首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant isoamylase-type starch-debranching enzymes (ISAs) hydrolyze α-1,6-linkages in α-1,4/α-1,6-linked polyglucans. Two ISAs, designated PvISA1/2 and PvISA3, were purified from developing seeds of kidney bean by ammonium sulfate fractionation and several column chromatographic procedures. The enzymes displayed different substrate specificities for polyglucans: PvISA1/2 showed broad chain-length specificities, whereas PvISA3 liberated specific chains with a DP of 2 to 4.  相似文献   

2.
Starch is made up of amylose (linear alpha-1,4-polyglucans) and amylopectin (alpha-1,6-branched polyglucans). Amylopectin has a distinct fine structure called multiple cluster structure and is synthesized by multiple subunits or isoforms of four classes of enzymes: ADPglucose pyrophosphorylase, soluble starch synthase (SS), starch branching enzyme (BE), and starch debranching enzyme (DBE). In the present paper, based on analyses of mutants and transgenic lines of rice in which each enzyme activity is affected, the contribution of the individual isoform to the fine structure of amylopectin in rice endosperm is evaluated, and a new model referred to as the "two-step branching and improper branch clearing model" is proposed to explain how amylopectin is synthesized. The model emphasizes that two sets of reactions, alpha-1,6-branch formation and the subsequent alpha-1,4-chain elongation, are catalyzed by distinct BE and SS isoforms, respectively, are fundamental to the construction of the cluster structure. The model also assesses the role of DBE, namely isoamylase or in addition pullulanase, to remove unnecessary alpha-1,6-glucosidic linkages that are occasionally formed at improper positions apart from two densely branched regions of the cluster.  相似文献   

3.
Differences in the substrate specificity of alpha-glucosidases should be due to the differences in the substrate binding and the catalytic domains of the enzymes. To elucidate such differences of enzymes hydrolyzing alpha-1,4- and alpha-1,6-glucosidic linkages, two alpha-glucosidases, maltase and isomaltase, from Saccharomyces cerevisiae were cloned and analyzed. The cloned yeast isomaltase and maltase consisted of 589 and 584 amino acid residues, respectively. There was 72.1% sequence identity with 165 amino acid alterations between the two alpha-glucosidases. These two alpha-glucosidase genes were subcloned into the pKP1500 expression vector and expressed in Escherichia coli. The purified alpha-glucosidases showed the same substrate specificities as those of their parent native glucosidases. Chimeric enzymes constructed from isomaltase by exchanging with maltase fragments were characterized by their substrate specificities. When the consensus region II, which is one of the four regions conserved in family 13 (alpha-amylase family), is replaced with the maltase type, the chimeric enzymes alter to hydrolyze maltose. Three amino acid residues in consensus region II were different in the two alpha-glucosidases. Thus, we modified Val216, Gly217, and Ser218 of isomaltase to the maltase-type amino acids by site-directed mutagenesis. The Val216 mutant was altered to hydrolyze both maltose and isomaltose but neither the Gly217 nor the Ser218 mutant changed their substrate specificity, indicating that Val216 is an important residue discriminating the alpha-1,4- and 1,6-glucosidic linkages of substrates.  相似文献   

4.
The dsrE gene from Leuconostoc mesenteroides NRRL B-1299 was shown to encode a very large protein with two potentially active catalytic domains (CD1 and CD2) separated by a glucan binding domain (GBD). From sequence analysis, DSR-E was classified in glucoside hydrolase family 70, where it is the only enzyme to have two catalytic domains. The recombinant protein DSR-E synthesizes both alpha-1,6 and alpha-1,2 glucosidic linkages in transglucosylation reactions using sucrose as the donor and maltose as the acceptor. To investigate the specific roles of CD1 and CD2 in the catalytic mechanism, truncated forms of dsrE were cloned and expressed in Escherichia coli. Gene products were then small-scale purified to isolate the various corresponding enzymes. Dextran and oligosaccharide syntheses were performed. Structural characterization by (13)C nuclear magnetic resonance and/or high-performance liquid chromatography showed that enzymes devoid of CD2 synthesized products containing only alpha-1,6 linkages. On the other hand, enzymes devoid of CD1 modified alpha-1,6 linear oligosaccharides and dextran acceptors through the formation of alpha-1,2 linkages. Therefore, each domain is highly regiospecific, CD1 being specific for the synthesis of alpha-1,6 glucosidic bonds and CD2 only catalyzing the formation of alpha-1,2 linkages. This finding permitted us to elucidate the mechanism of alpha-1,2 branching formation and to engineer a novel transglucosidase specific for the formation of alpha-1,2 linkages. This enzyme will be very useful to control the rate of alpha-1,2 linkage synthesis in dextran or oligosaccharide production.  相似文献   

5.
Bacillus stearothermophilus alpha-1,4-glucosidase (BS) is highly specific for alpha-1,4-glucosidic bonds of maltose, maltooligosaccharides and alpha-glucans. Bacillus thermoglucosdasius oligo-1,6-glucosidase (BT) can specifically hydrolyse alpha-1,6 bonds of isomaltose, isomaltooligosaccharides and alpha-limit dextrin. The two enzymes have high homology in primary structure and belong to glycoside hydrolase family 13, which contain four conservative regions (I, II, III and IV). The two enzymes are suggested to be very close in structure, even though there are strict differences in their substrate specificities. Molecular determinants of substrate recognition in these two enzymes were analysed by site-directed mutagenesis. Twenty BT-based mutants and three BS-based mutants were constructed and characterized. Double substitutions in BT of Val200 -->Ala in region II and Pro258 -->Asn in region III caused an appearance of maltase activity compared with BS, and a large reduction of isomaltase activity. The values of k(0)/K(m) (s(-1). mM(-1)) of the BT-mutant for maltose and isomaltose were 69.0 and 15.4, respectively. We conclude that the Val/Ala200 and Pro/Asn258 residues in the alpha-glucosidases may be largely responsible for substrate recognition, although the regions I and IV also exert a slight influence. Additionally, BT V200A and V200A/P258N possessed high hydrolase activity towards sucrose.  相似文献   

6.
In order to study the substrate specificities of the enzymes implicated in the catabolism of oligomannosidic-type glycans, the oligosaccharides Man9GlcNAc and Man5GlcNAc were incubated with rat liver lysosomal and cytosolic alpha-D-mannosidases and the hydrolysis products were characterized by 400 MHz 1H-NMR spectroscopy. Although they both occur in an ordered way, the two catabolic pathways are quite different. The lysomal pathway is realized in two stages: the first leads from Man9GlcNAc to Man5GlcNAc by preferential cleavage of the four alpha-1,2-linked mannose residues, and the second, Zn(2+)-dependent, leads from Man5GlcNAc to Man (beta 1-4) GlcN Ac by hydrolysis of alpha-1, 3- and alpha-1,6-linked residues. On the contrary, the cytosolic pattern leads by a pathway quite different to a unique hexasaccharide Man5GlcNAc which has, curiously, the same structure as one of the polyprenolic intermediates occurring in the cytosol during the biosynthesis of N-glycosylprotein glycans: Man (alpha 1-2) Man (alpha 1-2) Man (alpha 1-3) [Man (alpha 1-6)] Man (beta 1-4) GlcN Ac (beta 1-4) GlcNAc alpha 1-P-P-Dol.  相似文献   

7.
禾本科植物胚乳内所含有的淀粉根据其结构、组成可以分为两类:直链淀粉(由α-1,4糖苷键连接的多聚D-葡萄糖)和支链淀粉(在以α-1,4糖苷键连接的主链上通过形成α-1,6糖苷键引入支链的多聚D-葡萄糖)。前者是以一种线性无序状态存在,而支链淀粉则是构成淀粉半晶体结构的主要成分。其中,除了负责合成作为糖基直接供体的ADP—Glc的酶AGPase外,直链淀粉中链的延伸反应由GBSSI完成,而支链淀粉的合成则相对复杂,需要SS、SBE、DBE、SP等一些酶的协同调控来共同完成。本文综述了胚乳中淀粉合成过程中所涉及的一些关键酶的研究进展,并对此研究领域进行了展望。  相似文献   

8.
Isoamylases are debranching enzymes that hydrolyze alpha-1,6 linkages in alpha-1,4/alpha-1,6-linked glucan polymers. In plants, they have been shown to be required for the normal synthesis of amylopectin, although the precise manner in which they influence starch synthesis is still debated. cDNA clones encoding three distinct isoamylase isoforms (Stisa1, Stisa2, and Stisa3) have been identified from potato. The expression patterns of the genes are consistent with the possibility that they all play roles in starch synthesis. Analysis of the predicted sequences of the proteins suggested that only Stisa1 and Stisa3 are likely to have hydrolytic activity and that there probably are differences in substrate specificity between these two isoforms. This was confirmed by the expression of each isoamylase in Escherichia coli and characterization of its activity. Partial purification of isoamylase activity from potato tubers showed that Stisa1 and Stisa2 are associated as a multimeric enzyme but that Stisa3 is not associated with this enzyme complex. Our data suggest that Stisa1 and Stisa2 act together to debranch soluble glucan during starch synthesis. The catalytic specificity of Stisa3 is distinct from that of the multimeric enzyme, indicating that it may play a different role in starch metabolism.  相似文献   

9.
Oxidative inactivation of various key enzymes and alpha-1-proteinase inhibitor (alpha-1-PI) was studied by treatment with N-chloramines and the metal-catalyzed oxidation (MCO)-systems ascorbate/Fe(III) and ascorbate/Cu(II). Chlorinated amines completely inhibited alpha-1-PI, fructose-1,6-bis phosphatase (Fru-P2ase) and glyceraldehyde phosphate dehydrogenase (GAPD) at a low molar excess, and glucose-6-phosphate dehydrogenase (G6PD) at a high molar excess, but did not impair beta-N-acetylglucosaminidase (beta-NAG), alkaline phosphatase (AP) or lactate dehydrogenase (LDH). MCO-systems affected the activities of Fru-P2ase, GAPD, AP, LDH and G6PD, but not those of beta-NAG or alpha-1-PI. EDTA prevented inactivation of Fru-P2ase, G6PD and LDH by ascorbate/Cu(II) and of Fru-P2ase by ascorbate/Fe(III) suggesting a site-specific oxidation catalyzed by a protein-bound metal ion. In conclusion, N-chloramines and MCO-systems exhibited different properties with regard to oxidative inactivation, sulfhydryl-enzymes were susceptible to both systems, but other enzymes were only susceptible to one or neither system.  相似文献   

10.
Thermoactinomyces vulgaris R-47 alpha-amylase 1 (TVAI) has unique hydrolyzing activities for pullulan with sequence repeats of alpha-(1,4), alpha-(1,4), and alpha-(1,6) glycosidic linkages, as well as for starch. TVAI mainly hydrolyzes alpha-(1,4) glycosidic linkages to produce a panose, but it also hydrolyzes alpha-(1,6) glycosidic linkages with a lesser efficiency. X-ray structures of three complexes comprising an inactive mutant TVAI (D356N or D356N/E396Q) and a pullulan model oligosaccharide (P2; [Glc-alpha-(1,6)-Glc-alpha-(1,4)-Glc-alpha-(1,4)]2 or P5; [Glc-alpha-(1,6)-Glc-alpha-(1,4)-Glc-alpha-(1,4)]5) were determined. The complex D356N/P2 is a mimic of the enzyme/product complex in the main catalytic reaction of TVAI, and a structural comparison with Aspergillus oryzaealpha-amylase showed that the (-) subsites of TVAI are responsible for recognizing both starch and pullulan. D356N/E396Q/P2 and D356N/E396Q/P5 provided models of the enzyme/substrate complex recognizing the alpha-(1,6) glycosidic linkage at the hydrolyzing site. They showed that only subsites -1 and -2 at the nonreducing end of TVAI are effective in the hydrolysis of alpha-(1,6) glycosidic linkages, leading to weak interactions between substrates and the enzyme. Domain N of TVAI is a starch-binding domain acting as an anchor in the catalytic reaction of the enzyme. In this study, additional substrates were also found to bind to domain N, suggesting that domain N also functions as a pullulan-binding domain.  相似文献   

11.
The activities of hepatic fatty acid oxidation enzymes in rats fed linseed and perilla oils rich in alpha-linolenic acid (alpha-18:3) were compared with those in the animals fed safflower oil rich in linoleic acid (18:2) and saturated fats (coconut or palm oil). Mitochondrial and peroxisomal palmitoyl-CoA (16:0-CoA) oxidation rates in the liver homogenates were significantly higher in rats fed linseed and perilla oils than in those fed saturated fats and safflower oil. The fatty oxidation rates increased as dietary levels of alpha-18:3 increased. Dietary alpha-18:3 also increased the activity of fatty acid oxidation enzymes except for 3-hydroxyacyl-CoA dehydrogenase. Unexpectedly, dietary alpha-18:3 caused great reduction in the activity of 3-hydroxyacyl-CoA dehydrogenase measured with short- and medium-chain substrates but not with long-chain substrate. Dietary alpha-18:3 significantly increased the mRNA levels of hepatic fatty acid oxidation enzymes including carnitine palmitoyltransferase I and II, mitochondrial trifunctional protein, acyl-CoA oxidase, peroxisomal bifunctional protein, mitochondrial and peroxisomal 3-ketoacyl-CoA thiolases, 2, 4-dienoyl-CoA reductase and delta3, delta2-enoyl-CoA isomerase. Fish oil rich in very long-chain n-3 fatty acids caused similar changes in hepatic fatty acid oxidation. Regarding the substrate specificity of beta-oxidation pathway, mitochondrial and peroxisomal beta-oxidation rate of alpha-18:3-CoA, relative to 16:0- and 18:2-CoAs, was higher irrespective of the substrate/albumin ratios in the assay mixture or dietary fat sources. The substrate specificity of carnitine palmitoyltransferase I appeared to be responsible for the differential mitochondrial oxidation rates of these acyl-CoA substrates. Dietary fats rich in alpha-18:3-CoA relative to safflower oil did not affect the hepatic activity of fatty acid synthase and glucose 6-phosphate dehydrogenase. It was suggested that both substrate specificities and alterations in the activities of the enzymes in beta-oxidation pathway play a significant role in the regulation of the serum lipid concentrations in rats fed alpha-18:3.  相似文献   

12.
There are three midgut alpha-galactosidases (TG1, TG2, TG3) from Tenebrio molitor larvae that are partially resolved by ion-exchange chromatography. The enzymes have approximately the same pH optimum (5.0), pl value (4.6) and Mr value (46000-49000) as determined by gel filtration or native electrophoresis run in polyacrylamide gels with different concentrations. Substrate specificities and functions were proposed for the major T. molitor midgut alpha-galactosidases (TG2 and TG3) based on chromatographic, carbodiimide inactivation, Tris inhibition, and on substrate competition data. Thus, TG2 would hydrolyse alpha-1,6-galactosaccharides, exemplified by raffinose, whereas TG3 would act on melibiose and apparently also on digalactosyldiglyceride, the most important compound in the thylacoid membranes of chloroplasts. Most galactoside digestion should occur in the lumen of the first two thirds of T. molitor larval midguts, since alpha-galactosidase activity predominates there. Spodoptera frugiperda larvae have three midgut alpha-galactosidases (SG1, SG2, SG3) partially resolved by ion-exchange chromatography. The enzymes have similar pH optimum (5.8), pl value (7.2) and Mr value (46000-52000), and at least the major alpha-galactosidase must have an active carboxyl group in the active site. Based on data similar to those described for T. molitor, SG1 and SG3 should hydrolyse melibiose and SG3 should digest raffinose and, perhaps, also digalactosyldiglyceride. The midgut distribution of alpha-galactosidase activity supports the proposal that alpha-galactosidase digestion occurs at the surface of anterior midgut cells in Spodoptera frugiperda larvae.  相似文献   

13.
1. Five multiple forms of dihydrodiol dehydrogenase (EC 1.3.1.20) with similar molecular weights of around 35,000 were purified from hamster liver cytosol. 2. All the enzymes oxidized trans-dihydrodiols of benzene and naphthalene and reduced various carbonyl compounds, but showed clear differences in specificities for other alcohols and cofactors, and in inhibitor sensitivity. 3. Two NADP+-dependent enzymes were immunologically identified with aldehyde reductase (EC 1.1.1.2) and 3 alpha-hydroxytsteroid dehydrogenase (EC 1.1.1.50). 4. The other enzymes with dual cofactor specificity oxidized xenobiotic alicyclic alcohols, and one of them was active on 3 alpha- and 17 beta-hydroxysteroids with NAD+ as a preferable cofactor.  相似文献   

14.
植物淀粉合成的调控酶   总被引:6,自引:0,他引:6  
淀粉是植物中最普通的碳水化合物,是人类最主要的食品来源与重要的工业原料。植物淀粉的生物合成主要涉及了4种酶—ADPG焦磷酸化酶、淀粉合成酶、淀粉分支酶和淀粉去分支酶,它们在淀粉的生物合成中发挥着不同作用。近年来,随着基因工程技术的迅速发展及与这些酶有关的众多突变体的发现,使人们对这些酶的结构、特性、功能及表达调控等方面的研究取得了重要进展。并且,人们已开始利用基因工程技术调控植物淀粉的数量与特性,取得了一定成效。在此,文章介绍了调控植物淀粉合成关键酶的生化特性、基因调控及利用基因工程改良植物淀粉等方面所取得进展。  相似文献   

15.
Starch recognition by carbohydrate-binding modules (CBMs) is important for the activity of starch-degrading enzymes. The N-terminal family 41 CBM, TmCBM41 (from pullulanase PulA secreted by Thermotoga maritima) was shown to have alpha-glucan binding activity with specificity for alpha-1,4-glucans but was able to tolerate the alpha-1,6-linkages found roughly every three or four glucose units in pullulan. Using X-ray crystallography, the structures were solved for TmCBM41 in an uncomplexed form and in complex with maltotetraose and 6(3)-alpha-D-glucosyl-maltotriose (GM3). Ligand binding was facilitated by stacking interactions between the alpha-faces of the glucose residues and two tryptophan side-chains in the two main subsites of the carbohydrate-binding site. Overall, this mode of starch binding is quite well conserved by other starch-binding modules. The structure in complex with GM3 revealed a third binding subsite with the flexibility to accommodate an alpha-1,4- or an alpha-1,6-linked glucose.  相似文献   

16.
探索获得优良的新型普鲁兰酶基因,丰富普鲁兰酶理论,对实现普鲁兰酶国产化具有重要意义。分析GenBank数据库中蜡样芽胞杆菌假定Ⅰ型、Ⅱ型普鲁兰酶基因序列,从实验室保藏的蜡样芽胞杆菌Bacilluscereus GXBC-3中克隆得到3个普鲁兰酶基因pulA、pulB、pulC,并分别导入大肠杆菌进行胞内诱导表达。纯化重组酶酶学性质研究表明重组酶PulA能水解α-l,6-和α-l,4-糖苷键,为Ⅱ型普鲁兰酶,以普鲁兰糖为底物时,最适反应温度及pH分别为40℃和6.5,比活力为32.89 U/mg;以可溶性淀粉为底物时,最适反应温度及pH分别为50℃和7.0,比活力为25.71 U/mg。重组酶PulB和PulC二者均只能水解α-l,6-糖苷键,为I型普鲁兰酶,以普鲁兰糖为底物时,其最适反应温度及pH分别为45℃、7.0和45℃、6.5,比活力分别为228.54 U/mg和229.65 U/mg。  相似文献   

17.
Based on the capacity to transfer alpha-L-fucose onto type-1 and type-2 synthetic blood group H and sialylated acceptors, a comparison of the alpha-3-fucosyltransferase activities of different human tissues is shown. Three distinct acceptor specificity patterns are described: (I) myeloid alpha-3-fucosyltransferase pattern, in which leukocytes and brain enzymes transfer fucose actively onto H type-2 acceptor and poorly onto sialylated N-acetyllactosamine: (II) plasma alpha-3-fucosyltransferase (EC 2.4.1.152), in which plasma and hepatocyte enzymes transfer, in addition, onto the sialylated N-acetyllactosamine; (III) Lewis alpha-3 4-fucosyltransferase (EC 2.4.1.65), in which gall-bladder kidney and milk enzymes transfer, in addition, onto type-1 acceptors. The small amount (less than 10%) of alpha-3-fucosyltransferase activity found in the plasma of an alpha-3-fucosyltransferase-deficient individual had a myeloid-type acceptor pattern, suggesting that this small proportion of the plasma enzyme is derived from leukocytes. In addition to the three acceptor specificity patterns, these enzyme activities can be differentiated by their optimum pH: 8.0-8.7 for the enzymes from myeloid cells and brain. 7.2-8.0 for liver enzymes and 6.0-7.2 for gallbladder enzymes. Milk samples had two alpha-3-fucosyltransferase activities, the Lewis or alpha-3/4-fucosyltransferase under control of the Lewis gene and an alpha-3-fucosyltransferase with plasma acceptor pattern which was independent of the control of the Lewis gene. The apparent affinity for GDP-fucose of the myeloid-like enzyme was weaker than those of the plasma and Lewis-like enzymes. The apparent affinities for H type 2 and sialylated N-acetyllactosamine were stronger for exocrine secretions as compared to the plasma and myeloid enzymes. The plasma type of alpha-3-fucosyltransferase activity was more sensitive to N-ethylmaleimide and heat inactivation than the samples with myeloid-like alpha-3-fucosyltransferase activity.  相似文献   

18.
The acceptor specificities of ST3Gal III, ST3Gal IV, ST6Gal I and ST6Gal II were investigated using a panel of beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->2)-alpha-D-Manp-(1-->O)(CH(2))(7)CH(3) analogues. Modifications introduced at either C2, C3, C4, C5, or C6 of terminal D-Gal, as well as N-propionylation instead of N-acetylation of subterminal D-GlcN were tested for their influence on the alpha-2,3- and alpha-2,6-sialyltransferase acceptor activities. Both ST3Gal enzymes displayed the same narrow acceptor specificity, and only accept reduction of the Gal C2 hydroxyl function. The ST6Gal enzymes, however, do not have the same acceptor specificity. ST6Gal II seems less tolerant towards modifications at Gal C3 and C4 than ST6Gal I, and prefers beta-D-GalpNAc-(1-->4)-beta-D-GlcpNAc (LacdiNAc) as an acceptor substrate, as shown by replacing the Gal C2 hydroxyl group with an N-acetyl function. Finally, a particularly striking feature of all tested sialyltransferases is the activating effect of replacing the N-acetyl function of subterminal GlcNAc by an N-propionyl function.  相似文献   

19.
In an attempt to engineer a Yarrowia lipolytica strain to produce glycoproteins lacking the outer-chain mannose residues of N-linked oligosaccharides, we investigated the functions of the OCH1 gene encoding a putative alpha-1,6-mannosyltransferase in Y. lipolytica. The complementation of the Saccharomyces cerevisiae och1 mutation by the expression of YlOCH1 and the lack of in vitro alpha-1,6-mannosyltransferase activity in the Yloch1 null mutant indicated that YlOCH1 is a functional ortholog of S. cerevisiae OCH1. The oligosaccharides assembled on two secretory glycoproteins, the Trichoderma reesei endoglucanase I and the endogenous Y. lipolytica lipase, from the Yloch1 null mutant contained a single predominant species, the core oligosaccharide Man8GlcNAc2, whereas those from the wild-type strain consisted of oligosaccharides with heterogeneous sizes, Man8GlcNAc2 to Man12GlcNAc2. Digestion with alpha-1,2- and alpha-1,6-mannosidase of the oligosaccharides from the wild-type and Yloch1 mutant strains strongly supported the possibility that the Yloch1 mutant strain has a defect in adding the first alpha-1,6-linked mannose to the core oligosaccharide. Taken together, these results indicate that YlOCH1 plays a key role in the outer-chain mannosylation of N-linked oligosaccharides in Y. lipolytica. Therefore, the Yloch1 mutant strain can be used as a host to produce glycoproteins lacking the outer-chain mannoses and further developed for the production of therapeutic glycoproteins containing human-compatible oligosaccharides.  相似文献   

20.
Glucosyltransferase and glucanotransferase involved in the production of cyclic tetrasaccharide (CTS; cyclo [-->6]-alpha-D-glucopyranosyl-(1-->3)-alpha-D-glucopyranosyl-(1-->6)-alpha-D-glucopyranosyl-(1-->3)-alpha-D-glucopyranosyl-(1-->)) from alpha-1,4-glucan were purified from Bacillus globisporus C11. The former was a 1,6-alpha-glucosyltransferase (6GT) catalyzing the a-1,6-transglucosylation of one glucosyl residue to the nonreducing end of maltooligosaccharides (MOS) to produce alpha-isomaltosyl-MOS from MOS. The latter was an isomaltosyl transferase (IMT) catalyzing alpha-1,3-, alpha-1,4-, and alpha,beta-1,1-intermolecular transglycosylation of isomaltosyl residues. When IMT catalyzed alpha-1,3-transglycosylation, alpha-isomaltosyl-(1-->3)-alpha-isomaltosyl-MOS was produced from alpha-isomaltosyl-MOS. In addition, IMT catalyzed cyclization, and produced CTS from alpha-isomaltosyl-(1-->3)-alpha-isomaltosyl-MOS by intramolecular transglycosylation. Therefore, the mechanism of CTS synthesis from MOS by the two enzymes seemed to follow three steps: 1) MOS-->alpha-isomaltosyl-->MOS (by 6GT), 2) alpha-isomaltosyl-MOS-->alpha-isomaltosyl-(1-->3)-alpha-isomaltosyl-MOS (by IMT), and 3) alpha-isomaltosyl-(1-->3)-alpha-isomaltosyl-MOS-->CTS + MOS (by IMT). The molecular mass of 6GT was estimated to be 137 kDa by SDS-PAGE. The optimum pH and temperature for 6GT were pH 6.0 and 45 degrees C, respectively. This enzyme was stable at from pH 5.5 to 10 and on being heated to 40 degrees C for 60 min. 6GT was strongly activated and stabilized by various divalent cations. The molecular mass of IMT was estimated to be 102 kDa by SDS-PAGE. The optimum pH and temperature for IMT were pH 6.0 and 50 degrees C, respectively. This enzyme was stable at from pH 4.5 to 9.0 and on being heated to 40 degrees C for 60 min. Divalent cations had no effect on the stability or activity of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号