首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S100B is an astrocyte calcium-binding protein that plays a regulatory role in the cytoskeleton and cell cycle. Moreover, extracellular S100B, a marker of glial activation in several conditions of brain injury, has a trophic or apoptotic effect on neurons, depending on its concentration. Hyperglycemic rats show changes in glial parameters, including S100B expression. Here, we investigated cell density, morphological and biochemical alterations in primary cortical astrocytes from rats and C6 glioma cells cultured in high-glucose medium. Astrocytes and C6 glioma cells have a reduced content of S100B and glial fibrillary acidic protein when cultured in a high-glucose environment, as well as a reduced content of glutathione and cell proliferation rate. Although these cells have been used indistinctly to study S100B secretion, we observed a contrasting profile of S100B secretion in a high-glucose medium: a decrease in primary astrocytes and an increase in C6 glioma cells. Based on the in vitro neurotrophic effects of the S100B protein, our data suggest that chronic elevated glucose levels affect astrocyte activity, reducing extracellular secretion of S100B and that this, in turn, could affect neuronal activity and survival. Such astrocyte alterations could contribute to cognitive deficit and other impairments observed in diabetic patients.  相似文献   

2.
To test for the prolonged consequences of a short transient exposure of astrocytes to silver nanoparticles (AgNP), cultured primary astrocytes were incubated for 4 h in the presence of AgNP and the cell viability as well as various metabolic parameters were investigated during a subsequent incubation in AgNP-free medium. Acute exposure of astrocytes to AgNP led to a concentration-dependent increase in the specific cellular silver content to up to 46 nmol/mg protein, but did not compromise cell viability. During a subsequent incubation of the cells in AgNP-free medium, the cellular silver content of AgNP-treated astrocytes remained almost constant for up to 7 days. The cellular presence of AgNP did neither induce any delayed cell toxicity nor were alterations in cellular glucose consumption, lactate production or in the cellular ratio of glutathione to glutathione disulfide observed. However, Western blot analysis and immunocytochemical staining revealed that AgNP-treated astrocytes strongly upregulated the expression of metallothioneins. These results demonstrate that a prolonged presence of accumulated AgNP does not compromise the viability and the basal metabolism of cultured astrocytes and suggest that the upregulation of metallothioneins may help to prevent silver-mediated toxicity that could be induced by AgNP-derived silver ions.  相似文献   

3.
Effects of increased levels of arachidonic acid (AA) were analyzed in vitro by employment of C6 glioma cells and astrocytes from primary culture. The cells were suspended in a physiological medium added with arachidonic acid (AA) in a concentration range from 0.01 to 0.5 mM. The concentration profiles of the fatty acid and AA-metabolited were subsequently followed for 90 min. AA was measured by gas chromatography, whereas the AA-metabolites PGF2 and LTB4 by radioimmunoassay (RIA). Following administration of AA at 0.05 or 0.1 mM the medium was completely cleared from the fatty acid within 10 to 15 min. However, when 0.5 mM were added, AA concentrations of 0.36±0.055 mM were found at 20 min, while 0.275±0.045 mM at 90 min. Addition of AA (0.1 mM) to cell-free medium was also associated with a steady decline of its concentration, although the decrease was markedly delayed as compared to the clearance in the presence of glial cells. AA was subjected to dose-dependent metabolisation in the cell suspension as demonstrated by the production of PGF2 and LTB4. Following addition of 0.01 or 0.5 mM, concentrations of PGF2 increased to a 1.9- or 4.9-fold level within 10 min, whereas those of LTB4 rose to a 1.3- or 33.7-fold level. This was attenuated or completely blocked, respectively, by the cyclo- and lipoxygenase inhibitor BW 755C. Formation of both metabolites from AA was also observed when studying astrocytes from primary culture. The current findings demonstrate an impressive efficacy of C6 glioma cells and astrocytes to clear arachidonic acid from the suspension medium and to convert the lipid compound into prostaglandins and leukotrienes. Uptake and metabolisation of AA by the glial elements may play an important role in vivo, for example in cerebral ischemia.  相似文献   

4.
Glutathione is generally accepted as the principal electron donor for dehydroascorbate (DHA) reduction. Moreover, both glutathione and DHA affect cell cycle progression in plant cells. But other mechanisms for DHA reduction have been proposed. To investigate the connection between DHA and glutathione, we have evaluated cellular ascorbate and glutathione concentrations and their redox status after addition of dehydroascorbate to medium of tobacco (Nicotiana tabacum) L. cv Bright Yellow-2 (BY-2) cells. Addition of 1 mm DHA did not change the endogenous glutathione concentration. Total glutathione depletion of BY-2 cells was achieved after 24-h incubation with 1 mm of the glutathione biosynthesis inhibitor l-buthionine sulfoximine. Even in these cells devoid of glutathione, complete uptake and internal reduction of 1 mm DHA was observed within 6 h, although the initial reduction rate was slower. Addition of DHA to a synchronized BY-2 culture, or depleting its glutathione content, had a synergistic effect on cell cycle progression. Moreover, increased intracellular glutathione concentrations did not prevent exogenous DHA from inducing a cell cycle shift. It is therefore concluded that, together with a glutathione-driven DHA reduction, a glutathione-independent pathway for DHA reduction exists in vivo, and that both compounds act independently in growth control.  相似文献   

5.
High concentrations of 2-deoxy-d-ribose (2dRib) have been reported to cause oxidative stress and to disturb the glutathione (GSH) metabolism of various cell types. Exposure of astrocyte-rich primary cultures to millimolar concentrations of 2dRib or its stereoisomer 2-deoxy-l-ribose, but not the incubation with ribose, 2-deoxyglucose, glucose, fructose or saccharose, lowered the cellular GSH content in a time and concentration dependent manner. After exposure for 4 h to 30 mM 2dRib the cells contained 2dRib in a concentration of about 24 mM. Under these conditions 2dRib did not compromise cell viability and the ability of the cells to synthesise GSH, nor were the cellular ratio of glutathione disulfide (GSSG) to GSH and the extracellular concentrations of GSH or GSSG increased. These data demonstrate that 2dRib deprives viable cultured astrocytes of GSH and suggest that a cellular reaction of GSH with 2dRib or its metabolites is involved in the deprivation of astrocytic GSH.  相似文献   

6.
Inorganic arsenicals are environmental toxins that have been connected with neuropathies and impaired cognitive functions. To investigate whether such substances accumulate in brain astrocytes and affect their viability and glutathione metabolism, we have exposed cultured primary astrocytes to arsenite or arsenate. Both arsenicals compromised the cell viability of astrocytes in a time- and concentration-dependent manner. However, the early onset of cell toxicity in arsenite-treated astrocytes revealed the higher toxic potential of arsenite compared with arsenate. The concentrations of arsenite and arsenate that caused within 24 h half-maximal release of the cytosolic enzyme lactate dehydrogenase were around 0.3 mM and 10 mM, respectively. The cellular arsenic contents of astrocytes increased rapidly upon exposure to arsenite or arsenate and reached after 4 h of incubation almost constant steady state levels. These levels were about 3-times higher in astrocytes that had been exposed to a given concentration of arsenite compared with the respective arsenate condition. Analysis of the intracellular arsenic species revealed that almost exclusively arsenite was present in viable astrocytes that had been exposed to either arsenate or arsenite. The emerging toxicity of arsenite 4 h after exposure was accompanied by a loss in cellular total glutathione and by an increase in the cellular glutathione disulfide content. These data suggest that the high arsenite content of astrocytes that had been exposed to inorganic arsenicals causes an increase in the ratio of glutathione disulfide to glutathione which contributes to the toxic potential of these substances.  相似文献   

7.
Phenothiazines and tricyclic antidepressants, when added to culture medium, gave rise in several types of cells (C6 rat glioma cells and human fibroblasts), to a decrease in lysosomal sphingomyelinase activity. The effect of chlorpromazine and desipramine was dose dependent, and was observed after 3 hours of incubation with the drugs at concentrations ranging between 1 and 10 microM. In C6 glioma cell cultures, the decrease in sphingomyelinase activity was related to the clinical effectiveness of phenothiazines, tricyclic antidepressants and derivatives. Incorporation of (choline-14C) sphingomyelin showed that the metabolic pathway implying the synthesis of phosphatidylcholine from the hydrolysis of sphingomyelin and/or transfer of phosphorylcholine to phosphatidylcholine was also partially reduced.  相似文献   

8.
It is well established that ammonia is detoxified in the brain to form glutamine and that astrocytes play a major role in this process. The synthesis of glutamine requires glutamate and ATP. Since glutamate and ATP are also required for the synthesis of glutathione (GSH), we examined the effect of pathophysiological concentrations of ammonia on levels of GSH in primary cultures of astrocytes. GSH content in the medium increased in a dose- and time-dependent manner in the presence of ammonia. After an initial decrease, cellular GSH content increased in a similar manner. The levels of glutathione disulfide (GSSG) were also increased. A linear relationship was observed between ammonia concentration and the increase in GSH levels. An increase in the efflux of GSH from cells into medium was also observed under these conditions. Buthionine sulfoximine and acivicin, but not methionine sulfoximine, blocked the ammonia induced increase in GSH levels. No, or minor, changes in the activities of enzymes (gamma-glutamyl transpeptidase, GSH reductase and GSH-peroxidase) that might influence GSH levels were identified and thus could not account for the ammonia induced increase in GSH levels in astrocytes. These findings indicate that pathophysiological concentrations of ammonium ions result in increased astroglial levels of GSH which may affect the metabolism and function of astrocytes.  相似文献   

9.
The uptake of glutamate in rat glioma C-6 cells and cultured astrocytes derived from rat cerebral hemispheres was found to be mediated by a Na(+)-dependent and a Na(+)-independent system. The Na(+)-dependent system was inhibited by aspartate and was consistent with the commonly occurring system designated system X-AG. The Na(+)-independent system was inhibited by cystine and was consistent with system x-c described in various types of cells in the periphery. It was also found that quisqualate selectively and competitively interfered with the Na(+)-independent glutamate uptake. In C-6 cells, the glutamate uptake via systems X-AG and x-c accounted for approximately 35% and 55% of the total uptake, respectively, at 0.05 mM glutamate. In cultured astrocytes, the glutamate uptake via system X-AG was very potent, whereas the uptake via system xc- was relatively weak and its contribution to the total uptake of glutamate seemed almost negligible. However, in both C-6 cells and astrocytes, system xc- was necessary for the uptake of cystine, another substrate of system xc-. Cystine in the culture medium was an essential precursor of glutathione, and the inhibition of the cystine uptake by excess glutamate as a competitor led to a severe deficiency in glutathione, followed by cell degeneration.  相似文献   

10.
11.
The effect of the glucocorticoids, insulin, and glucose concentration on glycogen deposition in adult rat liver parenchymal cells maintained in a chemically defined, serum-free medium has been studied. Increasing the medium concentration of glucose from 5.6 mM to 30.6mM in the absence of hormones increased cellular glycogen content from 6.5 to 51 μg of glycogen per mg of cell protein. Treatment of the cells with insulin increased the glycogen content by 15 to 30% at medium glucose concentrations above 10.6 mM. The addition of the synthetic glucocorticoid, dexamethasone, to the culture medium resulted in 40 to 105% increases in glycogen content at glucose concentrations greater than 5.6 mM. The addition of dexamethasone and insulin together in the culture medium resulted in an increase in glycogen content that was greater than the additive effect of each hormone alone. This established that glucose concentrations above 10.6 mM stimulate glycogen deposition in the absence of any hormonal stimulus. In addition, glucocorticoids directly stimulate glycogen deposition at glucose concentrations which are greater than physiological (5.6 mM).  相似文献   

12.
Jurkowska H  Wróbel M 《Amino acids》2008,34(2):231-237
Summary. N-acetyl-L-cysteine (NAC), a precursor of L-cysteine, not only elevates the level of glutathione in both astrocytoma and astrocyte cultures, but also affects the cellular level of sulfane sulfur. Astrocytoma cells were investigated using the stable U373 human cell line. In the U373 cells, N-acetyl-L-cysteine, depending on the concentration in the culture medium and culture duration, either elevated or diminished the level of sulfane sulfur, and this was respectively accompanied by decreased or increased cellular proliferation. In murine astrocytes, in turn, NAC was capable of lowering the level of sulfane sulfur and in this way decreased cellular proliferation. It seems that normal (astrocyte) and transformed (astrocytoma) cells differed in their reaction to NAC in the culture medium. The effect of N-acetyl-L-cysteine on astrocytoma cells was advantageous in that it inhibited their proliferation through the elevation of the level of sulfane sulfur. Authors’ address: Maria Wróbel, Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7 St., 31-034 Kraków, Poland  相似文献   

13.
Extracellular matrix (ECM) molecules have been implicated in the regulation of neuronal adhesion and neurite outgrowth both during development and after injury. It has been demonstrated in our laboratory that astrocytes are heterogenous in expression of the ECM molecule tenascin. High-tenascin astrocytes have a reduced ability to support neurite outgrowth. In addition, astrocytes treated with exogenous basic fibroblast growth factor (bFGF) supported reduced neuronal growth and adhesion. In the current study, the hypothesis was tested that bFGF could increase the expression of tenascin by these cells. Basic FGF was added to cultures of rat cerebral cortical astrocytes at concentrations of up to 30 ng/ml, concentrations shown to have a significant effect on neuronal adhesion. Tenascin levels were evaluated by Western blot analysis of both cell extracts and conditioned media and also by immunocytochemistry techniques. Tenascin levels began to increase after 24-48 hr and continued to increase throughout 8 days in culture. The increase in tenascin was concentration-dependent, with the largest increase seen at 5 ng/ml bFGF. Tenascin production was increased approximately 5.5-fold in serum-containing medium but only about 2-fold in serum-free medium. When heparin (10 μg/ml) was included along with bFGF in serum-free medium, tenascin production was further enhanced. The bFGF treatment was discontinued after 8 days, and the cells were maintained for an additional 8 days in culture. Tenascin levels returned to control values, demonstrating that the bFGF effect is transient. It is our hypothesis that the action of bFGF during injury may evoke the induction of tenascin on astrocytes, thereby reducing regeneration in the central nervous system.  相似文献   

14.
We hypothesized that the cytotoxic effect of GLA observed in glioma but not normal glial cells reflects differences in GLA metabolism and/or antioxidant enzyme levels between these cells. The PUFA content of unsupplemented glioma cells was approximately 50% of that seen in unsupplemented astrocytes. Supplementation with 20 microM GLA for 24 h led to a 230 and 22% increase in glioma and astrocyte PUFA content, respectively, such that both supplemented cell types contained similar levels of PUFA. No major differences were seen in terms of GLA metabolites retained in the cells or secreted into the media following incubation with [(3)H]-GLA. No significant differences were observed in activity of MnSOD or CuZn-SOD between the cells. However, CAT and GPx activity in the glioma cells was significantly higher and lower, respectively, than observed in normal astrocytes. GLA supplementation resulted in a significant increase in CAT activity in normal astrocytes; glioma CAT activity was unchanged. No significant change was seen in the other antioxidant enzymes following GLA supplementation. These results suggest that the cytotoxic effect of GLA on glioma cells reflects both increased PUFA content and an inability to upregulate CAT.  相似文献   

15.
Inhibition of cell proliferation by glycerol   总被引:1,自引:0,他引:1  
J P Wiebe  C J Dinsdale 《Life sciences》1991,48(16):1511-1517
The effect of glycerol on proliferation of BHK, CHO, HBL, MCF-7, and human glioma cells was studied. Cell proliferation was significantly decreased in all the cell lines at glycerol concentrations of 2-4% in the culture medium. The inhibition was dose-dependent, complete suppression of proliferation occurring at a glycerol concentration of 4% for the MCF-7 cell line and 6-8% for the BHK, CHO and human glioma cells. Studies on [3H]thymidine incorporation correlate with the effect on cell proliferation. The viability of the cells was not significantly affected until higher concentrations of glycerol (12% +) were present. Recovery studies with BHK cells indicated that replacement of the glycerol medium with glycerol-free medium resulted in full recovery following exposure to 4% glycerol and only partial recovery (65%) of proliferation rate following exposure to 10-12% glycerol. It is concluded that glycerol, a substance that is normally present in tissues, can serve as a potent inhibitor of cell proliferation.  相似文献   

16.
Zinc toxicity has been linked to cellular glutathione: A decrease in glutathione is followed by an increase in zinc-mediated toxicity. The question arises whether an increase in glutathione synthesis might decrease zinc-mediated cytotoxicity. We incubated five cell lines (hepatoma and lung-derived) with zinc chloride and 2 mmol/l N-acetyl-l-cysteine (NAC) to support glutathione synthesis. In all but one hepatic cell line, the glutathione content was increased by NAC as compared to the d-enantiomere NADC, whereas NADC did not increase GSH content as compared to not treated controls. In both alveolar epithelial cell lines, an increase in zinc tolerance was observed due to NAC as compared to NADC. In native fibroblast-like and the hepatoma cell lines, no changes in zinc tolerance were found due to NAC. In the fibroblast-like cells, zinc tolerance was increased due to NAC only after cellular glutathione had been previously decreased (by lowered cysteine concentrations in the medium). Enhancing glutathione synthesis can antagonize zinc-mediated toxicity in the alveolar epithelial cell lines, whereas some other characteristics than glutathione synthesis might be more important in other cell types. Furthermore, NAC acted as a GSH precursor only at cysteine medium concentrations of 10 μmol/l or below and therefore might be described as a poor cysteine repletor for glutathione synthesis. This work is dedicated to Peter Eyer on the occasion of his 65th birthday.  相似文献   

17.
The effect of polyamines on the cellular concentrations of cyclic AMP was studied. It was shown that 1 microM-spermine caused a decrease in cyclic AMP in chick-embryo heart cells, chick-embryo fibroblasts, neuroblastoma, glioma and neuroblastoma-glioma hybrid cells, grown in culture. A similar decrease was observed when polyamines were added to cells in the presence of a phosphodiesterase inhibitor or after stimulating the cells with various hormones. Noradrenaline was used in cultures of heart cells, prostaglandin E1 and adenosine for neuroblastoma and neuroblastoma-glioma hybrids, whereas isoproterenol was used for the stimulation of glioma cells. Polyamines at higher concentrations were either without effect or caused a slight increase in cyclic AMP. Spermidine (10 microM) also caused a decrease in cellular cyclic AMP, as did 0.1 microM-putrescine. It is suggested that the effect of polyamines on cellular cyclic AMP may be explained by the effect of these polycations on the activity of cellular phosphodiesterase.  相似文献   

18.
The major cellular antioxidant, glutathione, is mostly localized in the cytosol but a small portion is found in mitochondria. We have recently shown that highly selective depletion of mitochondrial glutathione in astrocytes in culture markedly increased cell death induced by the peroxynitrite donor, 3-morpholino-syndnonimine. The present study was aimed at characterizing the increase in susceptibility arising from mitochondrial glutathione loss and testing the possibility that elevating this metabolite pool above normal values could be protective. The increased vulnerability of astrocytes with depleted mitochondrial glutathione to Sin-1 was confirmed. Furthermore, these cells showed marked increases in sensitivity to hydrogen peroxide and also to high concentrations of the nitric oxide donor, S-nitroso-N-acetyl-penicillamine. The increase in cell death was mostly due to necrosis as indicated by substantially increased release of lactate dehydrogenase and staining of nuclei with propidium iodide but little change in annexin V staining and caspase 3 activation. The enhanced cell loss was blocked by prior restoration of the mitochondrial glutathione content. It was also essentially fully inhibited by treatment with cyclosporin A, consistent with a role for the mitochondrial permeability transition in the development of cell death. Susceptibility to the classical apoptosis inducer, staurosporine, was only affected to a small extent in contrast to the response to the other substances tested. Incubation of normal astrocytes with glutathione monoethylester produced large and long-lasting increases in mitochondrial glutathione content with much smaller effects on the cytosolic glutathione pool. This treatment reduced cell death on exposure to 3-morpholino-syndnonimine or hydrogen peroxide but not S-nitroso-N-acetyl-pencillamine or staurosporine. These findings provide evidence for an important role for mitochondrial glutathione in preserving cell viability during periods of oxidative or nitrative stress and indicate that increases in this glutathione pool can confer protection against some of these stressors.  相似文献   

19.
Glial cell type-specific responses to menadione-induced oxidative stress   总被引:7,自引:0,他引:7  
Glial cell types in the central nervous system are continuously exposed to reactive oxygen species (ROS) due to their high oxygen metabolism and demonstrate differential susceptibility to certain pathological conditions believed to involve oxidative stress. The purpose of the current studies was to test the hypothesis that mtDNA damage could contribute to the differential susceptibility of glial cell types to apoptosis induced by oxidative stress. Primary cultures of rat astrocytes, oligodendrocytes, and microglia were utilized, and menadione was used to produce the oxidative stress. Apoptosis was detected and quantitated in menadione-treated oligodendrocytes and microglia (but not astrocytes) using either positive annexin-V staining or positive staining for 3'-OH groups in DNA. The apoptotic pathway that was activated involved the release of cytochrome c from the intermitochondrial space and activation of caspase 9. Caspase 8 was not activated after exposure to menadione in any of the cells. Using equimolar concentrations of menadione, more initial damage was observed in mtDNA from oligodendrocytes and microglia. Additionally, using concentrations of menadione that resulted in comparable initial mtDNA damage, more efficient repair was observed in astrocytes compared to either oligodendrocytes or microglia. The differential susceptibility of glial cell types to oxidative damage and apoptosis did not appear related to cellular antioxidant capacity, because under the current culture conditions astrocytes had lower total glutathione content and superoxide dismutase activity than oligodendrocytes and microglia. These results show that the differential susceptibility of glial cell types to menadione-induced oxidative stress and apoptosis appears to correlate with increased oxidative mtDNA damage and support the hypothesis that mtDNA damage could participate in the initiation of apoptosis through the enhanced release of cytochrome c and the activation of caspase 9.  相似文献   

20.
We have measured the free amino acid content of three distinct astroglial cell clones derived from permanent lines obtained after "spontaneous immortalization" of 8-day postnatal mouse cerebellar cultures; these clones show characteristics similar to the Golgi Bergmann glia cells, the fibrous astrocytes, and the velate protoplasmic astrocytes, i.e., the three main types of cerebellar astrocytes. The relative concentrations of amino acids that are thought to act as neurotransmitters were compared in confluent cultures of the different astroglial clones. The most striking result was a high concentration of glycine (20% of free amino acids), even in astroglial cells cultured in a glycine-free medium, a finding suggesting that glycine is synthesized by the astroglial clones. Furthermore, no gamma-aminobutyric acid (GABA) was detected. In contrast, a "neuron-like" clone derived from the same cerebellar culture contained GABA, whereas its glycine content was much lower than that of the astroglial clones. The present results, together with our previous finding of glycine synthesis in an astrocytic clone derived from 14-day postnatal mouse cerebella transformed by simian virus 40, indicate that a high glycine content may be characteristic of many cerebellar astroglial types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号