首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of microbiota in various biological and environmental samples under a variety of conditions has recently become more practical due to remarkable advances in next-generation sequencing. Changes leading to specific biological states including some of the more complex diseases can now be characterized with relative ease. It is known that gut microbiota is involved in the pathogenesis of inflammatory bowel disease (IBD), mainly Crohn''s disease and ulcerative colitis, exhibiting symptoms in the gastrointestinal tract. Recent studies also showed increased frequency of oral manifestations among IBD patients, indicating aberrations in the oral microbiota. Based on these observations, we analyzed the composition of salivary microbiota of 35 IBD patients by 454 pyrosequencing of the bacterial 16S rRNA gene and compared it with that of 24 healthy controls (HCs). The results showed that Bacteroidetes was significantly increased with a concurrent decrease in Proteobacteria in the salivary microbiota of IBD patients. The dominant genera, Streptococcus, Prevotella, Neisseria, Haemophilus, Veillonella, and Gemella, were found to largely contribute to dysbiosis (dysbacteriosis) observed in the salivary microbiota of IBD patients. Analysis of immunological biomarkers in the saliva of IBD patients showed elevated levels of many inflammatory cytokines and immunoglobulin A, and a lower lysozyme level. A strong correlation was shown between lysozyme and IL-1β levels and the relative abundance of Streptococcus, Prevotella, Haemophilus and Veillonella. Our data demonstrate that dysbiosis of salivary microbiota is associated with inflammatory responses in IBD patients, suggesting that it is possibly linked to dysbiosis of their gut microbiota.  相似文献   

2.
Sialolithiasis represents the most common disorders of salivary glands in middle-aged patients. It has been hypothesized that the retrograde migration of bacteria from the oral cavity to gland ducts may facilitate the formation of stones. Thus, in the present study, a microbiome characterization of salivary calculi was performed to evaluate the abundance and the potential correlations between microorganisms constituting the salivary calculi microbiota. Our data supported the presence of a core microbiota of sialoliths constituted principally by Streptococcus spp., Fusobacterium spp. and Eikenella spp., along with the presence of important pathogens commonly involved in infective sialoadenitis.  相似文献   

3.
Chronic obstructive pulmonary disease (COPD) is a progressive, inflammatory lung disease that affects a large number of patients and has significant impact. One hallmark of the disease is the presence of bacteria in the lower airways. Objective: The aim of this study was to analyze the detailed structure of microbial communities found in the lungs of healthy individuals and patients with COPD. Nine COPD patients as compared and 9 healthy individuals underwent flexible bronchoscopy and BAL was performed. Bacterial nucleic acids were subjected to terminal restriction fragment (TRF) length polymorphism and clone library analysis. Overall, we identified 326 T-RFLP band, 159 in patients and 167 in healthy controls. The results of the TRF analysis correlated partly with the data obtained from clone sequencing. Although the results of the sequencing showed high diversity, the genera Prevotella, Sphingomonas, Pseudomonas, Acinetobacter, Fusobacterium, Megasphaera, Veillonella, Staphylococcus, and Streptococcus constituted the major part of the core microbiome found in both groups. A TRF band possibly representing Pseudomonas sp. monoinfection was associated with a reduction of the microbial diversity. Non-cultural methods reveal the complexity of the pulmonary microbiome in healthy individuals and in patients with COPD. Alterations of the microbiome in pulmonary diseases are correlated with disease.  相似文献   

4.
The pharynx is an important site of microbiota colonization, but the bacterial populations at this site have been relatively unexplored by culture-independent approaches. The aim of this study was to characterize the microbiota structure of the pharynx. Pyrosequencing of 16S rRNA gene libraries was used to characterize the pharyngeal microbiota using swab samples from 68 subjects with laryngeal cancer and 28 subjects with vocal cord polyps. Overall, the major phylum was Firmicutes, with Streptococcus as the predominant genus in the pharyngeal communities. Nine core operational taxonomic units detected from Streptococcus, Fusobacterium, Prevotella, Granulicatella, and Veillonella accounted for 21.3% of the total sequences detected. However, there was no difference in bacterial communities in the pharynx from patients with laryngeal cancer and vocal cord polyps. The relative abundance of Firmicutes was inversely correlated with Fusobacteria, Proteobacteria, Actinobacteria, and Bacteroidetes. The correlation was evident at the genus level, and the relative abundance of Streptococcus was inversely associated with Fusobacterium, Leptotrichia, Neisseria, Actinomyces, and Prevotella. This study presented a profile for the overall structure of the microbiota in pharyngeal swab samples. Inverse correlations were found between Streptococcus and other bacterial communities, suggesting that potential antagonism may exist among pharyngeal microbiota.  相似文献   

5.
Saliva is a biofluid that maintains the health of oral tissues and the homeostasis of oral microbiota. Studies have demonstrated that Oral squamous cell carcinoma (OSCC) patients have different salivary microbiota than healthy individuals. However, the relationship between these microbial differences and clinicopathological outcomes is still far from conclusive. Herein, we investigate the capability of using metagenomic and metaproteomic saliva profiles to distinguish between Control (C), OSCC without active lesion (L0), and OSCC with active lesion (L1) patients. The results show that there are significantly distinct taxonomies and functional changes in L1 patients compared to C and L0 patients, suggesting compositional modulation of the oral microbiome, as the relative abundances of Centipeda, Veillonella, and Gemella suggested by metagenomics are correlated with tumor size, clinical stage, and active lesion. Metagenomics results also demonstrated that poor overall patient survival is associated with a higher relative abundance of Stenophotromonas, Staphylococcus, Centipeda, Selenomonas, Alloscordovia, and Acitenobacter. Finally, compositional and functional differences in the saliva content by metaproteomics analysis can distinguish healthy individuals from OSCC patients. In summary, our study suggests that oral microbiota and their protein abundance have potential diagnosis and prognosis value for oral cancer patients. Further studies are necessary to understand the role of uniquely detected metaproteins in the microbiota of healthy and OSCC patients as well as the crosstalk between saliva host proteins and the oral microbiome present in OSCC.  相似文献   

6.
Altered Gut Microbiota Composition Associated with Eczema in Infants   总被引:1,自引:0,他引:1  
Eczema is frequently the first manifestation of an atopic diathesis and alteration in the diversity of gut microbiota has been reported in infants with eczema. To identify specific bacterial communities associated with eczema, we conducted a case-control study of 50 infants with eczema (cases) and 51 healthy infants (controls). We performed high-throughput sequencing for V3–V4 hypervariable regions of the 16S rRNA genes from the gut fecal material. A total of 12,386 OTUs (operational taxonomic units) at a 97% similarity level were obtained from the two groups, and we observed a difference in taxa abundance, but not the taxonomic composition, of gut microbiota between the two groups. We identified four genera enriched in healthy infants: Bifidobacterium, Megasphaera, Haemophilus and Streptococcus; and five genera enriched in infants with eczema: Escherichia/Shigella, Veillonella, Faecalibacterium, Lachnospiraceae incertae sedis and Clostridium XlVa. Several species, such as Faecalibacterium prausnitzii and Ruminococcus gnavus, that are known to be associated with atopy or inflammation, were found to be significantly enriched in infants with eczema. Higher abundance of Akkermansia muciniphila in eczematous infants might reduce the integrity of intestinal barrier function and therefore increase the risk of developing eczema. On the other hand, Bacteroides fragilis and Streptococcus salivarius, which are known for their anti-inflammatory properties, were less abundant in infants with eczema. The observed differences in genera and species between cases and controls in this study may provide insight into the link between the microbiome and eczema risk.  相似文献   

7.
Describing the biogeography of bacterial communities within the human body is critical for establishing healthy baselines from which to detect differences associated with diseases. Little is known, however, about the baseline of normal salivary microbiota from healthy Chinese children and adults. With parallel barcoded 454 pyrosequencing, the bacterial diversity and richness of saliva were thoroughly investigated from ten healthy Chinese children and adults. The overall taxonomic distribution of our metagenomic data demonstrated that the diversity of salivary microbiota from children was more complex than adults, while the composition and richness of salivary microbiota were similar in children and adults, especially for predominant bacteria. A large number of bacterial phylotypes were shared by healthy children and adults, indicating the existence of a core salivary microbiome. In children and adults, the vast majority of sequences in salivary microbiota belonged to Streptococcus, Prevotella, Neisseria, Haemophilus, Porphyromonas, Gemella, Rothia, Granulicatella, Fusobacterium, Actinomyces, Veillonella, and Aggregatibacter, which constituted the major components of normal salivary microbiota. With the exception of Actinomyces, the other seven non-predominant bacteria including Moraxella, Leptotrichia, Peptostreptococcus, Eubacterium, and members of Neisseriaceae, Flavobacteriaceae, and SR1 showed significant differences between children and adults (p?<?0.05). We first established the framework of normal salivary microbiota from healthy Chinese children and adults. Our data represent a critical step for determining the diversity of healthy microbiota in Chinese children and adults, and our data established a platform for additional large-scale studies focusing on the interactions between health and diseases in the future.  相似文献   

8.
Recent 16S ribosomal RNA gene (rRNA) molecular profiling of the stomach mucosa revealed a surprising complexity of microbiota. Helicobacter pylori infection and non-steroidal anti-inflammatory drug (NSAID) use are two main contributors to gastritis and peptic ulcer. However, little is known about the association between other members of the stomach microbiota and gastric diseases. In this study, cloning and sequencing of the 16S rRNA was used to profile the stomach microbiota from normal and gastritis patients. One hundred and thirty three phylotypes from eight bacterial phyla were identified. The stomach microbiota was found to be closely adhered to the mucosa. Eleven Streptococcus phylotypes were successfully cultivated from the biopsies. One to two genera represented a majority of clones within any of the identified phyla. We further developed two real-time quantitative PCR assays to quantify the relative abundance of the Firmicutes phylum and the Streptococcus genus. Significantly higher abundance of the Firmicutes phylum and the Streptococcus genus within the Firmicutes phylum was observed in patients with antral gastritis, compared with normal controls. This study suggests that the genus taxon level can largely represent much higher taxa such as the phylum. The clinical relevance and the mechanism underlying the altered microbiota composition in gastritis require further functional studies.  相似文献   

9.
Respiratory infections are well-known triggers of chronic respiratory diseases. Recently, culture-independent tools have indicated that lower airway microbiota may contribute to pathophysiologic processes associated with asthma and chronic obstructive pulmonary disease (COPD). However, the relationship between upper airway microbiota and chronic respiratory diseases remains unclear. This study was undertaken to define differences of microbiota in the oropharynx of asthma and COPD patients relative to those in healthy individuals. To account for the qualitative and quantitative diversity of the 16S rRNA gene in the oropharynx, the microbiomes of 18 asthma patients, 17 COPD patients, and 12 normal individuals were assessed using a high-throughput next-generation sequencing analysis. In the 259,572 total sequence reads, α and β diversity measurements and a generalized linear model revealed that the oropharynx microbiota are diverse, but no significant differences were observed between asthma and COPD patients. Pseudomonas spp. of Proteobacteria and Lactobacillus spp. of Firmicutes were highly abundant in asthma and COPD. By contrast, Streptococcus, Veillonella, Prevotella, and Neisseria of Bacteroidetes dominated in the healthy oropharynx. These findings are consistent with previous studies conducted in the lower airways and suggest that oropharyngeal airway microbiota are important for understanding the relationships between the various parts of the respiratory tract with regard to bacterial colonization and comprehensive assessment of asthma and COPD.  相似文献   

10.
BackgroundSeveral infectious diseases and therapeutic interventions cause gut microbe dysbiosis and associated pathology. We characterised the gut microbiome of children exposed to the helminth Schistosoma haematobium pre- and post-treatment with the drug praziquantel (PZQ), with the aim to compare the gut microbiome structure (abundance and diversity) in schistosome infected vs. uninfected children.MethodsStool DNA from 139 children aged six months to 13 years old; with S. haematobium infection prevalence of 27.34% was extracted at baseline. 12 weeks following antihelminthic treatment with praziqunatel, stool DNA was collected from 62 of the 139 children. The 16S rRNA genes were sequenced from the baseline and post-treatment samples and the sequence data, clustered into operational taxonomic units (OTUs). The OTU data were analysed using multivariate analyses and paired T- test.ResultsPre-treatment, the most abundant phyla were Bacteroidetes, followed by Firmicutes and Proteobacteria respectively. The relative abundance of taxa among bacterial classes showed limited variation by age group or sex and the bacterial communities had similar overall compositions. Although there were no overall differences in the microbiome structure across the whole age range, the abundance of 21 OTUs varied significantly with age (FDR<0.05). Some OTUs including Veillonella, Streptococcus, Bacteroides and Helicobacter were more abundant in children ≤ 1 year old compared to older children. Furthermore, the gut microbiome differed in schistosome infected vs. uninfected children with 27 OTU occurring in infected but not uninfected children, for 5 of these all Prevotella, the difference was statistically significant (p <0.05) with FDR <0.05. PZQ treatment did not alter the microbiome structure in infected or uninfected children from that observed at baseline.ConclusionsThere are significant differences in the gut microbiome structure of infected vs. uninfected children and the differences were refractory to PZQ treatment.  相似文献   

11.
12.
13.
While the aesthetic effect of orthodontic treatment is clear, the knowledge on how it influences the oral microbiota and the consequential effects on oral health are limited. In this randomized controlled clinical trial we investigated the changes introduced in the oral ecosystem, during and after orthodontic treatment with fixed appliances in combination with or without a fluoride mouthwash, of 10–16.8 year old individuals (N = 91). We followed several clinical parameters in time, in combination with microbiome changes using next-generation sequencing of the bacterial 16S rRNA gene. During the course of our study, the oral microbial community displayed remarkable resilience towards the disturbances it was presented with. The effects of the fluoride mouthwash on the microbial composition were trivial. More pronounced microbial changes were related to gingival health status, orthodontic treatment and time. Periodontal pathogens (e.g. Selenomonas and Porphyromonas) were highest in abundance during the orthodontic treatment, while the health associated Streptococcus, Rothia and Haemophilus gained abundance towards the end and after the orthodontic treatment. Only minor compositional changes remained in the oral microbiome after the end of treatment. We conclude that, provided proper oral hygiene is maintained, changes in the oral microbiome composition resulting from orthodontic treatment are minimal and do not negatively affect oral health.  相似文献   

14.
This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors.  相似文献   

15.
The initial microbial colonization of tooth surfaces is a repeatable and selective process, with certain bacterial species predominating in the nascent biofilm. Characterization of the initial microflora is the first step in understanding interactions among community members that shape ensuing biofilm development. Using molecular methods and a retrievable enamel chip model, we characterized the microbial diversity of early dental biofilms in three subjects. A total of 531 16S rRNA gene sequences were analyzed, and 97 distinct phylotypes were identified. Microbial community composition was shown to be statistically different among subjects. In all subjects, however, 4-h and 8-h communities were dominated by Streptococcus spp. belonging to the Streptococcus oralis/Streptococcus mitis group. Other frequently observed genera (comprising at least 5% of clone sequences in at least one of the six clone libraries) were Actinomyces, Gemella, Granulicatella, Neisseria, Prevotella, Rothia, and Veillonella. Fluorescence in situ hybridization (FISH) confirmed that the proportion of Streptococcus sp. sequences in the clone libraries coincided with the proportion of streptococcus probe-positive organisms on the chip. FISH also revealed that, in the undisturbed plaque, not only Streptococcus spp. but also the rarer Prevotella spp. were usually seen in small multigeneric clusters of cells. This study shows that the initial dental plaque community of each subject is unique in terms of diversity and composition. Repetitive and distinctive community composition within subjects suggests that the spatiotemporal interactions and ecological shifts that accompany biofilm maturation also occur in a subject-dependent manner.  相似文献   

16.
Dental plaque is a multispecies oral biofilm, the development of which is initiated by adherence of the pioneer Streptococcus spp. Oral Veillonella spp., including V. atypica, V. denticariosi, V. dispar, V. parvula, V. rogosae, and V. tobetsuensis, are known as early colonizers in oral biofilm formation. These species have been reported to coaggregate with Streptococcus spp. in a metabolic cooperation-dependent manner to form biofilms in human oral cavities, especially in the early stages of biofilm formation. However, in our previous study, Streptococcus gordonii showed biofilm formation to the greatest extent in the presence of V. tobetsuensis, without coaggregation between species. These results suggest that V. tobetsuensis produces signaling molecules that promote the proliferation of S. gordonii in biofilm formation. It is well known in many bacterial species that the quorum-sensing (QS) system regulates diverse functions such as biofilm formation. However, little is known about the QS system with autoinducers (AIs) with respect to Veillonella and Streptococcus spp. Recently, autoinducer 1 (AI-1) and AI-2 were detected and identified in the culture supernatants of V. tobetsuensis as strong signaling molecules in biofilm formation with S. gordonii. In particular, the supernatant from V. tobetsuensis showed the highest AI-2 activity among 6 oral Veillonella species, indicating that AIs, mainly AI-2, produced by V. tobetsuensis may be important factors and may facilitate biofilm formation of S. gordonii. Clarifying the mechanism that underlies the QS system between S. gordonii and V. tobetsuensis may lead to the development of novel methods for the prevention of oral infectious diseases caused by oral biofilms.  相似文献   

17.
Periodontal disease (PD) is a significant problem in dogs affecting between 44% and 63.6% of the population. The main etiological agent for PD is plaque, a microbial biofilm that colonizes teeth and causes inflammation of the gingiva. Understanding how this biofilm initiates on the tooth surface is of central importance in developing interventions against PD. Although the stages of plaque development on human teeth have been well characterized little is known about how canine plaque develops. Recent studies of the canine oral microbiome have revealed distinct differences between the canine and human oral environments and the bacterial communities they support, particularly with respect to healthy plaque. These differences mean knowledge about the nature of plaque formation in humans may not be directly translatable to dogs. The aim of this study was to identify the bacterial species important in the early stages of canine plaque formation in vivo and then use isolates of these species in a laboratory biofilm model to develop an understanding of the sequential processes which take place during the initial colonization of enamel. Supra-gingival plaque samples were collected from 12 dogs at 24 and 48 hour time points following a full mouth descale and polish. Pyrosequencing of the 16S rDNA identified 134 operational taxonomic units after statistical analysis. The species with the highest relative abundance were Bergeyella zoohelcum, Neisseria shayeganii and a Moraxella species. Streptococcal species, which tend to dominate early human plaque biofilms, had very low relative abundance. In vitro testing of biofilm formation identified five primary colonizer species, three of which belonged to the genus Neisseria. Using these pioneer bacteria as a starting point, viable two and three species communities were developed. Combining in vivo and in vitro data has led us to construct novel models of how the early canine plaque biofilm develops.  相似文献   

18.
19.

Background

Observations that the airway microbiome is disturbed in asthma may be confounded by the widespread use of antibiotics and inhaled steroids. We have therefore examined the oropharyngeal microbiome in early onset wheezing infants from a rural area of tropical Ecuador where antibiotic usage is minimal and glucocorticoid usage is absent.

Materials and Methods

We performed pyrosequencing of amplicons of the polymorphic bacterial 16S rRNA gene from oropharyngeal samples from 24 infants with non-infectious early onset wheezing and 24 healthy controls (average age 10.2 months). We analyzed microbial community structure and differences between cases and controls by QIIME software.

Results

We obtained 76,627 high quality sequences classified into 182 operational taxonomic units (OTUs). Firmicutes was the most common and diverse phylum (71.22% of sequences) with Streptococcus being the most common genus (49.72%). Known pathogens were found significantly more often in cases of infantile wheeze compared to controls, exemplified by Haemophilus spp. (OR = 2.12, 95% Confidence Interval (CI) 1.82–2.47; P = 5.46×10−23) and Staphylococcus spp. (OR = 124.1, 95%CI 59.0–261.2; P = 1.87×10−241). Other OTUs were less common in cases than controls, notably Veillonella spp. (OR = 0.59, 95%CI = 0.56–0.62; P = 8.06×10−86).

Discussion

The airway microbiota appeared to contain many more Streptococci than found in Western Europe and the USA. Comparisons between healthy and wheezing infants revealed a significant difference in several bacterial phylotypes that were not confounded by antibiotics or use of inhaled steroids. The increased prevalence of pathogens such as Haemophilus and Staphylococcus spp. in cases may contribute to wheezing illnesses in this age group.  相似文献   

20.
Dysbiosis, or imbalance in the gut microbiome, has been implicated in auto-immune, inflammatory, neurological diseases as well as in cancers. More recently it has also been shown to be associated with ocular diseases. In the present study, the association of gut microbiome dysbiosis with bacterial Keratitis, an inflammatory eye disease which significantly contributes to corneal blindness, was investigated. Bacterial and fungal gut microbiomes were analysed using fecal samples of healthy controls (HC, n?=?21) and bacterial Keratitis patients (BK, n?=?19). An increase in abundance of several anti-inflammatory organisms including Dialister, Megasphaera, Faecalibacterium, Lachnospira, Ruminococcus and Mitsuokella and members of Firmicutes, Veillonellaceae, Ruminococcaceae and Lachnospiraceae was observed in HC compared to BK patients in the bacterial microbiome. In the fungal microbiome, a decrease in the abundance of Mortierella, Rhizopus, Kluyveromyces, Embellisia and Haematonectria and an increase in the abundance of pathogenic fungi Aspergillus and Malassezia were observed in BK patients compared to HC. In addition, heatmaps, PCoA plots and inferred functional profiles also indicated significant variations between the HC and BK microbiomes, which strongly suggest dysbiosis in the gut microbiome of BK patients. This is the first study demonstrating the association of gut microbiome with the pathophysiology of BK and thus supports the gut–eye axis hypothesis. Considering that Keratitis affects about 1 million people annually across the globe, the data could be the basis for developing alternate strategies for treatment like use of probiotics or fecal transplantation to restore the healthy microbiome as a treatment protocol for Keratitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号