首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A study was conducted on the in vivo incorporation of l -[14C]-serine into the lipids and proteins of the various subcellular fractions of the developing rat brain before and during the stage of active myelination. The total radioactivity in the various fractions at 12 days of age was higher than that at 3 days, while the radioactive specific activity was reversed. The specific activities of the proteins and lipids were higher at 3 days of age with the exception of the subcellular fraction containing myelin. At both ages the lipids of the various cellular fractions had similar specific activities, a finding that suggests a common source for lipid biosynthesis. Incorporation of radioactivity into the various phospholipids was in the following order: phosphatidyl serine > phosphatidyl ethanolamine > phosphatidal serine > sphingomyelin and phosphatidyl choline. Of all the phospholipids, the plasmalogens increased most in total radioactivity during the period when meylination was most active. Serine-containing phospholipids appear to be most tightly bound to proteins. The brain mitochrondrial fraction contained most of the phosphatidyl serine decarboxylase activity with some activity in the nuclei. Biosynthesis of phosphatdyil ethanolamine through decarboxylation of phosphatidyl serine could take place in rat brain. Four unidentified radioactive metabolites were found in the acid-soluble fraction in addition to l -[14C]serine.  相似文献   

2.
Female rats were injected i.v. with comparable trace amounts of [U-14C] glycerol, [2-3H] glycerol, [U-14C] glucose, or [1-14C] palmitate, and killed 30 min afterwards. The radioactivity remaining in plasma at that time was maximal in animals receiving [U-14C] glucose while the appearance of radioactive lipids was higher in the [U-14C] glycerol animals than in other groups receiving hydrosoluble substrates. The carcass, more than the liver, was the tissue where the greatest proportion of radioactivity was recovered, while the greatest percentage of radioactivity appeared in the liver in the form of lipids. The values of total radioactivity found in different tissues were very similar when using either labelled glucose or glycerol but the amount recovered as lipids was much greater in the latter. The maximal proportion of radioactive lipids appeared in the fatty-acid form in the liver, carcass, and lumbar fat pads when using [U-14C] glycerol as a hydrosoluble substrate, and the highest lipidic fraction appeared in adipose tissue as labelled, esterified fatty acids. In the spleen, heart, and kidney, most of the lipidic radioactivity from any of the hydrosoluble substrates appeared as glyceride glycerol. The highest proportion of radioactivity from [1-14C] palmitate appeared in the esterified fatty acid in adipose tissue, being followed in decreasing proportion by the heart, carcass, liver, kidney, and spleen. Thus at least in part, both labelled glucose and glycerol are used throughout different routes for their conversion in vivo to lipids. A certain proportion of glycerol is directly utilized by adipose tissue. The fatty acids esterification ability differs among the tissues and does not correspond directly with the reported activities of glycerokinase, suggesting that the alpha-glycerophosphate for esterification comes mainly from glucose and not from glycerol.  相似文献   

3.
4.
The in vivo incorporation of [2-3H]-myo-inositol into frog retinal rod outer segment membranes was examined. About 25% of the recovered radioactivity was found to be protein-associated. Following acid hydrolysis of this material and extraction with hexane, all the radioactivity remained in the aqueous phase, indicating that the label was not in fatty acids. Following ion exchange column chromatography of the hydrolysate, the major radioactive compound comigrated on TLC with an internal standard of [U-14C]-myo-inositol. SDS polyacrylamide gel electrophoresis of unextracted membranes indicated that the majority of the label was associated with opsin. These results indicate that [2-3H]-myo-inositol was incorporated in vivo into opsin, presumably with retention of its chemical identity.  相似文献   

5.
Comparative studies were undertaken on the in vivo and in vitro incorporation of [14C] ethanolamine, [3H] methionine and [14C] S-adenosyl-methionine into phosphatidylethanolamine (PhE) and phosphatidylcholine (PhC) of rat liver and brain. It was observed that brain can synthesize de novo PhC from PhE via the transmethylation pathway, however synthesis rates were (1) markedly lower than those of liver and (2) decreased significantly with age. In the choline-containing lipids more than 95% of the radioactivity was found in PhC. Studies on the localization of the radioactivity in PhC following the intracranial injection of [3H] methionine or [14C] ethanolamine revealed that both precursors are incorporated almost exclusively into the choline moiety of this phospholipid. There was significant labeling of PhC only when the precursors were administered intracranially and much less incorporation was observed with the systemic routes. Thus following the intravenous administration of [14C] ethanolamine, the specific radioactivities of liver PhE and PhC were up to 75 times as high as those of brain and 4 to 5 times as high in the organs of the 20-day old as those of the adult. In contrast, when this precursor was administered intracranially the specific radioactivities of both phospholipids in liver were only twice as high as those of brain. Although the short-and long-term time-course studies on the in vivo incorporation of [14C] ethanolamine and [3H] methionine into PhC of both organs could suggest a precursor-product relationship between the biosynthesis of this phospholipid in liver and brain, this apparent relationship could also be due to the high turnover of PhE in liver, with half-life of 2.87 hr, and its low turnover in brain, with half-life of 10.7 days. The present findings on the low rate of formation of PhC from PhE in brain coupled with the fact that this conversion declines sharply with age, especially when the isotopes are administered systemically, could explain the observation of previous investigators that the brain cannot synthesize its own choline and thus it must derive its choline from exogenous sources such as lipid-choline. It was concluded that the brain can synthesize its own choline; however it remains also dependent on liver and dietary choline which are probably transported into the brain as free choline.  相似文献   

6.
The phospholipid composition as well as the in vivo [14C]glycerol uptake in lipids was found to be similar in the toad brain and retina. The choroid lipid labeling was markedly different. An in vitro time-course study of [14C]glycerol incorporation in toad retina lipids disclosed that under the conditions of these experiments: (1) retina is able to rapidly synthesize phosphatidic acid from the radioactive precursor; (2) the sequence phosphatidic acid-diacylglycerol-triacylglycerol operates; (3) a high rate of phosphatidylinositol de novo biosynthesis takes place; (4) phosphoglycerides of choline and of ethanolamine are also heavily labeled after a lag period; (5) in vivo labeling profiles resembled those obtained in vitro mainly regarding phosphatidylinositol biosynthesis; and (6) the presence of glycerol kinase in the CNS is suggested.  相似文献   

7.
We examined the dose response, time course and reversibility of the effect of methyl 2-tetradecylglycidate (McN-3716, methyl palmoxirate or MEP), an inhibitor of -oxidation of fatty acids, on incorporation of radiolabeled palmitic acid ([U-14C]PA) from plasma into brain lipids of awake rats. MEP (0.1, 1 and 10 mg/kg) or vehicle was administered intravenously from 10 min to 72 hr prior to infusion of [U-14C]PA. Two hr pretreatment with MEP (0.1 to 10 mg/kg) increased brain organic radioactivity 1.2 to 1.8 fold and decreased brain aqueous radioactivity by 1.2 to 3.0 fold when compared to control values. At 10 mg/kg, MEP significantly increased brain organic fraction from 40% in controls to 85%, 30 min to 6 hr pretreatment, and resulted in a redistribution of the radiolabeled fatty acid toward triacylglycerol. MEP changed the lipid/aqueous brain ratio of incorporated [U-14C]PA from 0.67 to 5.7. The incorporation rate coefficient, k*, was significantly increased by MEP (10 mg/kg) at 2 hr (31%), 4 hr (59%) and 6 hr (34%). All effects were reversed by 72 hr, consistent with a half-life of 2 days for carnitine palmitoyl transferase I. These results indicate that intravenous MEP may be used with [1-11C]palmitic acid for studying brain lipid metabolism in vivo by positron emission tomography, as it significantly reduces the large unincorporated aqueous fraction that would result in high background radioactivity.  相似文献   

8.
The effect of a single injection of methylphenidate (Ritalin, 4 mg/kg) on precursor ([2-3H]acetate and [U-14C]glucose) incorporation into brain cholesterol was studied. The drug caused a steady decrease in the concentration of brain cholesterol during the 24-hr period examined. Incorporation studies during this time with [U-14C]glucose indicated higher than normal incorporation for all time periods studied. The most significant incorporation increases took place 2 and 4 hr after drug injection. Experiments using [2-3H]acetate as the sterol precursor gave incorporation values which tended (not significantly) to be lower than control values at 2 and 4 h. The values after 12 hr were less than normal, while the 24-hr group indicated an increase to or slightly higher than normal values. These data suggest that the pharmacological effect of methylphenidate may be due to lowering of brain cholesterol levels directly or on some more basic metabolic process leading to a decreased level of membrane sterols.  相似文献   

9.
10.
The effect of ethylene (10 p.p.m.) on the rate of incorporation of [1-(14)C]glycerol into phospholipids of etiolated pea stems was studied. After 2-3h treatment with ethylene, incorporation was decreased by 50%. It remained at this value for as long as ethylene was supplied (8h). Handling the plants also caused a temporary decrease in incorporation, which we attribute to the production of endogenous ;wound' ethylene. The percentage decrease in incorporation was the same in four major phospholipid fractions, i.e. phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol.  相似文献   

11.
  • 1.1. After injection of a mixture of [G-3H]glutamate and [U-14C]glucose to rats, the highest amount of 14C was found in an unidentified compound (glycopeptide?) of the acid soluble extract of the liver at 2 min.
  • 2.2. With increasing time after the injection the specific radioactivity of [3H]glutamate decreased and that of [3H]glutamine increased in the liver.
  • 3.3. The labelling of the liver protein with 14C was due to [14C]glutamate and [14C]aspartate, and that with 3H was exclusively due to [3H]glutamate.
  相似文献   

12.
Abstract— The half-life of free [14C]palmitic acid injected intracerebrally into C57BL/10J mice was less than 5 min. The rapid disappearance of radioactivity as palmitic acid was accompanied by increases in the radioactivity of the phosphatidic acids and the diacyl-glycerols. The peak specific radioactivity of the diacylglycerols occurred at about 6-8 min after injection. The triacylglycerols, phosphatidyl ethanolamines and phosphatidyl cholines exhibited increasing amounts of radioactivity during the first 40 min. At 160 min after injection, the distribution of radioactivity was similar to the pattern observed at 12 h. The biosynthetic pathway through the phosphatidic acids and the diacylglycerols to triacylglycerols, phosphatidyl ethanolamines and phosphatidyl cholines is apparently the major pathway in vivo for the esterification of free fatty acids in the brain.  相似文献   

13.
The animals with preference to ethanol as compared to those with preference to water show an increase in the specific radioactivity of glycerol moiety of liver phosphatidylethanolamine 1 hour and in that of glycerol component of phosphatidylcholine 3 hours after the [2-14C]-pyruvate administration.  相似文献   

14.
It is well known that platelets readily incorporate radioactive glycerol, but not radioactive phosphate into phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in vitro, thus not in accordance with de novo synthesis according to the Kennedy pathway. In attempts to understand the reason for the discrepancy, gel-filtered platelets were incubated simultaneously with [32P]Pi and [3H]glycerol, and the specific and relative radioactivities of products and intermediates were determined. Both precursors were incorporated into phosphatidylinositol (PI) with a 32P/3H ratio similar to that in glycerol 3-phosphate (in accordance with the Kennedy pathway). However, PC and PE obtained a much lower ratio. The specific 32P radioactivity in phosphorylcholine was similar to that of the gamma-phosphoryl of ATP and 650-times higher than that of PC. The specific 32P radioactivity of phosphorylethanolamine was 20-times less than that of phosphorylcholine. Both mass and 32P labelling of CDP-choline were below the detection limits. It is concluded that the incorporation of [32P]Pi into PC via phosphorylcholine is insignificant while the preferential incorporation of [3H]glycerol could be explained by exchange of diacyl[3H]glycerol in the reversible choline phosphotransferase (CDP-choline: 1,2-diacylglycerol cholinephosphotransferase) reaction. The same mechanism would explain the preferential incorporation of 3H over 32P into PE, although dilution of 32P at the phosphorylethanolamine stage would account for part of the feeble 32P incorporation. Although other mechanisms are also possible, our results clearly show that the appearance of [3H]glycerol in PC and PE is not a reliable method of monitoring de novo synthesis of these phospholipids.  相似文献   

15.
Zhang Y  Courtois P  Sener A  Malaisse WJ 《Biochimie》2004,86(12):913-918
The anomeric specificity of D-[U-14C]glucose incorporation into glycogen in rat hemidiaphragms was investigated. For this purpose, the hemidiaphragms were preincubated for 30 min at 37 degrees C and then incubated for 5 min at the same temperature in the presence of alpha- or beta-D-[U-14C]glucose. The concentrations of D-glucose (5.6 or 8.8 mM) and insulin (0 or 10 mU/ml) were identical during the preincubation and incubation periods. The incubation medium was prepared in D2O/H2O (3:1, v/v) in order to delay the interconversion of the D-glucose anomers. In addition to glycogen labelling, the output of radioactive acidic metabolites was also measured. Insulin caused a preferential stimulation of glycogen labelling relative to glycolysis. Such was not the case in response to a rise in D-glucose concentration. At 5.6 mM D-glucose and whether in the presence or absence of insulin, both glycogen labelling and glycolysis were lower with alpha-D-glucose than with beta-D-glucose suggesting a higher rate of beta-D-glucose than alpha-D-glucose transport across the plasma membrane. A mirror image was found at 8.8 mM D-glucose, especially in the absence of insulin. At this close-to-physiological hexose concentration, insulin lowered the alpha/beta ratio for glycogen labelling. On the contrary, the rise in D-glucose concentration increased such a ratio. Since such a rise is probably little affected by any possible anomeric difference in D-glucose transport across the plasma membrane, the present results strongly suggest that the intracellular factors regulating net glycogen synthesis, as well as glycolytic flux, display obvious preference for alpha-D-glucose.  相似文献   

16.
17.
Studies have been made on the intensity of oxidation of [U-14C]-palmitate, [1-14C]- and [6-14C]-glucose by slices of the liver and skeletal muscles of new-born, 1-day, 5-day and adult Wistar rats and domestic pigs. It was found that the level of 14CO2 production from these substrates is higher in tissues of rats than in those of pigs. At early stages of ontogenesis, in tissues of both species intensive oxidation of glucose is observed together with oxidation of fatty acids. In the course of ontogenetic development, the intensity of glucose utilization significantly decreases, whereas the level of fatty acid catabolism remains relatively unaffected.  相似文献   

18.
The rate of [2-14C]glucose uptake has been used as an indication of the status of energy consumption by the rat brain, but the cost of this radiolabel can be prohibitive and the surgical manipulation involved in published methods is extensive. A method for measuring glucose utilization in vivo in mouse brain with [U-14C]glucose is described in this article. Glucose consumption in whole mouse brain obtained with [U-14C]glucose or [2-14C]glucose was 0.650±0.022 and 0.716±0.36 nmol/mg/min, respectively. In all instances the rate obtained with the uniformly labeled isotope was somewhat lower than that found with [2-14C]glucose. The rate of glucose utilization measured with either isotope was significantly depressed in sodium pentobarbital anesthetized mice. The method described here is advantageous because [U-14C]glucose is substantially less expensive than [2-14C]glucose and surgical intervention is avoided.  相似文献   

19.
1. In order to determine the initial intracellular site of synthesis of cytochrome c in the liver cell, groups of rats were injected with [(14)C]lysine and killed 7.5, 15, 30 and 60min. later. The livers were homogenized in 0.3m-sucrose and subcellular fractions obtained. The mitochondrial fraction was further subfractionated. Pure cytochrome c was isolated from extracts of each fraction, obtained first with water at pH4.0 and then with 0.15m-sodium chloride. 2. A comparison of the kinetics of incorporation of [(14)C]lysine into total protein for each particulate fraction showed the usual two different kinds of kinetics. Incorporation into all the mitochondrial subfractions and the nuclear fraction rose gradually to a plateau value at about 20min., in contrast with that into the two microsomal fractions which rose rapidly to a peak value about seven times that for the mitochondrial fractions. The kinetics for the incorporation into mitochondrial cytochrome c showed a plateau value at 30min. about three times that for the total mitochondrial protein. There was no difference in the specific radioactivity of the mitochondrial cytochrome c extracted with water or 0.15m-sodium chloride or between the different mitochondrial subfractions. In contrast, the cytochrome c isolated from water extracts of the microsomal fractions had a lower specific radioactivity than that obtained from the 0.15m-sodium chloride extract. The specific radioactivity of the latter showed a rapid rise to a peak value about four times that for the mitochondrial cytochrome c, and the shape of the curve was similar to that for the total protein of the microsomal fraction. The results suggest that cytochrome c is synthesized in toto by the morphological components of the microsomal fraction. It seems first to be bound tightly to a microsomal particle, passing then to a looser microsomal binding and being finally transferred to the mitochondria. The newly synthesized cytochrome c in the mitochondrion could not be differentiated from the old by its degree of extractability at pH 4.0.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号