outer membrane, and papain-treated outer membrane fractions. Both cell walls and outer membranes contain a high percentage of protein (76 and 84%, respectively) and not more than 5% carbohydrate, of which glucose and galactose are constitutents. The outer membranes of this Acinetobacter thus differ in structure and composition from those of bacteria in the Enterobacteriaceae.  相似文献   

2.
Heavy metal environmental contaminants cannot be destroyed but require containment, preferably in concentrated form, in a solid or immobile form for recycling or final disposal. Microorganisms are able to take up and deposit high levels of contaminant metals, including radioactive metals such as uranium and plutonium, into their cell wall. Consequently, these microbial systems are of great interest as the basis for potential environmental bioremediation technologies. The outer membranes of Gram-negative microbes are highly nonsymmetric and exhibit a significant electrostatic potential gradient across the membrane. This gradient has a significant effect on the uptake and transport of charged and dipolar compounds. However, the effectiveness of microbial systems for environmental remediation will depend strongly on specific properties that determine the uptake of targeted contaminants by a particular cell wall. To aid in the design of microbial remediation technologies, knowledge of the factors that determine the affinity of a particular bacterial outer membrane for the most common ionic species found in contaminated soils and groundwater is of great importance. Using our previously developed model for the lipopolysaccharide (LPS) membrane of Pseudomonas aeruginosa, this work presents the potentials of mean force as the estimate of the free energy profile for uptake of sodium, calcium, chloride, uranyl ions, and a water molecule by the bacterial LPS membrane. A compatible classical parameter set for uranyl has been developed and validated. Results show that the uptake of uranyl is energetically a favorable process relative to the other ions studied. At neutral pH, this nuclide is shown to be retained on the surface of the LPS membrane through chelation with the carboxyl and hydroxyl groups located in the outer core.  相似文献   

3.
Pseudomonas putida strains carrying the plasmid alk genes will grow on n-alkanes. Induced alk+ strains contain membrane activities for alkane hydroxylation and dehydrogenation of aliphatic primary alcohols. P. putida cytoplasmic and outer membranes can be separated by sucrose gradient centrifugation after disruption of cells by either mild detergent lysis or passage through a French press. Both the membrane component of alkane hydroxylase and membrane alcohol dehydrogenase fractionated with the cytoplasmic membrane. Induction of the alk regulon resulted in the appearance of at least three new plasmid-determined cytoplasmic membrane peptides of about 59,000 (59K), 47,000 (47K), and 40,000 (40K) daltons as well as the disappearance of a pair of chromosomally encoded outer membrane peptides of about 43,000 daltons. The 40K peptide is the membrane component of alkane hydroxylase and the product of the plasmid alkB gene because the alkB1029 mutation altered the properties of alkane hydroxylase in whole cells, reduced its thermal stability in cell extracts, and led to increased electrophoretic mobility of the inducible 40K peptide. These results are consistent with a model for vectorial oxidation of n-alkanes in the cytoplasmic membrane of P. putida.  相似文献   

4.
Vegetative cells of Saccharomyces cerevisiae were fixed with potassium permanganate followed by uranyl nitrate, embedded in methacrylate, and studied in electron micrographs of thin sections. Details of the structure of the cell wall, cytoplasmic membrane, nucleus, vacuole, and mitochondria are described. Cell membranes, about 70 to 80 A thick, have been resolved into two dense layers, 20 to 25 A thick, separated by a light layer of the same dimensions, which correspond in thickness and appearance to the components of the "unit membrane" as described by Robertson (15). The cell wall is made up of zones of different electron opacity. Underlying the cell wall is the cytoplasmic membrane, a sinuous structure with numerous invaginations. The nucleoplasm, often of uneven electron opacity, is enclosed in a pair of unit membranes in which nuclear pores are apparent. The vacuole, limited by a single unit membrane, is usually irregular in outline and contains some dense material. Rod-shaped mitochondria, 0.4 to 0.6 µ in length and 0.2 to 0.3 µ in diameter, are smaller in size, but similar in structure to some of those described in plant and animal cells. Attempts to use osmium tetroxide as fixative were unsuccessful, a result similar to that obtained by other workers. It is suggested that yeast cells are impermeable to osmium tetroxide, except when grown under specific conditions.  相似文献   

5.
Within minutes of Bdellovibrio bacteriovorus attack on prey cells, such as Escherichia coli, the cytoplasmic membrane of the prey is altered. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified invaded prey cell (bdelloplast) membranes revealed the appearance of a noncytoplasmic membrane protein. This protein is not observed in preparations of noninvaded E. coli membranes and migrates in a manner similar to that of E. coli OmpF. Isoelectric focusing and two-dimensional gel electrophoresis of bdelloplast cytoplasmic membrane preparations also revealed the presence of a protein with electrophoretic properties similar to those of OmpF and the major Bdellovibrio outer membrane proteins. The protein appears in cytoplasmic membrane preparations within minutes of attack and persists throughout most of the intraperiplasmic developmental cycle. The appearance of this protein is consistent with our hypothesis that bdellovibrios translocate a pore protein into the bdelloplast cytoplasmic membrane to kill their prey and to gain access to the cytoplasmic contents for growth.  相似文献   

6.
The effects of hen egg white lysozyme and the inorganic salt sodium thiocyanate on the integrity of Streptococcus mutans BHT were studied by transmission electron microscopy. Both control cells and cells exposed to NaSCN possessed thick outer cell walls and densely staining inner cell walls juxtaposed to the plasma membranes. In the presence of NaSCN, however, the S. mutans BHT nucleoid was coagulated into thick electron-dense filaments. Exposure of S. mutans BHT to 150 μg of hen egg white lysozyme per ml resulted in the progressive destruction of both the cell walls and the plasma membranes. The enzyme appeared to affect the region of the cell wall septum, and exposure to 150 μg of hen egg white lysozyme per ml for as short a time as 10 min resulted in visible morphological cell wall alterations. At 30 min, ultrastructural observations revealed that the majority of the cells were in the process of expelling a portion of their cytoplasmic contents from the septal and other regions of the cells at the time of fixation. After 3 h of incubation in the presence of this high lysozyme concentration, gelled protoplasmic masses, which were free from the cells, were evident. In addition, extensive damage to the outer and inner cell walls and to the plasma membranes was apparent, although the cells maintained their shape. On some areas of the cell surface, the outer cell wall and plasma membrane were completely absent, whereas at other locations the outer cell wall was either split away from the inner cell wall and plasma membrane or distended from an area free of inner cell wall and plasma membrane. Upon addition of NaSCN to the hen egg white lysozyme-treated cells, both the gelled protoplasmic masses and the damaged cells exhibited an exploded appearance and existed as membrane ghosts, cell wall fragments, or dense aggregates of cytoplasmic components. The effects of a low lysozyme concentration (22.5 μg/ml) on S. mutans morphology were less pronounced at short incubation times (i.e., 10 and 30 min) than those that were observed with a high enzyme concentration; however, breaks in the cell walls and dissolution of the plasma membranes with resulting cell lysis were visible after a prolonged (3-h) incubation and after subsequent addition of NaSCN.  相似文献   

7.
The ultrastructural features of two groups of filamentous sulfur bacteria, Thiothrix spp. and an unnamed organism designated "type 021N," were examined by transmission electron microscopy. Negative staining of whole cells and filaments with uranyl acetate revealed the presence of tufts of fimbriae located at the ends of individual gonidia of Thiothrix sp. strain A1 and "type 021N" strain N7. Holdfast material present at the center of mature rosettes was observed in thin sections stained with ruthenium red. A clearly defined sheath enveloped the trichomes of two of three Thiothrix strains but was absent from "type 021N" filaments. The outer cell wall appeared more complex in "type 021N" strains than in Thiothrix isolates. Bulbs or clusters of irregularly shaped cells, often present in filaments of "type 021N" bacteria, appeared to result from crosswalls which formed at angles oblique to the filament axis. The multicellular nature of these sulfur bacteria was apparent in that only the cytoplasmic membrane and peptidoglycan layer of the cell wall were involved in the septation process. Sulfur inclusions which developed in the presence of sodium thiosulfate were enclosed by a single-layered envelope and located within invaginations of the cytoplasmic membrane.  相似文献   

8.
Cell envelopes from Pseudomonas aeruginosa strains resistant to polymyxin were compared with cell envelopes from polymyxin-sensitive strains as to their content of total protein, carbohydrate, and 2-keto-3-deoxyoctonate and as to their protein composition as determined by slab polyacrylamide gel electrophoresis. The cell envelopes of the polymyxin-resistant strains had reduced amounts of lipopolysaccharide, as indicated a reduction in both carbohydrate and 2-keto-3-deoxyoctonate concentrations, and a greatly altered protein composition as shown by polyacrylamide gel electrophoresis. There was a quantitative increase in total cell envelop protein in these strains. However, those protein bands identified as being major outer membrane proteins upon polyacrylamide gel electrophoresis of separated outer and cytoplasmic membranes were reduced greatly in concentration in the polymyxin-resistant cell envelopes. Thus, it appears that polymyxin resistance in these strains is associated with the alteration of the outer membrane through a loss of lipopolysaccharide and outer membrane proteins.  相似文献   

9.
《Biophysical journal》2019,116(12):2378-2389
Membrane lysis, or rupture, is a cell death pathway in bacteria frequently caused by cell wall-targeting antibiotics. Although previous studies have clarified the biochemical mechanisms of antibiotic action, a physical understanding of the processes leading to lysis remains lacking. Here, we analyze the dynamics of membrane bulging and lysis in Escherichia coli, in which the formation of an initial, partially subtended spherical bulge (“bulging”) after cell wall digestion occurs on a characteristic timescale of 1 s and the growth of the bulge (“swelling”) occurs on a slower characteristic timescale of 100 s. We show that bulging can be energetically favorable due to the relaxation of the entropic and stretching energies of the inner membrane, cell wall, and outer membrane and that the experimentally observed timescales are consistent with model predictions. We then show that swelling is mediated by the enlargement of wall defects, after which cell lysis is consistent with both the inner and outer membranes exceeding characteristic estimates of the yield areal strains of biological membranes. These results contrast biological membrane physics and the physics of thin, rigid shells. They also have implications for cellular morphogenesis and antibiotic discovery across different species of bacteria.  相似文献   

10.
Fine Structure of Selected Marine Pseudomonads and Achromobacters   总被引:5,自引:3,他引:2  
The fine structure of more than 20 marine pseudomonads and more than 15 achromobacters was examined. Under the conditions extant, clear differences between members of these two groups were seen. The pseudomonads displayed the characteristic gram-negative morphology: the cell wall was irregularly undulant and the cytoplasmic membrane more nearly planar, ribonucleoprotein (RNP) particles were loosely packed throughout the periphery of the cytoplasm, and the deoxyribonucleic acid (DNA) was axially disposed. Cell division appeared to be by constriction. Some strains characteristically produced evaginations or blebs of the cell wall. Occasionally, thick, densely stained ring structures were seen which are possibly analogous to mesosomes. In contrast, the achromobacters demonstrated a regularly undulant outer cell wall element and a planar inner wall. The cytoplasmic membrane was thin and not readily observed. RNP particles were densely stained and tightly packed in the cytoplasm; the DNA was most often lobate in disposition. Cellular division was mediated by the formation of a septum which consisted of the cytoplasmic membrane and the inner element of the cell wall. Mesosomes were observed in all of the strains examined. Dense inclusion bodies were also seen in many strains.  相似文献   

11.
A method is described for the preparation of outer and cytoplasmic membranes of Pseudomonas aeruginosa, and the outer membrane proteins characterized. Isolated outer and cytoplasmic membranes differed markedly in the content of 2-keto-3-deoxyoctonate (lipopolysaccharide) and phospholipid as well as in the localization of certain enzymes (NADH oxidase, succinate dehydrogenase, D-lactate dehydrogenase, malate dehydrogenase, and phospholipase), and also in the microscopic morphology. The outer membrane preparation showed activity neutralizing a certain bacteriocin or bacteriophages, whereas the cytoplasmic membrane preparation showed no neutralizing activity. The protein composition of membrane preparations from five different strains of P. aeruginosa [P14, M92 (PAO1), PAC1, P15, and M2008 (PAT)] were determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. More than 50 protein bands were detected in the cytoplasmic membrane preparation. The protein compositions of outer membranes from the five different strains were very similar: at least 6 major bands were found (apparent molecular weights: Band D, 50,000; band E, 45,000; band F, 33,000; bands G and H, 21,000; and band I, 8,000). The protein composition of outer membranes was affected by some physiological growth conditions. Some features of major outer membrane proteins were also studied. Band F showed anomalous migration on SDS polyacrylamide gel electrophoresis depending on the solubilizing conditions or pretreatment with TCA. Band I seemed to be a protein analogous to the lipoprotein which had been found in the outer membrane of Escherichia coli.  相似文献   

12.
An ultrastructural study of late-stage androgonial cells of Blasia pusilla, a thallose liverwort, showed the nearly spherical nuclei often lying close or appressed to the cell walls. In some cells the two membranes comprising the nuclear envelope separated, the inner membrane continuing intact as a limiting boundary of the nucleus and the membrane on the outer, cytoplasmic side recurving away from the nucleus to continue without evident interruption around the periphery of the cell as the plasma membrane. It is believed that Blasia offers the first completely convincing demonstration of the heretofore problematic continuity of cytoplasmic membranes. A possible sequence of events leading to this unusual relationship between nucleus and cytoplasm is suggested. The sequence includes blebbing of the outer membrane of the nuclear envelope and subsequent membrane proliferation, apparent isolation of cytoplasmic ground substance, fusion of internal membrane with the ectoplast, and migration that finally brings the nucleus into flat contact with the wall. While this manifestation of membrane continuity may be anomalous, it is not presently considered the result of cell injury.  相似文献   

13.
Electron Microscopic Examination of Corynebacterium ovis   总被引:3,自引:0,他引:3       下载免费PDF全文
Corynebacterium ovis (C. pseudotuberculosis) was examined by electron microscopy after being subjected to various methods of fixation. The organism exhibited a fine structure similar to other corynebacterial species in the appearance of its cell wall, plasma membrane, nuclear apparatus, cytoplasmic matrix, wealth and complexity of intracytoplasmic membrane systems, and polyphosphate granules. An outstanding structural feature was the existence of an electron-dense, floccular layer external to the cell wall which both ligroin and acetone-methanol extractions demonstrated to be the previously postulated surface lipid of this organism. The only variations in structure evident between virulent and attenuated strains was a quantitative difference in the thickness and appearance of the surface lipid. The observation of this layer provided a basis for explaining the surface properties of C. ovis, with particular respect to its clumping capacity in suspension, the waxiness of its growth on solid media, and its ability to grow as a pellicle on suitable liquid media. The variation in the visible amount of surface lipid between the virulent and avirulent strains adequately explained the divergence of these three surface properties between the strains.  相似文献   

14.
Is the periplasm continuous in filamentous multicellular cyanobacteria?   总被引:1,自引:0,他引:1  
Filamentous, heterocyst-forming cyanobacteria are multicellular organisms in which individual cells exchange nutrients and, presumably, regulatory molecules. Unknown mechanisms underlie this exchange. Classical electron microscopy shows that filamentous cyanobacteria bear a Gram-negative cell wall comprising a peptidoglycan layer and an outer membrane that are external to the cytoplasmic membrane, and that the outer membrane appears to be continuous along the filament of cells. This implies that the periplasmic space between the cytoplasmic and outer membranes might also be continuous. We propose that a continuous periplasm could constitute a communication conduit for the transfer of compounds, which is essential for the performance of these bacteria as multicellular organisms.  相似文献   

15.
Freeze-etching was applied to preparations, with and without glycerol, of Acinetobacter sp. strain MJT/F5/199A, consisting of intact cells after normal growth or after incubation with chloramphenicol, spheroplasts, and isolated cell walls and outer membranes. Etched preparations show that a regular array of subunits forms the surface of normal cells. Near the zones of constriction in dividing cells, blebs and irregularities are seen, and some blebs, consisting of both surface subunits and outer membrane, are released from the cells. The cross-fractured cell envelope shows four layers which are related to the structures seen in section as follows: cw1, which is not visible in section, contains the surface subunits; cw2 consists of all or part of the outer membrane; cw3 includes the intermediate and dense, peptidoglycan-containing layers; within these cell wall layers is the plasma membrane. Internal fracture of the plasma membrane occurs under all conditions tested, but the fracture plane in the cell wall is only revealed in chloramphenicol-treated cells or normal cells freeze-fractured with glycerol present; the characteristic fracture faces are not seen in spheroplasts or isolated outer membranes. The concave fracture face cw2 consists of densely packed granules, while the convex face cw3 is fibrillar. The probable location of this fracture plane is discussed. After incubation with chloramphenicol, the outer surface of the cells is obscured by extracellular material, the dense peptidoglycan-containing layer is increased in thickness, and the cytoplasm contains rounded bodies bounded by one or more unit membranes.  相似文献   

16.
Two fracture faces in each half of the freeze-fractured tegumental membrane of adult Schistosoma mansoni indicate the presence of two trilaminate membranes. This result is compatible with the heptalaminate appearance of the tegumental membrane in ultrathin sections. Intramembranous particles are located mainly in the outermost leaflet of the outer membrane and in the cytoplasmic leaflet of the inner membrane. The tegumental membrane of the cercaria (infective larva) has a single fracture plane, which conforms with its trilaminate appearance in sections. Intramembranous particles are extremely numerous and are almost all located in the cytoplasmic leaflet.  相似文献   

17.
The secretion of lipase through the cytoplasmic and outer membrane of Acinetobacter calcoaceticus 69 V was studied in relation to the growth phase. Lipase activity and its distribution in both membrane fractions was analysed by using membrane-dissolving and membrane-preserving assay conditions.The liberation of the enzyme from the cytoplasmic and outer membrane by means of deoxycholate was determined. With the help of antibodies the sidedness of the lipase of both membrane fractions in relation to the growth phases was analysed.With all these results, a model was assembled. In this model enzymatically active lipase first accumulates in the cytoplasmic membrane, showing properties of an intrinsic protein. Subsequently, the enzyme accumulates in the outer membrane with its attachment at the inner surface of this membrane being the next step. Out of the overloaded outer membrane the lipase is released into the surrounding medium without cell lysis or membrane-blebbing.The cytoplasmic and outer membrane-bound lipase were identical with the extracellular mature enzyme, as suggested by enzyme-linked immunoelectrotransfer blot technique.  相似文献   

18.
The growing process and the fine structure of the cross wall of Staphylococcus were investigated by electron microscopy. Examination of the tangentially sectioned cross wall revealed that it was initially synthesized as a thin cell wall layer by an invaginated cytoplasmic membrane. The wall thickness soon increased by additional synthesis of the wall from the cytoplasmic membrane located at the side region of the cross wall. Scanning electron microscopic observation of sodium dodecyl sulfate-treated and mechanically separated cross walls revealed that the outer surface of the cross wall exhibits regular circular structures and the inner surface showed has an irregular surface. This indicates that cell wall materials were arranged in a regular circular manner in the initially synthesized thin layer. It is conceivable that in Staphylococcus spp. two cell wall synthesizing systems are present: wall-elongation synthesis in which wall materials are arranged in a regular circular manner and wall-thickening synthesis in which wall materials are arranged in an irregular manner.  相似文献   

19.
The ultrastructural features of two groups of filamentous sulfur bacteria, Thiothrix spp. and an unnamed organism designated “type 021N,” were examined by transmission electron microscopy. Negative staining of whole cells and filaments with uranyl acetate revealed the presence of tufts of fimbriae located at the ends of individual gonidia of Thiothrix sp. strain A1 and “type 021N” strain N7. Holdfast material present at the center of mature rosettes was observed in thin sections stained with ruthenium red. A clearly defined sheath enveloped the trichomes of two of three Thiothrix strains but was absent from “type 021N” filaments. The outer cell wall appeared more complex in “type 021N” strains than in Thiothrix isolates. Bulbs or clusters of irregularly shaped cells, often present in filaments of “type 021N” bacteria, appeared to result from crosswalls which formed at angles oblique to the filament axis. The multicellular nature of these sulfur bacteria was apparent in that only the cytoplasmic membrane and peptidoglycan layer of the cell wall were involved in the septation process. Sulfur inclusions which developed in the presence of sodium thiosulfate were enclosed by a single-layered envelope and located within invaginations of the cytoplasmic membrane.  相似文献   

20.
The work was aimed at studying the effect of gramicidin S on the intact cells, spheroplasts and membrane specimens of Escherichia coli K12S with the natural resistance to this antibiotic. The resistance was shown to be caused by the barrier properties of the cell wall: the spheroplasts were highly sensitive to the lytic action of gramicidin S. The differences in the sensitivity to gramicidin S of substrate oxidation carried by the membranes of E. coli and Micrococcus luteus, a sensitive organism, were not of crucial significance for the manifestation of the resistance. The resistance was not associated with the decrease of gramicidin S adsorption: the cells were capable of binding large quantities of the antibiotic and remaining viable. Gramicidin S appeared to be attached to the cell walls (most likely, the outer membranes) rather than the cytoplasmic membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号