首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The transforming growth factor beta (TGFB) protein family is renowned for its diverse roles in developmental biology including reproduction. Gremlin is a member of the differential screening-selected gene aberrative in neuroblastoma (DAN)/cerberus family of bone morphogenetic protein (BMP) antagonists. Recent studies on gremlin focus on its involvement in embryonic skeletal, lung, and kidney development. To define the role of gremlin (Grem1) in female reproduction, we analyzed postnatal folliculogenesis using global and conditional knockout (cKO) mice for gremlin. Grem1(-/-) mice die within 48 h after birth, and ovaries collected from neonatal Grem1(-/-) mice demonstrated reduced oocyte numbers and delayed primordial follicle development. Transplanting Grem1(-/-) neonatal ovaries showed that folliculogenesis proceeded to large antral follicle stage, but Grem1(-/-) ovaries contained corpora lutea-like structures not found in control-transplanted ovaries. However, Grem1 cKO mice had comparable fertility to control mice. These data suggest that gremlin plays a previously uncharacterized role in the regulation of oocyte numbers and the timing of primordial follicle development, but either it is not required for later folliculogenesis or its loss is possibly compensated by other BMP antagonists.  相似文献   

2.
3.
4.
5.
6.
7.
GATA1 is a master regulator of erythropoiesis, expression of which is regulated by multiple discrete cis-acting elements. In this study, we examine the activity of a promoter-proximal double GATA (dbGATA) motif, using a Gata1 bacterial artificial chromosome (BAC)-transgenic green fluorescent protein (GFP) reporter (G1BAC-GFP) mouse system. Deletion of the dbGATA motif led to significant reductions in GFP expression in hematopoietic progenitors, while GFP expression was maintained in erythroblasts. Consistently, in mice with a germ line deletion of the dbGATA motif (Gata1ΔdbGATA mice), GATA1 expression in progenitors was significantly decreased. The suppressed GATA1 expression was associated with a compensatory increase in GATA2 levels in progenitors. When we crossed Gata1ΔdbGATA mice with Gata2 hypomorphic mutant mice (Gata2fGN/fGN mice), the Gata1ΔdbGATA::Gata2fGN/fGN compound mutant mice succumbed to a significant decrease in the progenitor population, whereas both groups of single mutant mice maintained progenitors and survived to adulthood, indicating the functional redundancy between GATA1 and GATA2 in progenitors. Meanwhile, the effects of the dbGATA site deletion on Gata1 expression were subtle in erythroblasts, which showed increased GATA1 binding and enhanced accumulation of active histone marks around the 1st-intron GATA motif of the ΔdbGATA locus. These results thus reveal a novel role of the dbGATA motif in the maintenance of Gata1 expression in hematopoietic progenitors and a functional compensation between the dbGATA site and the 1st-intron GATA motif in erythroblasts.  相似文献   

8.
9.
10.

Background

N-cadherin is a cell-cell adhesion molecule and deletion of N-cadherin in mice is embryonic lethal. During the secretory stage of enamel development, E-cadherin is down-regulated and N-cadherin is specifically up-regulated in ameloblasts when groups of ameloblasts slide by one another to form the rodent decussating enamel rod pattern. Since N-cadherin promotes cell migration, we asked if N-cadherin is essential for ameloblast cell movement during enamel development.

Methodology/Principal Findings

The enamel organ, including its ameloblasts, is an epithelial tissue and for this study a mouse strain with N-cadherin ablated from epithelium was generated. Enamel from wild-type (WT) and N-cadherin conditional knockout (cKO) mice was analyzed. μCT and scanning electron microscopy showed that thickness, surface structure, and prism pattern of the cKO enamel looked identical to WT. No significant difference in hardness was observed between WT and cKO enamel. Interestingly, immunohistochemistry revealed the WT and N-cadherin cKO secretory stage ameloblasts expressed approximately equal amounts of total cadherins. Strikingly, E-cadherin was not normally down-regulated during the secretory stage in the cKO mice suggesting that E-cadherin can compensate for the loss of N-cadherin. Previously it was demonstrated that bone morphogenetic protein-2 (BMP2) induces E- and N-cadherin expression in human calvaria osteoblasts and we show that the N-cadherin cKO enamel organ expressed significantly more BMP2 and significantly less of the BMP antagonist Noggin than did WT enamel organ.

Conclusions/Significance

The E- to N-cadherin switch at the secretory stage is not essential for enamel development or for forming the decussating enamel rod pattern. E-cadherin can substitute for N-cadherin during these developmental processes. Bmp2 expression may compensate for the loss of N-cadherin by inducing or maintaining E-cadherin expression when E-cadherin is normally down-regulated. Notably, this is the first demonstration of a natural endogenous increase in E-cadherin expression due to N-cadherin ablation in a healthy developing tissue.  相似文献   

11.
Glucuronyl C5-epimerase (Hsepi) catalyzes the conversion of glucuronic acid to iduronic acid in the process of heparan sulfate biosynthesis. Targeted interruption of the gene, Glce, in mice resulted in neonatal lethality with varied defects in organ development. To understand the underlying molecular mechanisms of the phenotypes, we used mouse embryonic fibroblasts (MEF) as a model to examine selected signaling pathways. Our earlier studies found reduced activities of FGF-2, GDNF, but increased activity of sonic hedgehog in the mutant cells. In this study, we focused on the bone morphogenetic protein (BMP) signaling pathway. Western blotting detected substantially elevated endogenous Smad1/5/8 phosphorylation in the Hsepi mutant (KO) MEF cells, which is reverted by re-expression of the enzyme in the KO cells. The mutant cells displayed an enhanced proliferation and elevated alkaline phosphatase activitywhen cultured in osteogenic medium. Analysis of the genes involved in the BMP signaling pathway revealed upregulation of a number of BMP ligands, but reduced expression of several Smads and BMP antagonist (Grem1) in the KO MEF cells. The high level of Smad1/5/8 phosphorylation was also found in primary calvarial cells isolated from the KO mice. The results suggest that Hsepi expression modulates BMP signaling activity, which, at least partially, is associated with defected molecular structure of heparan sulfate expressed in the cells.  相似文献   

12.
Implantation of a blastocyst in the uterus is a multistep process tightly controlled by an intricate regulatory network of interconnected ovarian, uterine, and embryonic factors. Bone morphogenetic protein (BMP) ligands and receptors are expressed in the uterus of pregnant mice, and BMP2 has been shown to be a key regulator of implantation. In this study, we investigated the roles of the BMP type 1 receptor, activin-like kinase 2 (ALK2), during mouse pregnancy by producing mice carrying a conditional ablation of Alk2 in the uterus (Alk2 cKO mice). In the absence of ALK2, embryos demonstrate delayed invasion into the uterine epithelium and stroma, and upon implantation, stromal cells fail to undergo uterine decidualization, resulting in sterility. Mechanistically, microarray analysis revealed that CCAAT/enhancer-binding protein β (Cebpb) expression is suppressed during decidualization in Alk2 cKO females. These findings and the similar phenotypes of Cebpb cKO and Alk2 cKO mice lead to the hypothesis that BMPs act upstream of CEBPB in the stroma to regulate decidualization. To test this hypothesis, we knocked down ALK2 in human uterine stromal cells (hESC) and discovered that ablation of ALK2 alters hESC decidualization and suppresses CEBPB mRNA and protein levels. Chromatin immunoprecipitation (ChIP) analysis of decidualizing hESC confirmed that BMP signaling proteins, SMAD1/5, directly regulate expression of CEBPB by binding a distinct regulatory sequence in the 3′ UTR of this gene; CEBPB, in turn, regulates the expression of progesterone receptor (PGR). Our work clarifies the conserved mechanisms through which BMPs regulate peri-implantation in rodents and primates and, for the first time, uncovers a linear pathway of BMP signaling through ALK2 to regulate CEBPB and, subsequently, PGR during decidualization.  相似文献   

13.
14.
15.
Inductive signals from adjacent tissues initiate differentiation within the somite. In this study, we used mouse embryos mutant for the BMP antagonists noggin (Nog) and gremlin 1 (Grem1) to characterize the effects of BMP signaling on the specification of the sclerotome. We confirmed reduction of Pax1 and Pax9 expression in Nog mutants, but found that Nog;Grem1 double mutants completely fail to initiate sclerotome development. Furthermore, Nog mutants that also lack one allele of Grem1 exhibit a dramatic reduction in axial skeleton relative to animals mutant for Nog alone. By contrast, Pax3, Myf5 and Lbx1 expression indicates that dermomyotome induction occurs in Nog;Grem1 double mutants. Neither conditional Bmpr1a mutation nor treatment with the BMP type I receptor inhibitor dorsomorphin expands sclerotome marker expression, suggesting that BMP antagonists do not have an instructive function in sclerotome specification. Instead, we hypothesize that Nog- and Grem1-mediated inhibition of BMP is permissive for hedgehog (Hh) signal-mediated sclerotome specification. In support of this model, we found that culturing Nog;Grem1 double-mutant embryos with dorsomorphin restores sclerotome, whereas Pax1 expression in smoothened (Smo) mutants is not rescued, suggesting that inhibition of BMP is insufficient to induce sclerotome in the absence of Hh signaling. Confirming the dominant inhibitory effect of BMP signaling, Pax1 expression cannot be rescued in Nog;Grem1 double mutants by forced activation of Smo. We conclude that Nog and Grem1 cooperate to maintain a BMP signaling-free zone that is a crucial prerequisite for Hh-mediated sclerotome induction.  相似文献   

16.
Although previous studies have shown that GATA1 is required for mast cell differentiation, the effects of the complete ablation of GATA1 in mast cells have not been examined. Using conditional Gata1 knockout mice (Gata1/y), we demonstrate here that the complete ablation of GATA1 has a minimal effect on the number and distribution of peripheral tissue mast cells in adult mice. The Gata1/y bone marrow cells were capable of differentiating into mast cells ex vivo. Microarray analyses showed that the repression of GATA1 in bone marrow mast cells (BMMCs) has a small impact on the mast cell-specific gene expression in most cases. Interestingly, however, the expression levels of mast cell tryptases in the mouse chromosome 17A3.3 were uniformly reduced in the GATA1 knockdown cells, and GATA1 was found to bind to a 500-bp region at the 5′ end of this locus. Revealing a sharp contrast to that observed in the Gata1-null BMMCs, GATA2 deficiency resulted in a significant loss of the c-Kit+ FcεRIα+ mast cell fraction and a reduced expression of several mast cell-specific genes. Collectively, GATA2 plays a more important role than GATA1 in the regulation of most mast cell-specific genes, while GATA1 might play specific roles in mast cell functions.  相似文献   

17.
18.
目的:研究GATA4基因H435Y位点突变对小鼠心功能的影响以及可能机制。方法:随机选取野生型(WT)小鼠和GATA4基因H435Y位点突变(Gata4 H435Y)小鼠各6只,检测和比较两组小鼠的心功能和心脏重量/体重比,应用Masson染色观察小鼠心肌组织形态,实时定量反转录聚合酶链式反应(qRT-PCR)和蛋白免疫印迹(Western blot)分别检测心肌组织中Gata4、Sox9、Scleraxis、Tenascin和Aggrecan的m RNA和蛋白表达水平。结果:与WT组小鼠相比,GATA4 H435Y组小鼠左心室射血分数(LVEF)和左心室缩短分数(LVFS)降低(P0.05),左心室收缩末期内径(LVIDs)增大(P0.05)。两组组小鼠的心脏重量比较差异无统计学意义(P0.05),GATA4 H435Y组小鼠体重较WT组小鼠显著减轻、心重/体重比明显减小(P0.05)。Masson染色结果显示两组小鼠心肌纤维无明显差异,但WT组小鼠心肌胶原纤维染色较深。与WT组小鼠相比较,GATA4 H435Y组小鼠心肌组织中GATA4、Scleraxis和Sox9的m RNA及蛋白明显表达下降(P0.05),Aggrecan和TenascinmRNA和蛋白表达均无明显统计学差异(p0.05)。结论:GATA4基因H435Y位点突变可能通过降低GATA4及下游基因表达,影响心肌细胞外基质基因的表达,进而损害小鼠的心功能。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号