首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sharp MD  Pogliano K 《The EMBO journal》2002,21(22):6267-6274
During Bacillus subtilis sporulation, the SpoIIIE DNA translocase moves a trapped chromosome across the sporulation septum into the forespore. The direction of DNA translocation is controlled by the specific assembly of SpoIIIE in the mother cell and subsequent export of DNA into the forespore. We present evidence that the MinCD heterodimer, which spatially regulates cell division during vegetative growth, serves as a forespore-specific inhibitor of SpoIIIE assembly. The deletion of minCD increases the ability of forespore-expressed SpoIIIE to assemble and translocate DNA, and causes otherwise wild-type cells to reverse the direction of DNA transfer, producing anucleate forespores. We propose that two distinct mechanisms ensure the specific assembly of SpoIIIE in the mother cell, the partitioning of more SpoIIIE molecules into the larger mother cell by asymmetric cell division and the MinCD-dependent repression of SpoIIIE assembly in the forespore. Our results suggest that the ability of MinCD to sense positional information is utilized during sporulation to regulate protein assembly differentially on the two faces of the sporulation septum.  相似文献   

2.
During Bacillus subtilis sporulation, SpoIIIE is required for translocation of the trapped forespore chromosome across the sporulation septum, for compartmentalization of cell-specific gene expression, and for membrane fusion after engulfment. We isolated mutations within the SpoIIIE membrane domain that block localization and function. One mutant protein initially localizes normally and completes DNA translocation, but shows reduced membrane fusion after engulfment. Fluorescence recovery after photobleaching experiments demonstrate that in this mutant the sporulation septum remains open, allowing cytoplasmic contents to diffuse between daughter cells, suggesting that it blocks membrane fusion after cytokinesis as well as after engulfment. We propose that SpoIIIE catalyses these topologically opposite fusion events by assembling or disassembling a proteinaceous fusion pore. Mutants defective in SpoIIIE assembly also demonstrate that the ability of SpoIIIE to provide a diffusion barrier is directly proportional to its ability to assemble a focus at the septal midpoint during DNA translocation. Thus, SpoIIIE mediates compartmentalization by two distinct mechanisms: the SpoIIIE focus first provides a temporary diffusion barrier during DNA translocation, and then mediates the completion of membrane fusion after division to provide a permanent diffusion barrier. SpoIIIE-like proteins might therefore serve to couple the final step in cytokinesis, septal membrane fusion, to the completion of chromosome segregation.  相似文献   

3.
L J Wu  J Errington 《The EMBO journal》1997,16(8):2161-2169
The 787 amino acid SpoIIIE protein of Bacillus subtilis is required for chromosome partitioning during sporulation. This process differs from vegetative chromosome partitioning in that it occurs after formation of the septum, apparently by transfer of the chromosome through the nascent septum in a manner reminiscent of plasmid conjugation. Here we show that SpoIIIE is associated with the cell membrane, with its soluble C-terminal domain located inside the cell. Immunofluorescence microscopy using affinity-purified anti-SpoIIIE antibodies shows that SpoIIIE is targeted near the centre of the asymmetric septum, in support of a direct role for SpoIIIE in transport of DNA through the septum. We also report on the isolation of a mutation affecting the N-terminal hydrophobic domain of SpoIIIE that interferes with targeting to the septum and blocks DNA transfer. This mutation also causes de-localization of the activity of the normally prespore-specific sigma factor, sigmaF, consistent with the notion that SpoIIIE can form a seal between the chromosomal DNA and the leading edge of the division septum.  相似文献   

4.
SpoIIIE directionally pumps DNA across membranes during Bacillus subtilis sporulation and vegetative growth. The sequence-reading domain (γ domain) is required for directional DNA transport, and its deletion severely impairs sporulation. We selected suppressors of the spoIIIEΔγ sporulation defect. Unexpectedly, many suppressors were intragenic missense mutants, and some restore sporulation to near-wild-type levels. The mutant proteins are likely not more abundant, faster at translocating DNA, or sequence-sensitive, and rescue does not involve the SpoIIIE homolog SftA. Some mutants behave differently when co-expressed with spoIIIEΔγ, consistent with the idea that some, but not all, variants may form mixed oligomers. In full-length spoIIIE, these mutations do not affect sporulation, and yet the corresponding residues are rarely found in other SpoIIIE/FtsK family members. The suppressors do not rescue chromosome translocation defects during vegetative growth, indicating that the role of the γ domain cannot be fully replaced by these mutations. We present two models consistent with our findings: that the suppressors commit to transport in one arbitrarily-determined direction or delay spore development. It is surprising that missense mutations somehow rescue loss of an entire domain with a complex function, and this raises new questions about the mechanism by which SpoIIIE pumps DNA and the roles SpoIIIE plays in vivo.  相似文献   

5.
The spoIIIE gene of Sporosarcina ureae encodes a 780-residue protein, showing 58% identity to the SpoIIIE protein of Bacillus subtilis, which is thought to be a DNA translocase. Expression of the S. ureae spoIIIE gene is able to restore sporulation in a B. subtilis spoIIIE mutant. Inactivation of the S. ureae spoIIIE gene blocks sporulation of S. ureae at stage III. Within the limits of detection, the sporulation division in S. ureae shows the same symmetry, or near symmetry, as the vegetative division (in contrast to the highly asymmetric location of the sporulation division for B. subtilis), and so it is inferred that SpoIIIE facilitates chromosome partitioning during sporulation, even when the division is not grossly asymmetric. It is suggested that chromosome partitioning lags behind division during sporulation but not during vegetative growth.  相似文献   

6.
SpoIIIE/FtsK ATPases are central players in bacterial chromosome segregation. It remains unclear how these DNA translocases harness chemical energy (ATP turnover) to perform mechanical work (DNA movement). Bacillus subtilis sporulation provides a dramatic example of intercompartmental DNA transport, in which SpoIIIE moves 70% of the chromosome across the division plane. To understand the mechanistic requirements for DNA translocation, we investigated the DNA translocation defect of a classical nontranslocating allele, spoIIIE36. We found that the translocation phenotype is caused by a single substitution, a change of valine to methionine at position 429 (V429M), within the motor of SpoIIIE. This substitution is located at the base of a hinge between the RecA-like β domain and the α domain, which is a domain unique to the SpoIIIE/FtsK family and currently has no known function. V429M interferes with both protein-DNA interactions and oligomer assembly. These mechanistic defects disrupt coordination between ATP turnover and DNA interaction, effectively uncoupling ATP hydrolysis from DNA movement. Our data provide the first functional evidence for the importance of the hinge in DNA translocation.  相似文献   

7.
8.
Sporulation in aerial hyphae of Streptomyces coelicolor involves profound changes in regulation of fundamental morphogenetic and cell cycle processes to convert the filamentous and multinucleoid cells to small unigenomic spores. Here, a novel sporulation locus consisting of smeA (encoding a small putative membrane protein) and sffA (encoding a SpoIIIE/FtsK-family protein) is characterized. Deletion of smeA-sffA gave rise to pleiotropic effects on spore maturation, and influenced the segregation of chromosomes and placement of septa during sporulation. Both smeA and sffA were expressed specifically in apical cells of sporogenic aerial hyphae simultaneously with or slightly after Z-ring assembly. The presence of smeA-like genes in streptomycete chromosomes, plasmids and transposons, often paired with a gene for a SpoIIIE/FtsK- or Tra-like protein, indicates that SmeA and SffA functions might be related to DNA transfer. During spore development SffA accumulated specifically at sporulation septa where it colocalized with FtsK. However, sffA did not show redundancy with ftsK, and SffA function appeared distinct from the DNA translocase activity displayed by FtsK during closure of sporulation septa. The septal localization of SffA was dependent on SmeA, suggesting that SmeA may act as an assembly factor for SffA and possibly other proteins required during spore maturation.  相似文献   

9.
During Bacillus subtilis sporulation, SpoIIIE is required for both postseptational chromosome segregation and membrane fusion after engulfment. Here we demonstrate that SpoIIIE must be present in the mother cell to promote membrane fusion and that the N-terminal membrane-spanning segments constitute a minimal membrane fusion domain, as well as direct septal localization.  相似文献   

10.
Bacillus subtilis undergoes a highly distinctive division during spore formation. It yields two unequal cells, the mother cell and the prespore, and septum formation is completed before the origin-distal 70% of the chromosome has entered the smaller prespore. The mother cell subsequently engulfs the prespore. Two different probes were used to study the behavior of the terminus (ter) region of the chromosome during spore formation. Only one ter region was observed at the time of sporulation division. A second ter region, indicative of chromosome separation, was not distinguishable until engulfment was nearing completion, when one was in the mother cell and the other in the prespore. Separation of the two ter regions depended on the DNA translocase SpoIIIE. It is concluded that SpoIIIE is required during spore formation for chromosome separation as well as for translocation; SpoIIIE is not required for separation during vegetative growth.  相似文献   

11.
We here identify a protein (AlfA; actin like filament) that defines a new family of actins that are only distantly related to MreB and ParM. AlfA is required for segregation of Bacillus subtilis plasmid pBET131 (a mini pLS32-derivative) during growth and sporulation. A 3-kb DNA fragment encoding alfA and a downstream gene (alfB) is necessary and sufficient for plasmid stability. AlfA-GFP assembles dynamic cytoskeletal filaments that rapidly turn over (t(1/2)< approximately 45 s) in fluorescence recovery after photobleaching experiments. A point mutation (alfA D168A) that completely inhibits AlfA subunit exchange in vivo is strongly defective for plasmid segregation, demonstrating that dynamic polymerization of AlfA is necessary for function. During sporulation, plasmid segregation occurs before septation and independently of the DNA translocase SpoIIIE and the chromosomal Par proteins Soj and Spo0J. The absence of the RacA chromosome anchoring protein reduces the efficiency of plasmid segregation (by about two-fold), suggesting that it might contribute to anchoring the plasmid at the pole during sporulation. Our results suggest that the dynamic polymerization of AlfA mediates plasmid separation during both growth and sporulation.  相似文献   

12.
SpoIIIE/FtsK are a family of ring-shaped, membrane-anchored, ATP-fuelled motors required to segregate DNA across bacterial membranes. This process is directional and requires that SpoIIIE/FtsK recognize highly skewed octameric sequences (SRS/KOPS for SpoIIIE/FtsK) distributed along the chromosome. Two models have been proposed to explain the mechanism by which SpoIIIE/FtsK interact with DNA. The loading model proposes that SpoIIIE/FtsK oligomerize exclusively on SpoIIIE recognition sequence/orienting polar sequences (SRS/KOPS) to accomplish directional DNA translocation, whereas the target search and activation mechanism proposes that pre-assembled SpoIIIE/FtsK hexamers bind to non-specific DNA, reach SRS/KOPS by diffusion/3d hopping and activate at SRS/KOPS. Here, we employ single-molecule total internal reflection imaging, atomic force and electron microscopies and ensemble biochemical methods to test these predictions and obtain further insight into the SpoIIIE–DNA mechanism of interaction. First, we find that SpoIIIE binds DNA as a homo-hexamer with neither ATP binding nor hydrolysis affecting the binding mechanism or affinity. Second, we show that hexameric SpoIIIE directly binds to double-stranded DNA without requiring the presence of SRS or free DNA ends. Finally, we find that SpoIIIE hexamers can show open and closed conformations in solution, with open-ring conformations most likely resembling a state poised to load to non-specific, double-stranded DNA. These results suggest how SpoIIIE and related ring-shaped motors may be split open to bind topologically closed DNA.  相似文献   

13.
SpoIIIE and FtsK are related proteins that translocate chromosomes across septa. Previous results suggested that SpoIIIE exports DNA and that translocation polarity is governed by the cell-specific regulation of its assembly, but that FtsK is a reversible motor for which translocation polarity is governed by its DNA substrate. Seeking to reconcile these conclusions, we used cell-specific GFP tagging to demonstrate that SpoIIIE assembles a complex only in the mother cell, from which DNA is exported, but that DNA translocation-defective SpoIIIE proteins assemble in both cells. Altering chromosome architecture by soj-spo0J and racA soj-spo0J mutations allowed wild-type SpoIIIE to assemble in the forespore and export the forespore chromosome. Combining LacI-CFP tagging of oriC with time-lapse microscopy, we demonstrate that the chromosome is exported from the forespore when oriC fails to be trapped in the forespore. Thus, the position of oriC after septation determines which cell will receive the chromosome and which will assemble SpoIIIE.  相似文献   

14.
DNA pumps play important roles in bacteria during cell division and during the transfer of genetic material by conjugation and transformation. The FtsK/SpoIIIE proteins carry out the translocation of double-stranded DNA to ensure complete chromosome segregation during cell division. In contrast, the complex molecular machines that mediate conjugation and genetic transformation drive the transport of single stranded DNA. The transformation machine also processes this internalized DNA and mediates its recombination with the resident chromosome during and after uptake, whereas the conjugation apparatus processes DNA before transfer. This article reviews these three types of DNA pumps, with attention to what is understood of their molecular mechanisms, their energetics and their cellular localizations.The transport of DNA across membranes by bacteria occurs during sporulation, during cytokinesis, directly from other cells and from the environment. This review addresses the question “how is the DNA polyanion transferred processively across the hydrophobic membrane barrier”?DNA transport must occur through water-filled channels, at least conceptually addressing the problem posed by the hydrophobic membrane. DNA transporters presumably use metabolic energy directly or a coupled-flow (symporter or antiporter) mechanism to drive DNA processively through the channel. It is possible that a Brownian ratchet mechanism, in which directionality is imposed on a diffusive process, also contributes to transport.In this article, we will consider several DNA transport systems. We will begin with the simplest one, namely the FtsK/SpoIIIE system that is involved in cell division and sporulation. We will then turn to the more complex, multiprotein DNA uptake systems that accomplish genetic transformation (the uptake of environmental DNA from the environment) and the conjugation systems of Gram-negative bacteria that mediate the unidirectional transfer of DNA between cells. In each case we will discuss the proteins involved, their actions and the sources of energy that drive transport. Space limitations prevent discussion of other relevant topics, such as DNA transport during bacteriophage infection and more than a brief reference to conjugation in Gram-positive bacteria.  相似文献   

15.
Burton BM  Marquis KA  Sullivan NL  Rapoport TA  Rudner DZ 《Cell》2007,131(7):1301-1312
The FtsK/SpoIIIE family of ATP-dependent DNA transporters mediates proper chromosome segregation in dividing bacteria. In sporulating Bacillus subtilis cells, SpoIIIE translocates much of the circular chromosome from the mother cell into the forespore, but the molecular mechanism remains unclear. Using a new assay to monitor DNA transport, we demonstrate that the two arms of the chromosome are simultaneously pumped into the forespore. Up to 70 molecules of SpoIIIE are recruited to the site of DNA translocation and assemble into complexes that could contain 12 subunits. The fusion of the septal membranes during cytokinesis precedes DNA translocation and does not require SpoIIIE, as suggested by analysis of lipid dynamics, serial thin-section electron microscopy, and cell separation by protoplasting. These data support a model for DNA transport in which the transmembrane segments of FtsK/SpoIIIE form linked DNA-conducting channels across the two lipid bilayers of the septum.  相似文献   

16.
Faithful coordination between bacterial cell division and chromosome segregation in rod‐shaped bacteria, such as Escherichia coli and Bacillus subtilis, is dependent on the DNA translocase activity of FtsK/SpoIIIE proteins, which move DNA away from the division site before cytokinesis is completed. However, the role of these proteins in chromosome partitioning has not been well studied in spherical bacteria. Here, it was shown that the two Staphylococcus aureus FtsK/SpoIIIE homologues, SpoIIIE and FtsK, operate in independent pathways to ensure correct chromosome management during cell division. SpoIIIE forms foci at the centre of the closing septum in at least 50% of the cells that are close to complete septum synthesis. FtsK is a multifunctional septal protein with a C‐terminal DNA translocase domain that is not required for correct chromosome management in the presence of SpoIIIE. However, lack of both SpoIIIE and FtsK causes severe nucleoid segregation and morphological defects, showing that the two proteins have partially redundant roles in S. aureus.  相似文献   

17.
SpoIIIE/FtsK are membrane‐anchored, ATP‐fuelled, directional motors responsible for chromosomal segregation in bacteria. Directionality in these motors is governed by interactions between specialized sequence‐recognition modules (SpoIIIE‐γ/FtsK‐γ) and highly skewed chromosomal sequences (SRS/KOPS). Using a new combination of ensemble and single‐molecule methods, we dissect the series of steps required for SRS localization and motor activation. First, we demonstrate that SpoIIIE/DNA association kinetics are sequence independent, with binding specificity being uniquely determined by dissociation. Next, we show by single‐molecule and modelling methods that hexameric SpoIIIE binds DNA non‐specifically and finds SRS by an ATP‐independent target search mechanism, with ensuing oligomerization and binding of SpoIIIE‐γ to SRS triggering motor stimulation. Finally, we propose a new model that provides an entirely new interpretation of previous observations for the origin of SRS/KOPS‐directed translocation by SpoIIIE/FtsK.  相似文献   

18.
The DNA translocase function of Bacillus subtilis SpoIIIE is essential for spore development and is important during vegetative growth for moving trapped chromosomal DNA away from division septa. Two papers in this issue of Molecular Microbiology , from the teams of Peter Graumann and William Burkholder, have characterized a second SpoIIIE/FtsK-like protein in B. subtilis , SftA. This protein lacks any recognizable transmembrane domain possessed by the other characterized members of the family, yet the protein is shown to be associated with the division septum and, like SpoIIIE, is required for clearing DNA from the septum. However, SftA and SpoIIIE act at different stages of septation and together they ensure maximum fidelity in chromosome segregation.  相似文献   

19.
In several bacterial species, the faithful completion of chromosome partitioning is known to be promoted by a conserved family of DNA translocases that includes Escherichia coli FtsK and Bacillus subtilis SpoIIIE. FtsK localizes at nascent division sites during every cell cycle and stimulates chromosome decatenation and the resolution of chromosome dimers formed by recA -dependent homologous recombination. In contrast, SpoIIIE localizes at sites where cells have divided and trapped chromosomal DNA in the membrane, which happens during spore development and under some conditions when DNA replication is perturbed. SpoIIIE completes chromosome segregation post-septationally by translocating trapped DNA across the membrane. Unlike E. coli , B. subtilis contains a second uncharacterized FtsK/SpoIIIE-like protein, SftA (formerly YtpS). We report that SftA plays a role similar to FtsK during each cell cycle but cannot substitute for SpoIIIE in rescuing trapped chromosomes. SftA colocalizes with FtsZ at nascent division sites but not with SpoIIIE at sites of chromosome trapping. SftA mutants divide over unsegregated chromosomes more frequently than wild-type unless recA is inactivated, suggesting that SftA, like FtsK, stimulates chromosome dimer resolution. Having two FtsK/SpoIIIE paralogues is not conserved among endospore-forming bacteria, but is highly conserved within several groups of soil- and plant-associated bacteria.  相似文献   

20.
Cell division must only occur once daughter chromosomes have been fully separated. However, the initiating event of bacterial cell division, assembly of the FtsZ ring, occurs while chromosome segregation is still ongoing. We show that a two-step DNA translocase system exists in Bacillus subtilis that couples chromosome segregation and cell division. The membrane-bound DNA translocase SpoIIIE assembled very late at the division septum, and only upon entrapment of DNA, while its orthologue, SftA (YtpST), assembled at each septum in B. subtilis soon after FtsZ. Lack of SftA resulted in a moderate segregation defect at a late stage in the cell cycle. Like the loss of SpoIIIE, the absence of SftA was deleterious for the cells during conditions of defective chromosome segregation, or after induction of DNA damage. Lack of both proteins exacerbated all phenotypes. SftA forms soluble hexamers in solution, binds to DNA and has DNA-dependent ATPase activity, which is essential for its function in vivo . Our data suggest that SftA aids in moving DNA away from the closing septum, while SpoIIIE translocates septum-entrapped DNA only when septum closure precedes complete segregation of chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号