首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Films of hyaluronan (HA) and a phosphorylcholine-modified chitosan (PC-CH) were constructed by the polyelectrolyte multilayer (PEM) deposition technique and their buildup in 0.15 M NaCl was followed by atomic force microscopy, surface plasmon resonance spectroscopy (SPR), and dissipative quartz crystal microbalance (QCM). The HA/PC-CH films were stable over a wide pH range (3.0-12.0), exhibiting a stronger resistance against alkaline conditions as compared to HA/CH films. The loss and storage moduli, G' and G", of the films throughout the growth of eight bilayer assemblies were derived from an impedance analysis of the QCM data recorded in situ. Both G' and G" values were one order of magnitude lower than the moduli of HA/CH films. The fluid gel-like characteristics of HA/PC-CH multilayers were attributed to their high water content (50 wt %), which was estimated by comparing the surface coverage values derived from SPR and QCM measurements. Given the versatility of the PEM methodology, HA/PC-CH films are attractive tools for developing biocompatible surface coatings of controlled mechanical properties.  相似文献   

2.
Poly(L-lysine)/hyaluronan (PLL/HA) films were chemically cross-linked with a water soluble carbodiimide (EDC) in combination with a N-hydroxysulfo-succinimide (NHS) to induce amide formation. Fourier transform infrared spectroscopy confirms the conversion of carboxylate and ammonium groups into amide bonds. Quartz crystal microbalance-dissipation reveals that the cross linking reaction is accompanied by a change in the viscoelastic properties of the films leading to more rigid films. After the cross-linking reaction, both positively and negatively ending films exhibit a negative zeta potential. It is shown by fluorescence recovery after photobleaching measured by confocal laser scanning microscopy that cross-linking dramatically reduces the diffusion of the PLL chains in the network. Cross linking also renders the films highly resistant to hyaluronidase, an enzyme that naturally degrades hyaluronan. Finally, the adhesion of chondrosarcoma cells on the films terminating either with PLL or HA is also investigated. Whereas the non cross-linked films are highly resistant to cell adhesion, the cells adhere and spread well on the cross-linked films.  相似文献   

3.
Shen L  Chaudouet P  Ji J  Picart C 《Biomacromolecules》2011,12(4):1322-1331
In this study, we investigate the growth and internal properties of polyelectrolyte multilayer films made of poly(l-lysine) and hyaluronan (PLL/HA) under pH-amplified conditions, that is, by alternate deposition of PLL at high pH and HA at low pH. We focus especially on the influence of the molecular weight of HA in this process as well as on its concentration in solution. Film growth was followed by quartz crystal microbalance and by infrared spectroscopy to quantify the deposited mass and to characterize the internal properties of the films, including the presence of hydrogen bonds and the ionization degree of HA in the films. Film growth was significantly faster for HA of high molecular weight (1300 kDa) as compared with 400 and 200 kDa. PLL was found to exhibit a random structure once deposited in the films. Furthermore, we found that PLL-ending films are more stable when they are placed in PBS than their HA counterparts. This was explained on the basis of more cohesive interactions in the films for PLL-ending films. Finally, we quantified PLL(FITC) diffusion into the films and observed that PLL diffusion is enhanced when PLL is paired with the HA of high MW. All together, these results suggest that besides purely physicochemical parameters such as variation in pH, the molecular weight of HA, its concentration in solution, and the possibility to form intermolecular HA association play important roles in film growth, internal cohesion, and stability.  相似文献   

4.
Mechanical properties of polyelectrolyte multilayer films were studied by nanoindentation using the atomic force microscope (AFM). Force-distance measurements using colloidal probe tips were systematically obtained for supported films of poly(L-lysine) and hyaluronan that are suited to bio-application. Both native and covalently cross-linked films were studied as a function of increasing layer number, which increases film thickness. The effective Young's modulus perpendicular to the film, Eperpendicular, was determined to be a function of film thickness, cross-linking, and sample age. Thick PEM films exhibited a lower Eperpendicular than thinner PEM, whereas the Young's modulus of cross-linked films was more than 10-fold larger than native films. Moduli range from approximately 20 kPa for native films up to approximately 800 kPa for cross-linked ones. Young's moduli increased slightly with sample age, plateauing after approximately 4 weeks. Spreading of smooth muscle cells on these substrates with pre-attached collagen proved to be highly dependent on film rigidity with stiffer films giving greater cell spreading.  相似文献   

5.
Biomedical devices and modified biomaterial surfaces constitute an expanding research domain in the dental field. However, such oral applications have to face a very particular environment containing specific physiological conditions and specific enzymes. To evaluate their suitability in the development of novel oral applications, the degradability of polyelectrolyte multilayer films made of the natural polysaccharides chitosan and hyaluronan (CHI/HA) was investigated in vitro and in vivo in a rat mouth model. The films were either native or cross-linked using a water-soluble carbodiimide (EDC) in combination with N-hydroxysulfosuccinimide. The in vitro degradation of the films by different enzymes present in the oral environment, such as lysozyme and amylase, was followed by quartz crystal microbalance measurements and confocal laser scanning microscopy observations after being film labeled with CHI(FITC). Whereas native films were subjected to degradation by all the enzymes, cross-linked films were more resistant to enzymatic degradation. Films were also put in contact with whole saliva, which induced a slow degradation of the native films over an 18 h period. The in vivo degradation of the films deposited on polymer disks and sutured in the rat mouth was followed over a 3 day period. Whereas film degradation is fast for native films, it is much slower for the cross-linked ones. More than 60% of these films remained on the disks after 3 days in the mouth. Taken together, these results suggest that the multilayer films made of natural polysaccharides are of high potential interest for oral applications, especially as drug release systems, offering various degradation rates and consequent release characteristics.  相似文献   

6.
Wang C  Ye S  Dai L  Liu X  Tong Z 《Carbohydrate research》2007,342(15):2237-2243
Polyelectrolyte multilayer films were prepared through layer-by-layer (LbL) self-assembly of chitosan (CHI) and pyrene labeled poly(2-acrylamido-2-methylpropanesulfonic acid) (APy). After incubation in an enzyme pepsin solution, multilayer films were partially destroyed as detected by a decrease in fluorescence intensity due to enzymatic degradation of CHI and desorption of APy. The multilayer desorption rate was the highest at pH 4.0. Increasing temperature from 20 degrees C to 60 degrees C accelerated desorption. The enzymatic desorption was also observed from microcapsule walls made of CHI/alginate (ALG) multilayer films directly deposited on indomethacin (IDM) microcrystals by LbL self-assembly. After pepsin erosion, the IDM release from the microcapsule monitored by UV absorbance was obviously accelerated due to desorption. The influence of incubation time, pH, and temperature of the pepsin solution on the IDM release was investigated. The release rate was the fastest after incubation in the pepsin solution at pH 4.0 due to the highest activity of pepsin. Increasing incubation temperature from 20 degrees C to 60 degrees C, however, slowed down the release rate, which was considered to be due to the formation of more perfect and compact multilayer films through the chain rearrangement at higher temperatures. The CHI/ALG multilayer film was found to maintain its barrier function to the IDM diffusion even after 6-h incubation in the pepsin solution.  相似文献   

7.
The adhesion of primary chondrocytes to polyelectrolyte multilayer films, made of poly(l-lysine) (PLL) and hyaluronan (HA), was investigated for native and crosslinked films, either ending by PLL or HA. Crosslinking the film was achieved by means of a water-soluble carbodiimide in combination with N-hydroxysulfosuccinimide. The adhesion of macrophages and primary chondrocytes was investigated by microscopical techniques (optical, confocal, and atomic), providing useful information on the cell/film interface. Native films were found to be nonadhesive for the, primary chondrocytes, but could be degraded by macrophages, as could be visualized by confocal laser scanning microscopy after film labeling. Confocal microscopy images show that these films can be deformed by the condrocytes and that PLL diffuses at the chondrocyte membrane. In contrast, the cells adhered and proliferated well on the crosslinked films, which were not degraded by the macrophages. These results were confirmed by a MTT test over a 6-d period and by atomic force microscopy observations. We thus prove that chemical crosslinking can dramatically change cell adhesion properties, the cells being more stably anchored on the crosslinked films. Both authors kcontributed equally.  相似文献   

8.
Hu X  Ji J 《Biomacromolecules》2011,12(12):4264-4271
A convenient and simple route to multifunctional surface coatings via the alternating covalent layer-by-layer (LBL) assembly of p-nitrophenyloxycarbonyl group-terminated hyperbranched polyether (HBPO-NO(2)) and polyethylenimine (PEI) is described. The in situ chemical reaction between HBPO-NO(2) and PEI onto aminolyzed substrates was rapid and mild. Results from ellipsometry measurements, contact angle measurements, and ATR-FTIR spectra confirmed the successful LBL assembly of the building blocks, and the surface reactivity of the multilayer films with HBPO-NO(2) as the outmost layer was demonstrated by the immobilization of an amine-functionalized fluorophore. Furthermore, a biomimetic surface was achieved by surface functionalization of the multilayer films with extracellular matrix protein collagen to promote the adhesion and growth of cells. The studies on the drug loading and in vitro release behaviors of the multilayer films demonstrated their application potentials in local delivery of hydrophilic and hydrophobic therapeutic agents.  相似文献   

9.
In recent years, considerable effort has been devoted to the design and controlled fabrication of structured materials with functional properties. The layer by layer buildup of polyelectrolyte multilayer films (PEM films) from oppositely charged polyelectrolytes offers new opportunities for the preparation of functionalized biomaterial coatings. This technique allows the preparation of supramolecular nano-architectures exhibiting specific properties in terms of control of cell activation and may also play a role in the development of local drug delivery systems. Peptides, proteins, chemically bound to polyelectrolytes, adsorbed or embedded in PEM films, have been shown to retain their biological activities.  相似文献   

10.
A cross-linked hyaluronan (HA) hydrogel that contained a covalently bound derivative of the anti-proliferative drug mitomycin C (MMC) was synthesized and evaluated in vitro and in vivo. The HA-MMC hydrogel was prepared by coupling MMC-aziridinyl-N-acrylate with thiol-modified HA followed by cross-linking with poly(ethylene glycol) diacrylate (PEGDA). MMC was released from 0.5% and 2.0% MMC films by hydrolysis in proportion to the MMC loading. When incubated in vitro with human T31 tracheal scar fibroblasts, 0.5% MMC films inhibited proliferation, whereas 2.0% MMC films were cytotoxic. When implanted in vivo into a rat peritoneal cavity, neither 0.5% nor 2.0% HA-MMC films elicited a severe peritoneal fluid leukocyte response. Importantly, MMC reduced the thickness of fibrous tissue formed surrounding the implanted films. Thus, cross-linked HA-MMC films have strong potential as anti-fibrotic barriers for the prevention of post-surgical adhesions.  相似文献   

11.
Wang C  Ye S  Dai L  Liu X  Tong Z 《Biomacromolecules》2007,8(5):1739-1744
Polyelectrolyte multilayer films were prepared through layer-by-layer (LbL) self-assembly using polysaccharide sodium alginate (ALG) and chitosan (CHI). After incubation in an enzyme pepsin solution, the multilayer film was partially destroyed as detected by the decrease in fluorescent intensity because of the enzymatic degradation of CHI. The enzymatic desorption was also observed from the microcapsule wall made of the ALG/CHI multilayer film directly deposited on indomethacin (IDM) microcrystals through LbL self-assembly. After pepsin erosion, the IDM release from the microcapsules monitored by UV absorbance was obviously accelerated because of desorption. To enhance the stability of the ALG/CHI multilayer film to the enzymatic erosion, some physical and chemical methods were established to increase film thickness or to cross-link the polysaccharides within the film. Increasing the layer number and raising the deposition temperature effectively slowed down the enzymatic desorption and release rate. Especially, increasing deposition temperature was more effective because of producing a more perfect structure in the ALG/CHI multilayer film. Cross-linking the neighboring layers of ALG and CHI with 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide in the ALG/CHI multilayer film significantly reduced the enzymatic desorption and release rate. Therefore, increasing deposition temperature and cross-linking neighboring layers are effective methods to protect the multilayer film fabricated using LbL assembly from the enzymatic erosion and to prolong the release of the encapsulated drug.  相似文献   

12.
Layer-by-layer self-assembly of two polysaccharides, hyaluronan (HA) and chitosan (CH), was employed to engineer bioactive coatings for endovascular stents. A polyethyleneimine (PEI) primer layer was adsorbed on the metallic surface to initiate the sequential adsorption of the weak polyelectrolytes. The multilayer growth was monitored using a radiolabeled HA and shown to be linear as a function of the number of layers. The chemical structure, interfacial properties, and morphology of the self-assembled multilayer were investigated by time-of-flight secondary ions mass spectrometry (ToF-SIMS), contact angle measurements, and atomic force microscopy (AFM), respectively. Multilayer-coated NiTi disks presented enhanced antifouling properties, compared to unmodified NiTi disks, as demonstrated by a decrease of platelet adhesion in an in vitro assay (38% reduction; p = 0.036). An ex vivo assay on a porcine model indicated that the coating did not prevent fouling by neutrophils. To assess whether the multilayers may be exploited as in situ drug delivery systems, the nitric-oxide-donor sodium nitroprusside (SNP) was incorporated within the multilayer. SNP-doped multilayers were shown to further reduce platelet adhesion, compared to standard multilayers (40% reduction). When NiTi wires coated with a multilayer containing a fluorescently labeled HA were placed in intimate contact with the vascular wall, the polysaccharide translocated on the porcine aortic samples, as shown by confocal microscopy observation of a treated artery. The enhanced thromboresistance of the self-assembled multilayer together with the antiinflammatory and wound healing properties of hyaluronan and chitosan are expected to reduce the neointimal hyperplasia associated with stent implantation.  相似文献   

13.
The effect of pectin charge density on the formation of multilayer films with chitosan (PEC/CHI) is studied by means of electro-optics. Pectins of low (21%) and high (71%) degrees of esterification, which are inversely proportional to the pectin charge density, are used to form films on colloidal beta-FeOOH particles at pH 4.0 when the CHI is fully ionized. We find that, after deposition of the first 3-4 layers, the film thickness increases linearly with the number of adsorbed layers. However, the increase in the film thickness is larger when the film is terminated with CHI. Irregular increase of the film thickness is more marked for the PEC with higher density of charge. Oscillation in the electrical polarizability of the film-coated particles with the number of deposited layers is also registered in the PEC/CHI films. The charge balance of the multilayers, calculated from electrical polarizability of the film-coated particles, is positive, with larger excess of positive charge within the film constructed from CHI and less charged PEC. This is attributed to the ability of CHI to diffuse into the film at each deposition step. Despite the CHI diffusion, the film thickness increases linearly due to the dissolution of unstable PEC/CHI complexes from the film surface.  相似文献   

14.
Jiang B  Defusco E  Li B 《Biomacromolecules》2010,11(12):3630-3637
The current state-of-the-art for drug-carrying biomedical devices is mostly limited to those that release a single drug. Yet there are many situations in which more than one therapeutic agent is needed. Also, most polyelectrolyte multilayer films intended for drug delivery are loaded with active molecules only during multilayer film preparation. In this paper, we present the integration of capsules as vehicles within polypeptide multilayer films for sustained release of multiple oppositely charged drug molecules using layer-by-layer nanoassembly technology. Calcium carbonate (CaCO(3)) particles were impregnated with polyelectrolytes, shelled with polyelectrolyte multilayers, and then assembled onto polypeptide multilayer films using glutaraldehyde. Capsule-integrated polypeptide multilayer films were obtained after decomposition of CaCO(3) templates. Two oppositely charged drugs were loaded into capsules within polypeptide multilayer films postpreparation based on electrostatic interactions between the drugs and the polyelectrolytes impregnated within capsules. We determined that the developed innovative capsule-integrated polypeptide multilayer films could be used to load multiple drugs of very different properties (e.g., opposite charges) any time postpreparation (e.g., minutes before surgical implantation inside an operating room), and such capsule-integrated films allowed simultaneous delivery of two oppositely charged drug molecules and a sustained (up to two weeks or longer) and sequential release was achieved.  相似文献   

15.
Three-dimensional (3D) compact rods with multilayer structure made from chitosan (CHI) and apatite (Ap) have been prepared. The cytocompatibility assay revealed that the CHI/Ap composite could promote cell proliferation. In vitro degradation behaviors of the rods have been systematically investigated for up to 6 weeks in phosphate buffer saline (PBS) solution at 37°C. The properties of the composite rods were measured by means of weight loss, swelling ratio, and the changes in mechanical properties, etc. The pH of the PBS solution during the first 2 weeks of degradation was also detected. Results showed that the medium of CHI/Ap composite rods exhibited more stable pH change compared with that of CHI rods. Weight loss as well as the changes in mechanical properties happened more often to CHI rods than CHI/Ap rods. The presence of Ap could effectively reduce the degradation rate of the composite rods. All the results suggested that the composite rods could keep the initial shapes and mechanical properties longer than the pure CHI rods.  相似文献   

16.
A sensitive and simple chemiluminescent (CL) method for the determination of diclofenac sodium has been developed by combining the flow injection technique and its sensitizing effect on the weak CL reaction between formaldehyde and acidic potassium permanganate. A calibration curve is constructed for diclofenac sodium under optimized experimental parameters over the range 0.040–5.0 µg/mL and the limit of detection is 0.020 µg/mL (3σ). The inter‐assay relative standard deviation for 0.040 µg/mL diclofenac sodium (n = 11) is 2.0%. This method is rapid, sensitive, simple, and shows good selectivity and reproducibility. The proposed method has been successfully applied to the determination of the studied diclofenac sodium in pharmaceutical preparations with satisfactory results. Furthermore, the possible mechanism for the CL reaction has been discussed in detail on the basis of UV and CL spectra. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Hyaluronic acid (HA) is a high‐value biopolymer used in the biomedical, pharmaceutical, cosmetic, and food industries. Current methods of HA production, including extraction from animal sources and streptococcal cultivations, are associated with high costs and health risks. Accordingly, the development of bioprocesses for HA production centered on robust “Generally Recognized as Safe (GRAS)” organisms such as Bacillus subtilis is highly attractive. Here, we report the development of novel strains of B. subtilis in which the membrane cardiolipin (CL) content and distribution has been engineered to enhance the functional expression of heterologously expressed hyaluronan synthase (HAS) of Streptococcus equisimilis (SeHAS), in turn, improving the culture performance for HA production. Elevation of membrane CL levels via overexpressing components involved in the CL biosynthesis pathway, and redistribution of CL along the lateral membrane via repression of the cell division initiator protein FtsZ resulted in increases to the HA titer of up to 204% and peak molecular weight of up to 2.2 MDa. Moreover, removal of phosphatidylethanolamine and neutral glycolipids from the membrane of HA‐producing B. subtilis via inactivation of pssA and ugtP, respectively, has suggested the lipid dependence for functional expression of SeHAS. Our study demonstrates successful application of membrane engineering strategies to develop an effective platform for biomanufacturing of HA with B. subtilis strains expressing Class I streptococcal HAS.  相似文献   

18.
Aptamers are short, single-stranded nucleic acids that fold into well-defined 3D structures which bind to a single target molecule (from small molecules to cells) with affinities and specificities that can rival those of antibodies (Jeong et al., 2009). Unlike antibodies, aptamers can be chemically synthesized eliminating the need for animals or cell culture, which also allows for selection under non-physiological conditions and broadens potential targets to include toxic molecules (Banka & Stockley, 2006). The compatibility of aptamers with nanomaterials, in combination with their affinity, selectivity, and conformational changes upon target interaction, have allowed for the development of a large number of therapeutic and targeted delivery systems in recent years exploiting these properties. Despite this, many challenges still exist as unprotected DNA is readily degraded by nucleases prevalent in biological and environmental systems (Bouchard et al., 2010). Embedding aptamers within multilayer polyelectrolyte films could provide a biodegradable shelter, while allowing the detection of diffusible small molecules. An understanding of these materials will allow for the eventual encapsulation of relevant payloads into aptamer–polyelectrolyte microcapsules towards the development of a controlled release system. In this work, films composed of natural polyelectrolytes chitosan and hyaluronan are employed due to their biocompatibility, strong presence in current literature, and amiability to layer-by-layer film construction. Initial progress towards the development of an aptamer-embedded polyelectrolyte film system will be presented.  相似文献   

19.
Acylated hyaluronan (HA) in aqueous (DMSO/H2O) and nonaqueous (DMSO) solutions was studied by means of nuclear magnetic resonance, differential scanning calorimetry (DSC), mass spectrometry and UV/vis spectroscopy. It has been demonstrated that structural and conformational properties of the acylated hyaluronan derivates are strongly dependent on the nature of reaction solvent. Acylation in DMSO was more selective than that carried out in DMSO/H2O, though in both cases in average a maximum of one acyl chain was detected per HA dimer. The hydrophobic functionalization of hyaluronan induced its interaction with hydrophobic dye as a consequence of acyl chain aggregation. The higher the degree of acylation the more hydrophobic dye was interacting with HA. For concentrated samples, aggregation was more evident in case of acylated HA in aqueous solution. This phenomenon was explained by its different conformational arrangement in solution which was further supported by DSC data indicating an existence of hydrophobic cavities. The formation of self-aggregated assemblies indicates potential applications of this type of HA derivate as drug delivery system.  相似文献   

20.
A review of the literature describing experimental studies on hyaluronan (HA) is presented. Methods sensitive to the hydrodynamic properties of HA, analyzed in neutral aqueous solution containing NaCl at physiological concentration, can be shown to fit the expected behavior of a high molecular weight linear semi-flexible polymer. The significant nonideality of HA solutions can be predicted by a simple treatment for hydrodynamic interactions between polymer chains. Nuclear magnetic resonance and circular dichroism studies of HA are also in agreement with a model incorporating dynamically formed and broken hydrogen bonds, contributing to the semi-flexibility of the polymer chain, and segmental motions on the nanosecond time scale.HA shows the capability for self-association in the formation of a viscoelastic putty state at pH 2.5 in the presence of salt, and a gel state at pH 2.5 in mixed organic/aqueous solution containing salt. Ordered and associated structures have also been observed for HA on the surfaces, especially in the presence of surface-structured water. These phenomena can be understood in terms of counterion-mediated polyelectrolyte interactions. The possibility that hyaluronan exists in vivo in environments that induce ordered structures and assemblies is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号