首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
U-box proteins as a new family of ubiquitin ligases   总被引:18,自引:0,他引:18  
Ubiquitin-protein ligases (E3s) determine the substrate specificity of ubiquitylation and, until recently, had been classified into two families, the HECT and RING-finger families. The U-box is a domain of approximately 70 amino acids that is present in proteins from yeast to humans. The prototype U-box protein, yeast Ufd2, was identified as a ubiquitin chain assembly factor (E4) that cooperates with a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2), and an E3 to catalyze the formation of a ubiquitin chain on artificial substrates. We recently showed that mammalian U-box proteins, in conjunction with an E1 and an E2, mediate polyubiquitylation in the absence of a HECT type or RING-finger type E3. U-box proteins have thus been defined as a third family of E3s. We here review recent progress in the characterization of U-box proteins and of their role in the quality control system that underlies the cellular stress response to the intracellular accumulation of abnormal proteins.  相似文献   

2.
U box proteins as a new family of ubiquitin-protein ligases.   总被引:27,自引:0,他引:27  
The U box is a domain of approximately 70 amino acids that is present in proteins from yeast to humans. The prototype U box protein, yeast Ufd2, was identified as a ubiquitin chain assembly factor that cooperates with a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2), and a ubiquitin-protein ligase (E3) to catalyze ubiquitin chain formation on artificial substrates. E3 enzymes are thought to determine the substrate specificity of ubiquitination and have been classified into two families, the HECT and RING finger families. Six mammalian U box proteins have now been shown to mediate polyubiquitination in the presence of E1 and E2 and in the absence of E3. These U box proteins exhibited different specificities for E2 enzymes in this reaction. Deletion of the U box or mutation of conserved amino acids within it abolished ubiquitination activity. Some U box proteins catalyzed polyubiquitination by targeting lysine residues of ubiquitin other than lysine 48, which is utilized by HECT and RING finger E3 enzymes for polyubiquitination that serves as a signal for proteolysis by the 26 S proteasome. These data suggest that U box proteins constitute a third family of E3 enzymes and that E4 activity may reflect a specialized type of E3 activity.  相似文献   

3.
The ubiquitin-26S proteasome system is important in the quality control of intracellular proteins. The ubiquitin-26S proteasome system includes the E1 (ubiquitin activating), E2 (ubiquitin conjugating), and E3 (ubiquitin ligase) enzymes. U-box proteins are a derived version of RING-finger domains, which have E3 enzyme activity. Here, we present the isolation of a novel U-box protein, U-box containing E3 ligase induced by phosphate starvation (OsUPS), from rice (Oryza sativa). The cDNA encoding the O. sativa U-box protein (OsUPS) comprises 1338 bp, with an open reading frame of 445 amino acids. The amino acid sequence of OsUPS cDNA shows 41–79% identity with other plant U-box homologous genes. The open reading frame of the OsUPS protein is comprised of notable domains: a single ~70-amino acid domain and a GKL domain that contains conserved glycine, lysine/arginine residues and leucine-rich feature. We found that full-length expression of OsUPS was up-regulated in both rice plants and cell culture in the absence of inorganic phosphate (Pi). A self-ubiquitination assay indicated that the bacterially expressed OsUPS protein had E3 ligase activity, and subcellular localization results showed that OsUPS was located in the chloroplast. These results support the notion that OsUPS plays an important role in the Pi signaling pathway through the ubiquitin-26S proteasome system.  相似文献   

4.
The chaperone-related AAA ATPase Cdc48 (p97/VCP in higher eukaryotes) segregates ubiquitylated proteins for subsequent degradation by the 26S proteasome or for nonproteolytic fates. The specific outcome of Cdc48 activity is controlled by the evolutionary conserved cofactors Ufd2 and Ufd3, which antagonistically regulate the substrates' ubiquitylation states. In contrast to the interaction of Ufd3 and Cdc48, the interaction between the ubiquitin chain elongating enzyme Ufd2 and Cdc48 has not been precisely mapped. Consequently, it is still unknown whether physiological functions of Ufd2 in fact require Cdc48 binding. Here, we show that Ufd2 binds to the C-terminal tail of Cdc48, unlike the human Ufd2 homologue E4B, which interacts with the N domain of p97. The binding sites for Ufd2 and Ufd3 on Cdc48 overlap and depend critically on the conserved residue Y834 but are not identical. Saccharomyces cerevisiae cdc48 mutants altered in residue Y834 or lacking the C-terminal tail are viable and exhibit normal growth. Importantly, however, loss of Ufd2 and Ufd3 binding in these mutants phenocopies defects of Δufd2 and Δufd3 mutants in the ubiquitin fusion degradation (UFD) and Ole1 fatty acid desaturase activation (OLE) pathways. These results indicate that key cellular functions of Ufd2 and Ufd3 in proteasomal protein degradation require their interaction with Cdc48.  相似文献   

5.
The U-box domain has been suggested to be a modified RING finger motif where the metal-coordinating cysteines and histidines have been replaced with other amino acids. Known U-box-containing proteins have been implicated in the ubiquitin/proteasome system. In a search for proteins interacting with the ubiquitin-conjugating enzyme UbcM4/UbcH7, we have identified a novel U-box containing protein, termed UIP5, that is exclusively found in the nucleus as part of a nuclear dot-like structure. Interaction between UbcM4 and UIP5 was observed in vivo and in vitro with bacterially expressed proteins. In addition to UbcM4, several other ubiquitin-conjugating enzymes (E2s) that share the same sequence within the L1 loop bind to UIP5. Mutational analysis showed that the U-box, like the RING finger in other proteins, forms the physical basis for the interaction with E2 enzymes. Further support for the structural similarity between U-box and RING finger comes from the observation that, in both cases, the same regions within the UbcM4 molecule are required for interaction. Our results establish at the molecular level a link between the U-box and the ubiquitin conjugating system and strongly suggest that proteins containing U-box domains are functionally closely related to RING finger proteins.  相似文献   

6.
Saccharomyces cerevisiae Ufd2 is a ubiquitin chain elongation factor in the ubiquitin fusion degradation (UFD) pathway and functions in stress tolerance. A recent study has suggested that the mammalian Ufd2 homologue UFD2a catalyzes formation of Lys27- and Lys33-linked polyubiquitin chains rather than the Lys48-linked chain, but the linkage type of the polyubiquitin chain formed by yeast Ufd2 remains unclear. To determine the property of Ufd2, we reconstituted the UFD pathway using purified enzymes from yeast. Direct determination of the ubiquitin chain linkage type in polyubiquitinated UFD substrates by MALDI-TOF mass spectrometry revealed that Ufd2 catalyzes elongation of the ubiquitin chain through Lys48 linkage.  相似文献   

7.
Substrates of the N-end rule pathway are recognized by the Ubr1 E3 ubiquitin ligase through their destabilizing amino-terminal residues. Our previous work showed that the Ubr1 E3 and the Ufd4 E3 together target an internal degradation signal (degron) of the Mgt1 DNA repair protein. Ufd4 is an E3 enzyme of the ubiquitin-fusion degradation (UFD) pathway that recognizes an N-terminal ubiquitin moiety. Here we show that the RING-type Ubr1 E3 and the HECT-type Ufd4 E3 interact, both physically and functionally. Although Ubr1 can recognize and polyubiquitylate an N-end rule substrate in the absence of Ufd4, the Ubr1-Ufd4 complex is more processive in that it produces a longer substrate-linked polyubiquitin chain. Conversely, Ubr1 can function as a polyubiquitylation-enhancing component of the Ubr1-Ufd4 complex in its targeting of UFD substrates. We also found that Ubr1 can recognize the N-terminal ubiquitin moiety. These and related advances unify two proteolytic systems that have been studied separately for two decades.  相似文献   

8.
Ufd2 is a U-box-containing ubiquitylation enzyme that promotes ubiquitin chain assembly on substrates. The physiological function of Ufd2 remains poorly understood. Here, we show that ubiquitylation and degradation of the cell cycle kinase Mps1, a known target of the anaphase-promoting complex E3, require Ufd2 enzyme. Yeast cells lacking UFD2 exhibit altered chromosome stability and several spindle-related phenotypes, expanding the biological function of Ufd2. We demonstrate that Ufd2-mediated Mps1 degradation is conserved in humans. Our results underscore the significance of Ufd2 in proteolysis and further suggest that Ufd2-like enzymes regulate far more substrates than previously envisioned.  相似文献   

9.
E4B (also known as UFD2a) is a mammalian homolog of Saccharomyces cerevisiae Ufd2, which was originally described as a ubiquitin chain assembly factor (E4). E4B is a U-box-type ubiquitin-protein isopeptide ligase (E3) and likely functions as either an E3 or an E4. With a yeast two-hybrid screen, we have now identified FEZ1 (fasciculation and elongation protein zeta 1) as a protein that interacts with E4B. FEZ1 is implicated in neuritogenesis when phosphorylated by protein kinase Czeta (PKCzeta). Interaction between E4B and FEZ1 in mammalian cells was enhanced by coexpression of constitutively active PKCzeta. E4B mediated the polyubiquitylation of FEZ1 but did not affect its intracellular stability, suggesting that such modification of FEZ1 is not a signal for its proteolysis. Polyubiquitylation of FEZ1 by E4B required Lys(27) of ubiquitin. Expression of a dominant-negative mutant of E4B in rat pheochromocytoma PC12 cells resulted in inhibition of neurite extension induced either by nerve growth factor or by coexpression of FEZ1 and constitutively active PKCzeta. These findings indicate that E4B serves as a ubiquitin ligase for FEZ1 and thereby regulates its function but not its degradation.  相似文献   

10.
Nakatsukasa K  Huyer G  Michaelis S  Brodsky JL 《Cell》2008,132(1):101-112
It remains unclear how misfolded membrane proteins are selected and destroyed during endoplasmic reticulum-associated degradation (ERAD). For example, chaperones are thought to solubilize aggregation-prone motifs, and some data suggest that these proteins are degraded at the ER. To better define how membrane proteins are destroyed, the ERAD of Ste6p(*), a 12 transmembrane protein, was reconstituted. We found that specific Hsp70/40s act before ubiquitination and facilitate Ste6p(*) association with an E3 ubiquitin ligase, suggesting an active role for chaperones. Furthermore, polyubiquitination was a prerequisite for retrotranslocation, which required the Cdc48 complex and ATP. Surprisingly, the substrate was soluble, and extraction was independent of a ubiquitin chain extension enzyme (Ufd2p). However, Ufd2p increased the degree of ubiquitination and facilitated degradation. These data indicate that polytopic membrane proteins can be extracted from the ER, and define the point of action of chaperones and the requirement for Ufd2p during membrane protein quality control.  相似文献   

11.
The UFD (ubiquitin fusion degradation) pathway is responsible for multiubiquitination of the fusion proteins that bear a "non-removable" N-terminal ubiquitin moiety. Previous reports have shown that the UFD pathway is conserved from yeast to human. The essential elements of the UFD pathway have also been identified in Saccharomyces cerevisiae. These studies, however, are limited to use of engineered UFD substrates. The biological significance of the UFD pathway remains unknown. Here we demonstrate that Ufd4, the E3 component of the UFD pathway, is involved in controlling the degradation of Rad4, a nucleotide excision repair protein. Moreover, simultaneous loss of Ufd4 and Rad23 exhibits a synthetic inhibitory effect on Rad4 degradation, presenting the first example that a UBA/UBL-domain protein functionally overlaps with a ubiquitin ligase in determining the turnover rate of a protein substrate. The current work also provides a direction for further investigation of the physiological functions of the UFD pathway.  相似文献   

12.
Cells have quality-control mechanisms to recognize non-native protein structures and either help the proteins fold or promote their degradation. Ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s) work together to assemble polyubiquitin chains on misfolded or misassembled proteins, which are then degraded by the proteasome. Here, we find that Ubc7, a yeast E2, can itself undergo degradation when its levels exceed that of its binding partner Cue1, a transmembrane protein that tethers Ubc7 to the endoplasmic reticulum. Unassembled, and thus mislocalized, Ubc7 is targeted to the proteasome by Ufd4, a homologous to E6-AP C-terminus (HECT)-class E3. Ubc7 is autoubiquitinated by a novel mechanism wherein the catalytic cysteine, instead of a lysine residue, provides the polyubiquitin chain acceptor site, and this cysteine-linked chain functions as a degradation signal. The polyubiquitin chain can also be transferred to a lysine side chain, suggesting a mechanism for polyubiquitin chain assembly that precedes substrate modification.  相似文献   

13.
RING (really interesting new gene) and U-box E3 ligases bridge E2 ubiquitin-conjugating enzymes and substrates to enable the transfer of ubiquitin to a lysine residue on the substrate or to one of the seven lysine residues of ubiquitin for polyubiquitin chain elongation. Different polyubiquitin chains have different functions. Lys(48)-linked chains target proteins for proteasomal degradation, and Lys(63)-linked chains function in signal transduction, endocytosis and DNA repair. For this reason, chain topology must be tightly controlled. Using the U-box E3 ligase CHIP [C-terminus of the Hsc (heat-shock cognate) 70-interacting protein] and the RING E3 ligase TRAF6 (tumour-necrosis-factor-receptor-associated factor 6) with the E2s Ubc13 (ubiquitin-conjugating enzyme 13)-Uev1a (ubiquitin E2 variant 1a) and UbcH5a, in the present study we demonstrate that Ubc13-Uev1a supports the formation of free Lys(63)-linked polyubiquitin chains not attached to CHIP or TRAF6, whereas UbcH5a catalyses the formation of polyubiquitin chains linked to CHIP and TRAF6 that lack specificity for any lysine residue of ubiquitin. Therefore the abilities of these E2s to ubiquitinate a substrate and to elongate polyubiquitin chains of a specific topology appear to be mutually exclusive. Thus two different classes of E2 may be required to attach a polyubiquitin chain of a particular topology to a substrate: the properties of one E2 are designed to mono-ubiquitinate a substrate with no or little inherent specificity for an acceptor lysine residue, whereas the properties of the second E2 are tailored to the elongation of a polyubiquitin chain using a defined lysine residue of ubiquitin.  相似文献   

14.
Proteins containing ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains interact with various binding partners and function as hubs during ubiquitin-mediated protein degradation. A common interaction of the budding yeast UBL-UBA proteins Rad23 and Dsk2 with the E4 ubiquitin ligase Ufd2 has been described in endoplasmic reticulum-associated degradation among other pathways. The UBL domains of Rad23 and Dsk2 play a prominent role in this process by interacting with Ufd2 and different subunits of the 26 S proteasome. Here, we report crystal structures of Ufd2 in complex with the UBL domains of Rad23 and Dsk2. The N-terminal UBL-interacting region of Ufd2 exhibits a unique sequence pattern, which is distinct from any known ubiquitin- or UBL-binding domain identified so far. Residue-specific differences exist in the interactions of these UBL domains with Ufd2, which are coupled to subtle differences in their binding affinities. The molecular details of their differential interactions point to a role for adaptive evolution in shaping these interfaces.  相似文献   

15.
Frederik Eisele 《FEBS letters》2008,582(30):4143-4146
Protein quality control and subsequent elimination of terminally misfolded proteins occurs via the ubiquitin-proteasome system. Tagging of misfolded proteins with ubiquitin for degradation depends on a cascade of reactions involving an ubiquitin activating enzyme (E1), ubiquitin conjugating enzymes (E2) and ubiquitin ligases (E3). While ubiquitin ligases responsible for targeting misfolded secretory proteins to proteasomal degradation (ERAD) have been uncovered, no such E3 enzymes have been found for elimination of misfolded cytoplasmic proteins in yeast. Here we report on the discovery of Ubr1, the E3 ligase of the N-end rule pathway, to be responsible for targeting misfolded cytosoplasmic protein to proteasomal degradation.  相似文献   

16.
UFD1L is the human homologue of the yeast ubiquitin fusion degradation 1 (Ufd1) gene and maps on chromosome 22q11.2 in the typically deleted region (TDR) for DiGeorge/velocardiofacial syndromes (DGS/VCFS). In yeast, Ufd1 protein is involved in a degradation pathway for ubiquitin fused products (UFD pathway). Several studies have demonstrated that Ufd1 is a component of the Cdc48-Ufd1-Npl4 multiprotein complex which is active in the recognition of several polyubiquitin-tagged proteins and facilitates their presentation to the 26S proteasome for protein degradation or even more specific processing. The multiprotein complex Cdc48-Ufd-Npl4 is also active in mammalian cells. The biochemical role of UFD1L protein in human cells is unknown, even though the interaction between UFD1L and NPL4 proteins has been maintained. In order to clarify this issue, we examined the intracellular distribution of the protein in different mammalian cells and studied its involvement in the Fas and ceramide factors-mediated apoptotic pathways. We established that in mammalian cells, Ufd1l is localized around the nucleus and that it does not interfere with Fas-and ceramide-mediated apoptosis.  相似文献   

17.
The variance of the U-box domain in 64 Arabidopsis thaliana (thale cress) E3s (ubiquitin-protein ligases) was used to examine the interactions between E3s and E2s (ubiquitin-conjugating enzymes). E2s and E3s are components of the ubiquitin protein degradation pathway. Seven U-box proteins were analysed for their ability to ubiquitinate proteins in vitro in co-operation with different E2s. All U-box domains exhibited ubiquitination activity and interacted productively with UBC4/5-type E2s. Three and four of the U-box domains mediated ubiquitin addition in the presence of UBC13 and UBC7 E2s respectively, but no productive interaction was observed with the UBC15 E2 tested. The activity of AtPUB54 [Arabidopsis thaliana (thale cress) plant U-box 54 protein] was dependent on Trp(266) in the E2-binding cleft, and the E2 selectivity was changed by substitution of this position. The function of the distant U-box protein, AtPUB49, representing a large family of eukaryotic proteins containing a U-box linked to a cyclophilin-like peptidyl-prolyl cis-trans isomerase domain, was characterized biochemically. AtPUB49 functioned both as a prolyl isomerase and a chaperone by catalysing cis-trans isomerization of peptidyl-prolyl bonds and dissolving protein aggregates. In conclusion, both typical and atypical Arabidopsis U-box proteins were active E3s. The overlap in the E3/E2 selectivity suggests that in vivo specificity is not determined only by the E3-E2 interactions, but also by other parameters, e.g. co-existence or interactions with additional domains. The biochemical functions of AtPUB49 suggest that the protein can be involved in folding or degradation of protein substrates. Similar functions can also be retained within a protein complex with separate chaperone and U-box proteins.  相似文献   

18.
Legionella pneumophila has a Dot/Icm type IV secretion system used to translocate a number of 'effector proteins' which subvert host cell functions. In this study, we identified 19 novel Dot/Icm substrate proteins using a systematic screening technique. A blast analysis revealed that one of the substrates, which we named LubX ( L egionella U - b o x protein), contains two domains that have a remarkable similarity to the U-box, a domain found in eukaryotic E3 ubiquitin ligases. The expression of LubX is induced upon infection, and most of the LubX produced was translocated into the host cells. LubX has ubiquitin ligase activity in conjunction with UbcH5a or UbcH5c E2 enzymes and mediates polyubiquitination of host Clk1 (Cdc2-like kinase 1). We demonstrate that one of the U-boxes (U-box 1) is critical to the ubiquitin ligation, and the other U-box (U-box 2) mediates interaction with Clk1. Thus, the two U-boxes of LubX have distinct functions, and U-box 2 plays a non-canonical role in substrate binding. Although we demonstrate that inhibition of Clk kinase results in a marked reduction of Legionella growth within mouse macrophages, the consequence of Clk1 ubiquitination is still being elucidated. Together, these data suggest that Clk1 is the target host molecule which Legionella modulates during infection.  相似文献   

19.
20.
UFD2a is a mammalian homolog of Saccharomyces cerevisiae Ufd2, originally described as an E4 ubiquitination factor. UFD2a belongs to the U-box family of ubiquitin ligases (E3s) and likely functions as both an E3 and E4. We have isolated and characterized the mouse gene (Ube4b) for UFD2a. A full-length (approximately 5700 bp) Ube4b cDNA was isolated and the corresponding gene spans >100 kb, comprising 27 exons. Luciferase reporter gene analysis of the 5(') flanking region of Ube4b revealed that nucleotides -1018 to -943 (relative to the translation initiation site) possess promoter activity. This functional sequence contains two putative Sp1 binding sites but not a TATA box. Immunoblot and immunohistochemical analyses revealed that UFD2a is expressed predominantly in the neuronal tissues. We also show that UFD2a interacts with VCP (a AAA-family ATPase) that is thought to mediate protein folding. These data implicate UFD2a in the degradation of neuronal proteins by the ubiquitin-proteasome pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号