首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation of inverted plasma membrane vesicles from rat liver with micromolar concentrations of S-dinitrophenylglutathione (DNP-SG) in the presence of ATP resulted in the uptake of DNP-SG into the vesicles. ATP-dependent DNP-SG accumulation was half-maximal with 9 μM DNP-SG, while the Km for ATP was 320 μM. Glutathione disulfide (GSSG), but not reduced glutathione, inhibited the ATP-dependent accumulation of DNP-SG by the vesicles, suggesting that the same, ATP-dependent transport system is responsible for the extrusion of glutathione conjugates and GSSG from liver cells.  相似文献   

2.
Using rat heart sarcolemma and liver plasma membrane vesicles, it has been verified that the transport of leukotriene C4 (LTC4) across membranes is an ATP-dependent process; the apparent Km for LTC4 was 150 nM (heart sarcolemma) or 250 nM (liver plasma membrane). S-(2,4-dinitrophenyl)-glutathione (DNP-SG) inhibited LTC4 uptake into the vesicles dose-dependently (I50 = 25 microM for both heart sarcolemma and liver plasma membrane vesicles). Mutual inhibition between LTC4 and DNP-SG in uptake into the vesicles demonstrates that transport of LTC4 is mediated by an ATP-dependent glutathione S-conjugate carrier.  相似文献   

3.
T Ishikawa 《FEBS letters》1989,246(1-2):177-180
Sarcolemmal vesicles prepared from rat heart exhibited ATP-dependent uptake of S-(2,4-dinitrophenyl)glutathione (DNP-SG), which obeyed Michaelis-Menten kinetics with an apparent Km of 21 microM for DNP-SG and a Vmax of 0.27 nmol.10 min-1.mg protein-1. Several model glutathione S-conjugates inhibited DNP-SG uptake, but leukotriene C4 inhibited uptake much more significantly even at lower concentrations (competitive inhibition, Ki = 1.5 microM). However, leukotrienes D4 and E4, which lack the gamma-glutamyl moiety, were less effective. The results suggest that the ATP-dependent transport system has a high affinity for leukotriene C4, and may be responsible for the translocation of this compound.  相似文献   

4.
Multidrug resistance-associated proteins 1 and 2 (Mrp1 and Mrp2) are thought to mediate low-affinity ATP-dependent transport of reduced glutathione (GSH), but there is as yet no direct evidence for this hypothesis. The present study examined whether livers from the little skate (Raja erinacea) express an Mrp2 homologue and whether skate liver membrane vesicles exhibit ATP-dependent GSH transport activity. Antibodies directed against mammalian Mrp2-specific epitopes labeled a 180-kDa protein band in skate liver plasma membranes and stained canaliculi by immunofluorescence, indicating that skate livers express a homologous protein. Functional assays of Mrp transport activity were carried out using (3)H-labeled S-dinitrophenyl-glutathione (DNP-SG). DNP-SG was accumulated in skate liver membrane vesicles by both ATP-dependent and ATP-independent mechanisms. ATP-dependent DNP-SG uptake was of relatively high affinity [Michaelis-Menten constant (K(m)) = 32 +/- 9 microM] and was cis-inhibited by known substrates of Mrp2 and by GSH. Interestingly, ATP-dependent transport of (3)H-labeled S-ethylglutathione and (3)H-labeled GSH was also detected in the vesicles. ATP-dependent GSH transport was mediated by a low-affinity pathway (K(m) = 12 +/- 2 mM) that was cis-inhibited by substrates of the Mrp2 transporter but was not affected by membrane potential or pH gradient uncouplers. These results provide the first direct evidence for ATP-dependent transport of GSH in liver membrane vesicles and support the hypothesis that GSH efflux from mammalian cells is mediated by members of the Mrp family of proteins.  相似文献   

5.
In the present study, the transport of glutathione S-conjugate across rat heart sarcolemma has directly been proved to be an ATP-dependent process. Incubation of sarcolemma vesicles with S-(2,4-dinitrophenyl)glutathione (DNP-SG) in the presence of ATP resulted in a substantial uptake of DNP-SG into the vesicles; Mg2+ was required for ATP-stimulated transport. The rate of glutathione S-conjugate uptake was saturated with respect to ATP and DNP-SG concentrations with apparent Km values of 30 microM for ATP and 20 microM for DNP-SG. However, other nucleoside triphosphates, viz. GTP, UTP, CTP, and TTP, did not stimulate the transport effectively. The ATP-stimulated DNP-SG uptake was not affected by ouabain, EGTA, or by valinomycin-induced K+-diffusion potential, suggesting that Na+,K+-and Ca2+-ATPase activities as well as the membrane potential are not involved in the transport mechanism. ATP could not be replaced by ADP, AMP, or by ATP analogues, adenosine 5'-(beta,gamma-methylene) triphosphate and adenosine 5'-(beta,gamma-imino)triphosphate. From these observations, it is proposed that hydrolysis of gamma-phosphate of ATP is essential for the transport mechanism. The transport of DNP-SG by the sarcolemma vesicles, on the other hand, was inhibited by several different types of glutathione S-conjugates including 4-hydroxynonenal glutathione S-conjugate and leukotriene C4, and not by GSH. The transport system is suggested to have high affinities toward glutathione S-conjugates carrying a long aliphatic carbon chain (n greater than 6) and may play an important role in elimination of naturally occurring glutathione S-conjugates, such as leukotriene C4.  相似文献   

6.
Active transport of conjugated and unconjugated electrophiles out of cells is essential for cellular homeostasis. We have previously identified in human tissues a transporter, DNP-SG [S-(2, 4-dinitrophenyl)glutathione] ATPase, capable of carrying out this function [Awasthi et al. (1998) Biochemistry 37, 5231-5238, 5239-5248]. We now report the cloning of DNP-SG ATPase. The sequence of the cDNA clone was identical to that of human RLIP76, a known Ral-binding protein. RLIP76 expressed in E. coli was purified by DNP-SG affinity chromatography. Purified recombinant RLIP76: (1) had ATPase activity stimulated by DNP-SG or doxorubicin (DOX), and the K(m) values of RLIP76 for ATP, DOX, and DNP-SG were similar to those reported for DNP-SG ATPase; (2) upon reconstitution with asolectin as well as with defined lipids, catalyzed ATP-dependent transport of DNP-SG and DOX with kinetic parameters similar to those of DNP-SG ATPase; (3) when transfected into K562 cells, resulted in increased resistance to DOX, and increased ATP-dependent transport of DNP-SG and DOX by inside-out membrane vesicles from transfected cells; (4) direct uptake of purified RLIP76 protein into mammalian cells from donor proteoliposomes confers DOX resistance. These results indicate that RLIP76, in addition to its role in signal transduction, can catalyze transport of glutathione conjugates and xenobiotics, and may contribute to the multidrug resistance phenomenon.  相似文献   

7.
Srivastava SK  Hu X  Xia H  Pal A  Guo J  Orchard JL  Singh SV 《FEBS letters》1999,445(2-3):291-294
The present study reports gender related differences in ATP-dependent transport of dinitrophenyl-glutathione (GSH) conjugate (DNP-SG), a model GSH xenobiotic conjugate, across murine canalicular liver plasma membrane (cLPM). ATP-dependent transport of DNP-SG across female A/J mouse cLPM was mediated by two components, a high-affinity and a low-affinity component, with corresponding Km of 18 microM (Vmax 0.02 nmol/min.mg) and 500 microM (Vmax 0.23 nmol/min.mg), respectively. On the other hand, only one component for the ATP-dependent transport of DNP-SG was observed in male mouse cLPM (K(m) 130 microM; Vmax 0.18 nmol/min.mg). Moreover, the rate of ATP-dependent transport of DNP-SG was markedly higher in the cLPM fraction of male mouse compared with that of the female. Presence of two transport components in female mouse cLPM, but only one system in the cLPM fraction of male mouse, was confirmed by measuring DNP-SG mediated stimulation of ATP hydrolysis (DNP-SG ATPase activity). To the best of our knowledge, the present study is the first report on gender related differences in ATP-dependent murine canalicular transport of GSH conjugates.  相似文献   

8.
Mammalian Mrp2 and its yeast orthologue, Ycf1p, mediate the ATP-dependent cellular export of a variety of organic anions. Ycf1p also appears to transport the endogenous tripeptide glutathione (GSH), whereas no ATP-dependent GSH transport has been detected in Mrp2-containing mammalian plasma membrane vesicles. Because GSH uptake measurements in isolated membrane vesicles are normally carried out in the presence of 5-10 mM dithiothreitol (DTT) to maintain the tripeptide in the reduced form, the present study examined the effects of DTT and other sulfhydryl-reducing agents on Ycf1p- and Mrp2-mediated transport activity. Uptake of S-dinitrophenyl glutathione (DNP-SG), a prototypic substrate of both proteins, was measured in Ycf1p-containing Saccharomyces cerevisiae vacuolar membrane vesicles and in Mrp2-containing rat liver canalicular plasma membrane vesicles. Uptake was inhibited in both vesicle systems in a concentration-dependent manner by DTT, dithioerythritol, and beta-mercaptoethanol, with concentrations of 10 mM inhibiting by approximately 40%. DTT's inhibition of DNP-SG transport was noncompetitive. In contrast, ATP-dependent transport of [(3)H]taurocholate, a substrate for yeast Bat1p and mammalian Bsep bile acid transporters, was not significantly affected by DTT. DTT also inhibited the ATP-dependent uptake of GSH by Ycf1p. As the DTT concentration in incubation solutions containing rat liver canalicular plasma membrane vesicles was gradually decreased, ATP-dependent GSH transport was now detected. These results demonstrate that Ycf1p and Mrp2 are inhibited by concentrations of reducing agents that are normally employed in studies of GSH transport. When this inhibition was partially relieved, ATP-dependent GSH transport was detected in rat liver canalicular plasma membranes, indicating that both Mrp2 and Ycf1p are able to transport GSH by an ATP-dependent mechanism.  相似文献   

9.
Mammalian Mrp2 and its yeast orthologue, Ycf1p, mediate the ATP-dependent cellular export of a variety of organic anions. Ycf1p also appears to transport the endogenous tripeptide glutathione (GSH), whereas no ATP-dependent GSH transport has been detected in Mrp2-containing mammalian plasma membrane vesicles. Because GSH uptake measurements in isolated membrane vesicles are normally carried out in the presence of 5-10 mM dithiothreitol (DTT) to maintain the tripeptide in the reduced form, the present study examined the effects of DTT and other sulfhydryl-reducing agents on Ycf1p- and Mrp2-mediated transport activity. Uptake of S-dinitrophenyl glutathione (DNP-SG), a prototypic substrate of both proteins, was measured in Ycf1p-containing Saccharomyces cerevisiae vacuolar membrane vesicles and in Mrp2-containing rat liver canalicular plasma membrane vesicles. Uptake was inhibited in both vesicle systems in a concentration-dependent manner by DTT, dithioerythritol, and β-mercaptoethanol, with concentrations of 10 mM inhibiting by ∼40%. DTT’s inhibition of DNP-SG transport was noncompetitive. In contrast, ATP-dependent transport of [3H]taurocholate, a substrate for yeast Bat1p and mammalian Bsep bile acid transporters, was not significantly affected by DTT. DTT also inhibited the ATP-dependent uptake of GSH by Ycf1p. As the DTT concentration in incubation solutions containing rat liver canalicular plasma membrane vesicles was gradually decreased, ATP-dependent GSH transport was now detected. These results demonstrate that Ycf1p and Mrp2 are inhibited by concentrations of reducing agents that are normally employed in studies of GSH transport. When this inhibition was partially relieved, ATP-dependent GSH transport was detected in rat liver canalicular plasma membranes, indicating that both Mrp2 and Ycf1p are able to transport GSH by an ATP-dependent mechanism.  相似文献   

10.
Transport of 2,4-dinitrophenyl-S-glutathione (DNP-SG) and a fluorescent glutathione S-conjugate, bimane-S-glutathione (B-SG) was studied in the baker's yeasts (S. cerevisiae). Both conjugates were exported from the cells; the transport was inhibited by fluoride and vanadate like in mammalian cells. B-SG was also found to be accumulated in the vacuoles. The transport rate of DNP-SG outside the cell was higher in a vacuolar-deficient strain. A significant ATP-dependent uptake of (3H)-DNP-SG by vacuoles was found. These results indicate thatS. cerevisiaetransport glutathione S-conjugates both outside the cells and into the vacuoles.  相似文献   

11.
Earlier studies from our laboratories have shown that RLIP76, a previously described Ral-binding GTPase activating protein (Jullien-Flores et al., 1995, J. Biol. Chem. 270: 22473), is identical with the xenobiotic transporter DNP-SG ATPase, and can catalyze ATP-dependent transport of glutathione-conjugates as well as doxorubin (Awasthi et al., 2000, Biochemistry, 39: 9327). We have now reconstituted purified bacterially expressed RLIP76 in proteoliposomes, and have studied ATP-dependent uptake of the glutathione conjugate of 4-hydroxynonenal (GS-HNE) by these vesicles. Results of these studies show that RLIP76 reconstituted in proteoliposomes catalyzes ATP-dependent transport of GS-HNE against a concentration gradient. The transport of GS-HNE is saturable with respect to ATP as well as GS-HNE with K(m) values of 1.4mM and 2.5 microM, respectively. These studies demonstrate that RLIP76 mediates active transport of GS-HNE, and are consistent with our previous work showing that RLIP76-mediated efflux of GS-HNE regulates the intracellular concentration of 4-HNE and thereby affects 4-HNE mediated signaling.  相似文献   

12.
In this paper we present results on the vacuolar uptake mechanism for two flavone glucuronides present in rye mesophyll vacuoles. In contrast to barley flavone glucosides (Klein et al. (1996) J. Biol. Chem. 271, 29666-29671), the flavones luteolin 7-O-diglucuronyl-4'-O-glucuronide (R1) and luteolin 7-O-diglucuronide (R2) were taken up into vacuoles isolated from rye via a directly energized mechanism. Kinetic studies suggested that the vacuolar glucuronide transport system is constitutively expressed throughout rye primary leaf development. Competition experiments argued for the existence of a plant MRP-like transporter for plant-specific and non-plant glucuronides such as beta-estradiol 17-(beta-D-glucuronide) (E217G). The interaction of ATP-dependent vacuolar glucuronide uptake with glutathione and its conjugates turned out to be complex: R1 transport was stimulated by dinitrobenzene-GS and reduced glutathione but was inhibited by oxidized glutathione in a concentration-dependent manner. In contrast, R2 uptake was not increased in the presence of reduced glutathione. Thus, the transport system for plant-derived glucuronides differed from the characteristic stimulation of vacuolar E217G uptake by glutathione conjugates but not by reduced glutathione (Klein et al. (1998) J. Biol. Chem. 273, 262-270). Using tonoplast vesicles isolated with an artificial K+ gradient, we demonstrate for the first time for plant MRPs that the ATP-dependent uptake of R1 is membrane-potential dependent. We discuss the kinetic capacity of the ABC-type glucuronide transporter to explain net vacuolar flavone glucuronide accumulation in planta during rye primary leaf development and the possibility of an interaction of potential substrates at both the substrate binding and allosteric sites of the MRP transporter regulating the activity towards a certain substrate.  相似文献   

13.
We have recently demonstrated that RLIP76, a Ral-binding GTPase activating protein mediates ATP-dependent transport of glutathione (GSH) conjugates of electrophiles (GS-E) as well as doxorubicin (DOX), and that it is identical with DNP-SG ATPase, a GS-E transporter previously characterized by us in erythrocyte membranes (Awasthi et al. Biochemistry 39, 9327-9334). Multidrug resistance-associated protein (MRP1) belonging to the family of the ABC-transporters has also been suggested to be a GS-E transporter in human erythrocytes. Using immunological approaches, the present studies were designed to elucidate the relative contributions of RLIP76, MRP1, and P-glycoprotein (Pgp), in the ATP-dependent transport of GS-E and DOX in human erythrocytes. In Western blot analyses using antibodies against RLIP76, a strong expression of RLIP76 was observed in erythrocytes. Immunohistochemical studies using a fluorescent probe showed association of RLIP76 with erythrocyte membrane, which was consistent with its transport function. Neither MRP1 nor Pgp were detected in erythrocytes when the antibodies against MRP1 or Pgp were used. In erythrocyte inside-out vesicles (IOVs) coated with antibodies against RLIP76, a dose-dependent inhibition of the ATP-dependent transport of DOX and GS-E, including S-(dinitrophenyl)glutathione (DNP-SG), leukotriene C(4), and the GSH conjugate of 4-hydroxynonenal, was observed with a maximal inhibition of about 70%. On the contrary, in the IOVs coated with the antibodies against MRP1 or Pgp no significant inhibition of the ATP-dependent transport of these compounds was observed. These findings suggest that RLIP76 is the major ATP-dependent transporter of GS-E and DOX in human erythrocytes.  相似文献   

14.
Numerous studies have identified members of the multidrug resistance protein (MRP) family of ABC transporters as ATP-dependent GS-X pumps responsible for export of various xenobiotic conjugates, and the few known glutathione conjugates of endogenous metabolites. In the present study we have investigated the possibility that the glutathione conjugate of 13-oxooctadecadienoic acid (13-OXO-SG), is exported from HT-29 cells by one of these GS-X pumps. The precursor 13-oxooctadecadienoic acid (13-OXO) is a metabolic oxidation product of linoleic acid. The transport of 13-OXO-SG is compared to that of the glutathione conjugate of chlorodinitrobenzene (DNP-SG). The results show that the efflux of 13-OXO-SG is ATP-dependent. In cultured HT-29 cells as well as in inside-out vesicles prepared from these cells, significant inhibition of conjugate export is achieved by the energy disrupters, beta,gamma-methylene ATP, sodium vanadate, and 2-deoxyglucose. Significant inhibition of the vesicle-mediated transport is also observed in the presence of genistein and verapamil. In inside-out vesicles, the transport of both conjugates exhibits saturation with an apparent K(m) of 325.5 microM and a V(max) of 0.0669 nmol/mg protein per min for 13-OXO-SG and a K(m) of 169 microM and a V(max) of 0.496 nmol/mg protein per min for DNP-SG. Furthermore, co-inhibition is observed when both conjugates are present simultaneously which is consistent with the involvement of common pumps. The data in this report demonstrate the involvement of an ATP-dependent pump in the metabolic disposition of endogenously derived metabolites of linoleic acid.  相似文献   

15.
Kinetic studies on the low- and high-Km transport systems for S-2,4-dinitrophenyl glutathione (DNP-SG) present in erythrocyte membranes were performed using inside-out plasma membrane vesicles. The high-affinity system showed a Km of 3.9 microM a Vmax of 6.3 nmol/mg protein per h, and the low-affinity system a Km of 1.6 mM and a Vmax of 131 nmol/mg protein per h. Both uptake components were inhibited by fluoride, vanadate, p-chloromercuribenzoate (pCMB) and bis(4-nitrophenyl)dithio-3,3'-dicarboxylate (DTNB). The low-Km uptake process was less sensitive to the inhibitory action of DTNB as compared to the high-Km process. N-Ethylmaleimide (1 mM) inhibited the high-Km process only. The high-affinity uptake of DNP-SG was competitively inhibited by GSSG (Ki = 88 microM). Vice versa, DNP-SG inhibited competitively the low-Km component of GSSG uptake (Ki = 3.3 microM). The high-Km DNP-SG uptake system was not inhibited by GSSG. The existence of a common high-affinity transporter for DNP-SG and GSSG in erythrocytes is suggested.  相似文献   

16.
Numerous studies have identified members of the multidrug resistance protein (MRP) family of ABC transporters as ATP-dependent GS-X pumps responsible for export of various xenobiotic conjugates, and the few known glutathione conjugates of endogenous metabolites. In the present study we have investigated the possibility that the glutathione conjugate of 13-oxooctadecadienoic acid (13-OXO-SG), is exported from HT-29 cells by one of these GS-X pumps. The precursor 13-oxooctadecadienoic acid (13-OXO) is a metabolic oxidation product of linoleic acid. The transport of 13-OXO-SG is compared to that of the glutathione conjugate of chlorodinitrobenzene (DNP-SG). The results show that the efflux of 13-OXO-SG is ATP-dependent. In cultured HT-29 cells as well as in inside-out vesicles prepared from these cells, significant inhibition of conjugate export is achieved by the energy disrupters, β,γ-methylene ATP, sodium vanadate, and 2-deoxyglucose. Significant inhibition of the vesicle-mediated transport is also observed in the presence of genistein and verapamil. In inside-out vesicles, the transport of both conjugates exhibits saturation with an apparent Km of 325.5 μM and a Vmax of 0.0669 nmol/mg protein per min for 13-OXO-SG and a Km of 169 μM and a Vmax of 0.496 nmol/mg protein per min for DNP-SG. Furthermore, co-inhibition is observed when both conjugates are present simultaneously which is consistent with the involvement of common pumps. The data in this report demonstrate the involvement of an ATP-dependent pump in the metabolic disposition of endogenously derived metabolites of linoleic acid.  相似文献   

17.
The mechanism for the cellular extrusion of organic anions across the intestinal basolateral membrane was examined using isolated membrane vesicles from rat jejunum, ileum, and colon. It was found that 17beta-estradiol 17beta-D-glucuronide (E217betaG) is taken up in an ATP-dependent manner into the basolateral membrane vesicles (BLMVs) but not into the brush-border or microsomal counterparts. The ATP-dependent uptake of E217betaG into BLMVs from jejunum and ileum was described by a single component with a Km value of 23.5 and 8.31 microM, respectively, whereas that into the BLMVs from colon was described by assuming the presence of high (Km=0.82 microM)- and low-affinity (Km=35.4 microM) components. Taurocholate, 6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole glucuronide and taurolithocholate sulfate, but not leukotriene C4, were significantly taken up by the BLMVs. In addition to such substrate specificity, the inhibitor sensitivity of the ATP-dependent transport in BLMVs was similar to that of rat multidrug resistance-associated protein 3 (Mrp3), which is located on the basolateral membrane of enterocytes. Together with the fact that the rank order of the extent of the expression of Mrp3 (jejunum < ileum < colon) is in parallel with that of the extent of the transport of ligands, these results suggest that the ATP-dependent uptake of organic anions into isolated intestinal BLMVs is at least partly mediated by Mrp3.  相似文献   

18.
We have recently demonstrated that a previously known Ral-binding GTPase activating protein, RLIP76, can also catalyze ATP-dependent transport of various structurally unrelated xeno- and endobiotics irrespective of their net charge (Awasthi et al., 2000, Biochemistry, 39: 9327). RLIP76 is a non-ATP binding cassette (ABC) protein but it has two ATP-binding sites and shows basal ATPase activity which is stimulated in the presence of its transport substrates (allocrites) such as doxorubicin (DOX) and S-(2,4-dinitrophenyl) glutathione (DNP-SG). Proteoliposomes reconstituted with purified RLIP76 catalyze ATP-dependent, saturable transport of DOX, as well as of glutathione-conjugates including leukotrienes (LTC4) and the GSH-conjugate of 4-hydroxynonenal (GS-HNE). In erythrocytes the majority of transport activity for DOX, GS-HNE, and LTC4 is accounted for by RLIP76. Cells exposed to mild oxidative stress show a rapid and transient induction of RLIP76 resulting in an increased efflux of GS-HNE and acquire resistance to oxidative stress mediated toxicity and apoptosis. Cells transfected with RLIP76 acquire resistance to DOX through increased efflux of the drug suggesting its possible role in the mechanisms of drug-resistance. In this article, we discuss the significance of transport functions of RLIP76 highlighting its role in the defense mechanisms against oxidative injury, and modulation of signaling mechanisms.  相似文献   

19.
We have recently shown that RLIP76, a ral-binding GTPase activating protein, mediates ATP-dependent transport of glutathione-conjugates (GS-E) and doxorubicin (DOX) (S. Awasthi et al., Biochemistry 39,9327,2000). Transport function of RLIP76 was found to be intact despite considerable proteolytic fragmentation in preparations used for those studies, suggesting either that the residual intact RLIP76 was responsible for transport activity, or that the transport activity could be reconstituted by fragments of RLIP76. If the former were true, intact RLIP76 would have a much higher specific activity for ATP-hydrolysis than the fragmented protein. We have addressed this question by comparing transport properties of recombinant RLIP76 and human erythrocyte membrane RLIP76 purified in buffers treated with either 100 or 500 microM serine protease inhibitor, PMSF. The purity and identity of recombinant and human erythrocyte RLIP76 was established by SDS/PAGE and Western-blot analysis. These studies confirmed the origin of the 38 kDa protein, previously referred to as DNP-SG ATPase, from RLIP76. Higher PMSF concentration resulted in lower yield of the 38 kDa band and higher yield of intact RLIP76 from both human and recombinant source. In contrast, the substrate-stimulated ATPase activity in presence of DNP-SG, doxorubicin, daunorubicin, or colchicine were unaffected by increased PMSF; similarly, ATP-dependent transport of doxorubicin in proteoliposomes reconstituted with RLIP76 was unaffected by higher PMSF. These results indicated that limited proteolysis by serine proteases does not abrogate the transport function of RLIP76. Comparison of transport kinetics for daunorubicin between recombinant vs human erythrocyte RLIP76 revealed higher specific activity of transport for tissue purified RLIP76, indicating that additional factors present in tissue purified RLIP76 can modulate its transport activity.  相似文献   

20.
The polarized molecules predominately distributing at hepatocyte canalicular surface play a vital role in disclosing the process of bile formation and etiopathogenisis of cholestatic live diseases. Therefore, it is important to find novel polarized molecules on hepatocyte canalicular membrane. In the present study, canalicular membrane vesicles (CMVs) isolated from rat hepatocyte by density gradient centrifugation were used as immunogens to produce hybridoma and 46 strains of monoclonal antibodies (mAb) against CMVs were obtained. With a series of morphological assay methods, including immunohistochemistry, immunofluorescence and immuno-electron microscope, the antigens recognized by canalicular mAb1 (CM1) and canalicular mAb2 (CM2) were confirmed to predominately distribute at hepatocyte canalicular membrane. Transport activity assay revealed that CM2 could inhibit ATP-dependent E217βG uptake of rat hepatocyte CMVs. Meanwhile, Western blotting analysis showed that the molecular mass of CM2 antigen was approximately 110kDa, which was much less than Mr 180kDa of multidrug resistance-associated protein 2 (MRP2) involved in glucuronide transport. These data indicated that CM2 antigen might be a potential novel molecule participating in glucuronide transport on the hepatocyte canalicular membrane.Key words: hepatocyte canalicular membrane, glucuronide transport, canalicular mAb2 (CM2), hybridoma technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号