首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H Roder  K Wüthrich 《Proteins》1986,1(1):34-42
A method to be used for experimental studies of protein folding introduced by Schmid and Baldwin (J. Mol. Biol. 135: 199-215, 1979), which is based on the competition between amide hydrogen exchange and protein refolding, was extended by using rapid mixing techniques and 1H NMR to provide site-resolved kinetic information on the early phases of protein structure acquisition. In this method, a protonated solution of the unfolded protein is rapidly mixed with a deuterated buffer solution at conditions assuring protein refolding in the mixture. This simultaneously initiates the exchange of unprotected amide protons with solvent deuterium and the refolding of protein segments which can protect amide groups from further exchange. After variable reaction times the amide proton exchange is quenched while folding to the native form continues to completion. By using 1H NMR, the extent of exchange at individual amide sites is then measured in the refolded protein. Competition experiments at variable reaction times or variable pH indicate the time at which each amide group is protected in the refolding process. This technique was applied to the basic pancreatic trypsin inhibitor, for which sequence-specific assignments of the amide proton NMR lines had previously been obtained. For eight individual amide protons located in the beta-sheet and the C-terminal alpha-helix of this protein, apparent refolding rates in the range from 15 s-1 to 60 s-1 were observed. These rates are on the time scale of the fast folding phase observed with optical probes.  相似文献   

2.
Y Pan  M S Briggs 《Biochemistry》1992,31(46):11405-11412
Ubiquitin adopts a non-native folded structure in 60% methanol solution at low pH. Two-dimensional nuclear magnetic resonance (2D NMR) was used to measure the hydrogen-exchange rates of backbone amide protons of ubiquitin in both native and methanol forms, and to characterize the structure of ubiquitin in the methanol state. Protection factors (the ratios of experimentally determined exchange rates to the rates calculated for an unfolded polypeptide) for protons in the native form of ubiquitin range from less than 10 to greater than 10(5). Most of the protons that are protected from exchange are located in regions of hydrogen-bonded secondary structure. The most strongly protected backbone amide protons are those of residues comprising the hydrophobic core. Hydrogen exchange from ubiquitin in methanol solution was too rapid to measure directly by 2D NMR, so a labeling scheme was employed, in which exchange with solvent occurred while the protein was in methanol solution. Exchange was quenched by dilution with aqueous buffer after the desired labeling time, and proton occupancies were measured by 1H NMR of the native form of the protein. Protection factors for protons in the methanol form of ubiquitin range from 2.6 to 42, with all protected protons located in hydrogen-bonded structure in the native form. Again, the most strongly protected protons are those of residues in the hydrophobic core. Comparison of the patterns of the hydrogen-exchange rates in the native and methanol forms indicates that almost all of the native secondary structure persists in the methanol form, but that it is almost uniformly destabilized by 4-6 kcal/mol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Based on the nuclear magnetic resonance assignments of a dimeric protein, Streptomyces subtilisin inhibitor (SSI), microscopic details of secondary structures in solution have been elucidated. The chemical shift index of C(alpha) signals, together with information on the hydrogen exchange rates of the backbone amide protons, were used to identify secondary structures. The locations of these secondary structures were found to be different in some critical points from those determined earlier by X-ray crystallography of the crystal. Notably, the beta3 strand is completely missing and the alpha2 helix is extended toward the C-terminus. Furthermore, hydrogen exchange experiments of individual peptide NH protons under strongly folding conditions revealed mechanisms of global and local structural fluctuation within the dimeric structure. It has been suggested that the global fluctuation of the monomeric unit occurs without affecting the accompanying monomer, in contrast to the equilibrium thermal unfolding, which is cooperative. Higher protection against hydrogen exchange for residues in part of the beta4 strand implies that this region might serve as a folding core.  相似文献   

4.
Nuclear magnetic resonance was used to measure the hydrogen-deuterium exchange rates for individual interior amide protons in a group of small globular proteins related to the basic pancreatic trypsin inhibitor (BPTI). These proteins include two homologous proteins and seven chemical modifications of BPTI. It was previously shown that the spatial structure of BPTI is preserved in all these related proteins. The exchange rates for corresponding amide protons in the different proteins were found to vary by a factor of as much as 5 X 104. The proton exchange is correlated with the thermal stability of the proteins, i.e. the lower the denaturation temperature, the faster the NH exchange. Further evidence that the exchange of interior amide protons is promoted by global fluctuations of the protein structures comes from the observation that the order of the relative exchange rates for the individual protons is the same in all the different species. This is the third in a series of three papers on nuclear magnetic resonance studies of labile protons in BPTI-related proteins. A detailed interpretation of the data will be given in a forthcoming paper.  相似文献   

5.
M Y Kim  C S Maier  D J Reed  P S Ho  M L Deinzer 《Biochemistry》2001,40(48):14413-14421
Site specific amide hydrogen/deuterium content of oxidized and reduced Escherichia colithioredoxin, and alkylated derivatives, Cys-32-ethylglutathionylated and Cys-32-ethylcysteinylated thioredoxins are measured, after exposure for 20 s to D(2)O/phosphate buffer (pH 5.7), by electrospray mass spectrometry. The degree of deuteration of Oxi-TRX and Red-TRX correlated with the rates of H/D exchange measured previously by NMR. The ethylcysteinyl modification was shown to minimally perturb the active site of the reduced protein, but showed more global effects on structures of alpha-helices and beta-strands distant from the site of modification. In contrast, the larger ethylglutathionyl group had little effect on the protein's overall conformation, but significantly affected the structure of loops close to the active site. A molecular model of GS-ethyl-TRX derived from molecular simulation allowed the H/D exchange results to be interpreted in terms of specific interactions between the alkyl chain and the protein surface. The specific conformation of the ethylglutathione modification was predicted to be fixed by salt bridges between the carboxylates of the gamma-Glu and Gly of glutathione and the guanidinium of Arg-73 and epsilon-amino group of Lys-90 of the protein. Specific hydrogen bonding interactions between the glutathione carbonyl oxygens and the amide protons of thioredoxin residues Ile-75 and Ala-93 were predicted. The H/D exchange studies showed low levels of deuterium incorporation at backbone nitrogens of these residues. The data also provided evidence for an unusual amide proton-amide nitrogen hydrogen bond within the ethylglutathionylated chain. These same sets of electrostatic and hydrogen bonding interactions were not predicted or observed for the smaller alkyl modification in Cys-ethyl-TRX.  相似文献   

6.
The pH dependence of hydrogen exchange in proteins   总被引:3,自引:0,他引:3  
The static accessibility modified discrete charge model for electrostatic interactions in proteins is extended to the prediction of the pH dependence of hydrogen exchange reactions. The exchange rate profiles of buried amide protons are shown to follow the calculated pH dependence of the electrostatic component of protein stability. Rate profiles are calculated for individual buried amide protons in ribonuclease S and bovine pancreatic trypsin inhibitor. The electrostatic free energy of stabilization of the protein and the energy required to bring the catalytic ion to an exchange site are expressed as an apparent, pH-dependent contribution to the activation energy. Changes in the electrostatic stabilization of the proteins affect the calculated exchange rate for buried amide protons by more than 1000, while local field effects raise or lower the predicted exchange rates by less than 100. The pH dependence of exchangeable protons at the protein surface, such as the C-2 imidazole protons, is shown to follow the estimated energy required to introduce the catalytic ion at the exchange site. These calculations are discussed in terms of current models for proton exchange which incorporate the dynamic nature of the structure to explain exchange data from the interior of a protein.  相似文献   

7.
Summary All the backbone 1H and 15N magnetic resonances (except for Pro residues) of the GDP-bound form of a truncated human c-Ha-ras proto-oncogene product (171 amino acid residues, the Ras protein) were assigned by 15N-edited two-dimensional NMR experiments on selectively 15N-labeled Ras proteins in combination with three-dimensional NMR experiments on the uniformly 15N-labeled protein. The sequence-specific assignments were made on the basis of the nuclear Overhauser effect (NOE) connectivities of amide protons with preceding amide and/or Cprotons. In addition to sequential NOEs, vicinal spin coupling constants for amide protons and C protons and deuterium exchange rates of amide protons were used to characterize the secondary structure of the GDP-bound Ras protein; six strands and five helices were identified and the topology of these elements was determined. The secondary structure of the Ras protein in solution was mainly consistent with that in crystal as determined by X-ray analyses. The deuterium exchange rates of amide protons were examined to elucidate the dynamic properties of the secondary structure elements of the Ras protein in solution. In solution, the -sheet structure in the Ras protein is rigid, while the second helix (A66-R73) is much more flexible, and the first and fifth helices (S17-124 and V152-L171) are more rigid than other helices. Secondary structure elements at or near the ends of the effector-region loop were found to be much more flexible in solution than in the crystalline state.  相似文献   

8.
Jin X  Zhang J  Dai H  Sun H  Wang D  Wu J  Shi Y 《Biophysical chemistry》2007,129(2-3):269-278
The solution structure of human MICAL-1 calpolnin homology (CH) domain is composed of six alpha helices and one 3(10) helix. To study the unfolding of this domain, we carry out native-state hydrogen exchange, intrinsic fluorescence and far-UV circular dichroism experiments. The free energy of unfolding, DeltaG(H2O), is calculated to be 7.11+/-0.58 kcal mol(-1) from GuHCl denaturation at pH 6.5. Four cooperative unfolding units are found using native-state hydrogen exchange experiment. Forty-seven slow-exchange residues can be studied by native-state hydrogen exchange experiments. From the concentration dependence of exchange rates, free energy of amide hydrogen with solvent, DeltaG(HX) and m-value (sensitivity of exposure to denaturant) are obtained, which reveal four cooperative unfolding units. The slowest exchanging protons are distributed throughout the whole hydrophobic core of the protein, which might be the folding core. These results will help us understand the structure of MICAL-1 CH domain more deeply.  相似文献   

9.
The backbone dynamics of the EF-hand Ca(2+)-binding protein, calbindin D9k, has been investigated in the apo, (Cd2+)1 and (Ca2+)2 states by measuring the rate constants for amide proton exchange with solvent. 15N-1H correlation spectroscopy was utilized to follow direct 1H-->2H exchange of the slowly exchanging amide protons and to follow indirect proton exchange via saturation transfer from water to the rapidly exchanging amide protons. Plots of experimental rate constants versus intrinsic rate constants have been analyzed to give qualitative insight into the opening modes of the protein that lead to exchange. These results have been interpreted within the context of a progressive unfolding model, wherein hydrophobic interactions and metal chelation serve to anchor portions of the protein, thereby damping fluctuations and retarding amide proton exchange. The addition of Ca2+ or Cd2+ was found to retard the exchange of many amide protons observed to be in hydrogen-bonding environments in the crystal structure of the (Ca2+)2 state, but not of those amide protons that were not involved in hydrogen bonds. The largest changes in rate constant occur for residues in the ion-binding loops, with substantial effects also found for the adjacent residues in helices I, II and III, but not helix IV. The results are consistent with a reorganization of the hydrogen-bonding networks in the metal ion-binding loops, accompanied by a change in the conformation of helix IV, as metal ions are chelated. Further analysis of the results obtained for the three states of metal occupancy provides insight into the nature of the changes in conformational fluctuations induced by ion binding.  相似文献   

10.
The pH dependence of amide proton exchange rates have been measured for trp-repressor. One class of protons exchanges too fast to be measured in these experiments. Among the protons that have measurable hydrogen-deuterium exchange rates, two additional classes may be distinguished. The second class of protons are in elements of secondary structure that are mostly on the surface of the protein, and exchange linearly with increasing base concentration (log kex versus pH). The third class of amide protons is characterized by much higher protection against exchange at higher pH. These protons are located in the core of the protein, in helices B and C. The exchange rate in the core region does not increase linearly with pH, but rather goes through a minimum around pH 6. The mechanism of exchange for the slowly exchanging core protons is interpreted in terms of the two-process model of Hilton and Woodward (1979, Biochemistry 18:5834-5841), i.e., exchange through both a local mechanism that does not require unfolding of the protein, and a mechanism involving global unfolding of the protein. The increase in exchange rates at low pH is attributed to a partial unfolding of the repressor. It is concluded that the formation of secondary structure alone is insufficient to account for the high protection factors seen in the core of native proteins at higher pH, and that tertiary interactions are essential to stabilize the structure.  相似文献   

11.
As a first step to determine the folding pathway of a protein with an alpha/beta doubly wound topology, the 1H, 13C, and 15N backbone chemical shifts of Azotobacter vinelandii holoflavodoxin II (179 residues) have been determined using multidimensional NMR spectroscopy. Its secondary structure is shown to contain a five-stranded parallel beta-sheet (beta2-beta1-beta3-beta4-beta5) and five alpha-helices. Exchange rates for the individual amide protons of holoflavodoxin were determined using the hydrogen exchange method. The amide protons of 65 residues distributed throughout the structure of holoflavodoxin exchange slowly at pH* 6.2 [kex < 10(-5) s(-1)] and can be used as probes in future folding studies. Measured exchange rates relate to apparent local free energies for transient opening. We propose that the amide protons in the core of holoflavodoxin only exchange by global unfolding of the apo state of the protein. The results obtained are discussed with respect to their implications for flavodoxin folding and for modulation of the flavin redox potential by the apoprotein. We do not find any evidence that A. vinelandii holoflavodoxin II is divided into two subdomains based on its amide proton exchange rates, as opposed to what is found for the structurally but not sequentially homologous alpha/beta doubly wound protein Che Y.  相似文献   

12.
A J Wand  H Roder  S W Englander 《Biochemistry》1986,25(5):1107-1114
The hydrogen exchange behavior of the N-terminal helical segment in horse heart cytochrome c was studied in both the reduced and the oxidized forms by use of two-dimensional nuclear magnetic resonance methods. The amide protons of the first six residues are not H bonded and exchange rapidly with solvent protons. The most N-terminal H-bonded groups--the amide NH of Lys-7 to Phe-10--exhibit a sharp gradient in exchange rate indicative of dynamic fraying behavior, consistent with statistical-mechanical principles. This occurs identically in both reduced and oxidized cytochrome c. In the oxidized form, residues 11-14, which form the last helical turn, all exchange with a similar rate, about one million times slower than the rate characteristic of freely exposed peptide NH, even though some are on the aqueous face of the helix and others are fully buried. These and similar observations in several other proteins appear to document local cooperative unfolding reactions as determinants of protein H exchange reactions. The N-terminal segment of cytochrome c is insensitive to the heme redox state, as in the crystallographic model, except for residues closest to the heme (Cys-14 and Ala-15), which exchange about 15-fold more slowly in the reduced form. The cytochrome c H exchange results can be further considered in terms of the conformation of the native and the transiently unfolded forms and their free energy relationships in both the reduced and the oxidized states.  相似文献   

13.
The solution structure and backbone dynamics of the recombinant potato carboxypeptidase inhibitor (PCI) have been characterized by NMR spectroscopy. The structure, determined on the basis of 497 NOE-derived distance constraints, is much better defined than the one reported in a previous NMR study, with an average pairwise backbone root-mean-square deviation of 0.5 A for the well-defined region of the protein, residues 7-37. Many of the side-chains show now well-defined conformations, both in the hydrophobic core and on the surface of the protein. Overall, the solution structure of free PCI is similar to the one that it shows in the crystal of the complex with carboxypeptidase A. However, some local differences are observed in regions 15-21 and 27-29. In solution, the six N-terminal and the two C-terminal residues are rather flexible, as shown by 15N backbone relaxation measurements. The flexibility of the latter segment may have implications in the binding of the inhibitor by the enzyme. All the remaining residues in the protein are essentially rigid (S2 > 0.8) with the exception of two of them at the end of a short 3/10 helix. Despite the small size of the protein, a number of amide protons are protected from exchange with solvent deuterons. The slowest exchanging protons are those in a small two-strand beta-sheet. The unfolding free energies, as calculated from the exchange rates of these protons, are around 5 kcal/mol. Other protected amide protons are located in the segment 7-12, adjacent to the beta-sheet. Although these residues are not in an extended conformation in PCI, the equivalent residues in structurally homologous proteins form a third strand of the central beta-sheet. The amide protons in the 3/10 helix are only marginally protected, indicating that they exchange by a local unfolding mechanism, which is consistent with the increase in flexibility shown by some of its residues. Backbone alignment-based programs for folding recognition, as opposite to disulfide-bond alignments, reveal new proteins of unrelated sequence and function with a similar structure.  相似文献   

14.
We have analysed hydrogen exchange at amide groups to characterise the energy landscape of the 72 amino acid residue protein MerP. From the guanidine hydrochloride (GuHCl) dependence of exchange in the pre-transitional region we have determined free energy values of exchange (DeltaG(HX)) and corresponding m-values for individual amide protons. Detailed analysis of the exchange patterns indicates that for one set of amide protons there is a weak dependence on denaturant, indicating that the exchange is dominated by local fluctuations. For another set of amide protons a linear, but much stronger, denaturant dependence is observed. Notably, the plots of free energy of exchange versus [GuHCl] for 16 amide protons show pronounced upward curvature, and a close inspection of the structure shows that these residues form a well-defined core in the protein. The hydrogen exchange that was measured at various concentrations of NaCl shows an apparent selective stabilisation of this core. Detailed analysis of this exchange pattern indicates that it may originate from selective destabilisation of the unfolded state by guanidinium ions and/or selective stabilisation of the core in the native state by chloride ions.  相似文献   

15.
E Tüchsen  C Woodward 《Biochemistry》1987,26(25):8073-8078
Hydrogen-deuterium exchange is measured for the buried primary amide groups of Asn-43 and Asn-44 in bovine pancreatic trypsin inhibitor. Amide protons trans and cis to the amide carbonyl oxygen (HE and HZ, respectively) exchange at indistinguishable rates. Uncorrelated exchange of HE and HZ is established for both residues by following the nuclear Overhauser enhancement from HE to HZ during the deuterium exchange. The exchange of Asn-43 and Asn-44 side-chain protons differs qualitatively from exchange of primary amide groups in fully solvated model compounds, for which HE generally exchanges faster than HZ. The equal rates for the buried primary amide HE and HZ in BPTI are not a consequence of coupled exchange. The data indicate rapid rotation around the CO-NH2 bond for both Asn-43 and Asn-44 and suggest considerable lability of intramolecular hydrogen bonds. The side chain of Asn-43 has all of its polar atoms integrated into the very stable hydrogen-bonded structure of the protein. Asn-44 is hydrogen-bonded to side chains and to a buried water molecule. Solvent isotope exchange is several orders of magnitude more restricted by protein secondary and tertiary structure than the CO-NH2 rotation, indicating that N delta H2 groups flip many times before hydrogen isotope exchange occurs.  相似文献   

16.
Stable intermediate states and high energy barriers in the unfolding of GFP   总被引:2,自引:0,他引:2  
We present a study of the denaturation of a truncated, cycle3 variant of green fluorescent protein (GFP). Chemical denaturation is used to unfold the protein, with changes in structure being monitored by the green fluorescence, tyrosine fluorescence and far-UV circular dichroism. The results show that the denaturation behaviour of GFP is complex compared to many small proteins: equilibrium is established only very slowly, over the time course of weeks, suggesting that there are high folding/unfolding energy barriers. Unfolding kinetics confirm that the rates of unfolding at low concentrations of denaturant are very low, consistent with the slow establishment of the equilibrium. In addition, we find that GFP significantly populates an intermediate state under equilibrium conditions, which is compact and stable with respect to the unfolded state (m(IU)=4.6 kcal mol(-1) M(-1) and Delta G(IU)=12.5 kcal mol(-1)). The global and local stability of GFP was probed further by measuring the hydrogen/deuterium (H/D) NMR exchange rates of more than 157 assigned amide protons. Analysis at two different values of pH showed that amide protons within the beta-barrel structure exchange at the EX2 limit, consequently, free energies of exchange could be calculated and compared to those obtained from the denaturation-curve studies providing further support for the three-state model and the existence of a stable intermediate state. Analysis reveals that amide protons in beta-strands 7, 8, 9 and 10 have, on average, higher exchange rates than others in the beta-barrel, suggesting that there is greater flexibility in this region of the protein. Forty or so amide protons were found which do not undergo significant exchange even after several months and these are clustered into a core region encompassing most of the beta-strands, at least at one end of the barrel structure. It is likely that these residues play an important role in stabilizing the structure of the intermediate state. The intermediate state observed in the chemical denaturation studies described here, is similar to that observed at pH 4 in other studies.  相似文献   

17.
In human metallothionein-2, the exchange rate constants of ten amide protons were found to range from 1.7 x 10(-4) to 1 x 10(-1) min-1 at pH 6.3 and 8 degrees C. Most of these slowly exchanging protons could be associated with hydrogen bonds in secondary structure elements of the alpha-domain. Amide proton exchange rates thus present an additional criterion for the structural characterization of different metallothioneins, which could be particularly valuable for comparisons of different homologous protein preparations containing nuclear magnetic resonance-inactive metal ions, where the metal-polypeptide co-ordinative bonds cannot be identified directly.  相似文献   

18.
The solution structure of Nereis diversicolor sarcoplasmic calcium-binding protein (NSCP) in the calcium-bound form was determined by NMR spectroscopy, distance geometry and simulated annealing. Based on 1859 NOE restraints and 262 angular restraints, 17 structures were generated with a rmsd of 0.87 A from the mean structure. The solution structure, which is highly similar to the structure obtained by X-ray crystallography, includes two open EF-hand domains, which are in close contact through their hydrophobic surfaces. The internal dynamics of the protein backbone were determined by studying amide hydrogen/deuterium exchange rates and 15N nuclear relaxation. The two methods revealed a highly compact and rigid structure, with greatly restricted mobility at the two termini. For most of the amide protons, the free energy of exchange-compatible structural opening is similar to the free energy of structural stability, suggesting that isotope exchange of these protons takes place through global unfolding of the protein. Enhanced conformational flexibility was noted in the unoccupied Ca2+-binding site II, as well as the neighbouring helices. Analysis of the experimental nuclear relaxation and the molecular dynamics simulations give very similar profiles for the backbone generalized order parameter (S2), a parameter related to the amplitude of fast (picosecond to nanosecond) movements of N(H)-H vectors. We also noted a significant correlation between this parameter, the exchange rate, and the crystallographic B factor along the sequence.  相似文献   

19.
CDK2AP1 (cyclin-dependent kinase 2-associated protein 1), corresponding to the gene doc-1 (deleted in oral cancer 1), is a tumor suppressor protein. The doc-1 gene is absent or down-regulated in hamster oral cancer cells and in many other cancer cell types. The ubiquitously expressed CDK2AP1 protein is the only known specific inhibitor of CDK2, making it an important component of cell cycle regulation during G(1)-to-S phase transition. Here, we report the solution structure of CDK2AP1 by combined methods of solution state NMR and amide hydrogen/deuterium exchange measurements with mass spectrometry. The homodimeric structure of CDK2AP1 includes an intrinsically disordered 60-residue N-terminal region and a four-helix bundle dimeric structure with reduced Cys-105 in the C-terminal region. The Cys-105 residues are, however, poised for disulfide bond formation. CDK2AP1 is phosphorylated at a conserved Ser-46 site in the N-terminal "intrinsically disordered" region by IκB kinase ε.  相似文献   

20.
The eukaryotic class 1 polypeptide chain release factor is a three-domain protein involved in the termination of translation, the final stage of polypeptide biosynthesis. In attempts to understand the roles of the middle domain of the eukaryotic class 1 polypeptide chain release factor in the transduction of the termination signal from the small to the large ribosomal subunit and in peptidyl-tRNA hydrolysis, its high-resolution NMR structure has been obtained. The overall fold and the structure of the beta-strand core of the protein in solution are similar to those found in the crystal. However, the orientation of the functionally critical GGQ loop and neighboring alpha-helices has genuine and noticeable differences in solution and in the crystal. Backbone amide protons of most of the residues in the GGQ loop undergo fast exchange with water. However, in the AGQ mutant, where functional activity is abolished, a significant reduction in the exchange rate of the amide protons has been observed without a noticeable change in the loop conformation, providing evidence for the GGQ loop interaction with water molecule(s) that may serve as a substrate for the hydrolytic cleavage of the peptidyl-tRNA in the ribosome. The protein backbone dynamics, studied using 15N relaxation experiments, showed that the GGQ loop is the most flexible part of the middle domain. The conformational flexibility of the GGQ and 215-223 loops, which are situated at opposite ends of the longest alpha-helix, could be a determinant of the functional activity of the eukaryotic class 1 polypeptide chain release factor, with that helix acting as the trigger to transmit the signals from one loop to the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号