首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzymatic protein-O-carboxylmethylation transfers methyl groups from S-adenosylmethionine to aspartyl and/or glutamyl residues of various methyl acceptor proteins. The function of this post-translational modification of protein, originally detected as “methanol-forming” activity in pituitary gland, has remained enigmatic in nervous tissue. Theories concerning the function of protein methylation have focused on possible roles in neurotransmitter release, neurophysin carboxylmethylation, regulation of calmodulin and calmodulin-binding proteins, chemotaxis, processing of precursor peptides, and repair/recognition of racemized D-amino acids. However, difficulties in establishing quantitative and temporal relationships between methylation and the biochemical event described have led to controversies. Similarly, the alkaline lability of the carboxylmethyl ester bond has led to difficulties in using the high resolution gel electrophoresis systems so successfully used in characterization of other post-translational events. Recent studies localizing protein-O-carboxylmethyltransferase to neurons in the rat brain suggest that this enzyme may be involved in signal transduction in the CNS. Alternative theories concerning protein methylation will be discussed and future directions for research in this area will be outlined.  相似文献   

2.
Using the indirect immunofluorescence technique, the localization and distribution of transmitters, transmitter-related enzymes and neuropeptides was studied in the larvae of the dipteran species Chironomus tentans. Immunoreactivity could be seen for 5-hydroxytryptamine, tyrosine hydroxylase (the rate-limiting enzyme in the catecholamine synthesis), and the neuropeptides methionine-enkephalin (met-enk), proctolin and bombesin. The immunoreactivity was confined both to cell bodies as well as to nerve fibers within ganglia and along the alimentary canal. Furthermore, tyrosine hydroxylase immunoreactivity could also be seen in epithelial cells locally distributed along a short, middle part of the alimentary tract. These latter cells were regarded as endocrine-like cells. No immunoreactivity could be found with certainty for the enzyme phenylethanolamine-N-methyltransferase (PNMT) nor for the peptides vasoactive intestinal polypeptide (VIP), dynorphin, substance P, somatostatin, thyrotropin releasing hormone (TRH), neuropeptide Y (NPY), peptide histidine isoleucine amide (PHI), neurotensin, galanin and cholecystokinin (CCK).  相似文献   

3.
We compared tyrosine hydroxylase immunoreactivity in the substantia nigra and hypothalamus of hereditary microphthalmic rats with that of normal rats. A considerable number of neuronal cell bodies expressing tyrosine hydroxylase were present in the substantia nigra of the microphthalmic mutant as well as normal rats. Neuronal cells positive for tyrosine hydroxylase in the hypothalamus were fewer than in the substantia nigra in both rats. The concentrations of monoamines (dopamine, noradrenaline, adrenaline, and serotonin) in the substantia nigra and hypothalamus in the microphthalmic mutant were approximately the same as those of normal rats, although the diurnal fluctuation of a few monoamines was observed in normal rats. These results suggest that the metabolic aspects of catecholamine in the substantia nigra and hypothalamus of the microphthalmic mutant rat do not markedly differ from those of normal rats.  相似文献   

4.
We investigated in rat the effects of ozone exposure (0.7 ppm) for 5 h on the catecholamine biosynthesis and turnover in sympathetic efferents and various brain areas. For this purpose, the activity of tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, was assessed in superior cervical ganglia and in two major noradrenergic cell groups, A2 and A6 (locus coeruleus). Tyrosine hydroxylase activity was estimated in vivo by measuring the accumulation of l-dihydroxyphenylalanine after pharmacological blockade of L-aromatic acid decarboxylases by NSD-1015 (100 mg/kg i.p.). The catecholamine turnover rate was measured after inhibition of tyrosine hydroxylase by alpha-methyl-para-tyrosine (AMPT, 250 mg/kg, i.p., 2.5 h) in peripheral sympathetic target organ (heart and lungs) as well as in some brain catecholamine terminal areas (cerebral cortex, hypothalamus and striatum). Ozone caused differential effects according to the structure. Catecholamine biosynthesis was stimulated in superior cervical ganglia (+44%, P < 0.05) and caudal A2 subset (+126%, P < 0.01), whereas catecholamine turnover was increased in heart (+183%, P < 0.01) and cortex (+22%, P < 0.05). On the other hand, catecholamine turnover was inhibited in lungs (-53%, P < 0.05) and striatum (-24%, P < 0.05). A brief exposure to ozone, at a concentration chosen to mimic pollution level encountered in urban areas, can modulate catecholamine biosynthesis and utilization rate in the sympathetic and central neurones.  相似文献   

5.
THERE is much evidence that catecholamines may act as synaptic transmitters in the mammalian brain1. Enzymatic activities necessary for the synthesis of catecholamines have been located in central neurones1 and it is generally believed that tyrosine hydroxylase2 is the rate limiting enzyme in brain as well as peripheral tissues containing catecholamines3. While it is clear that tyrosine can serve as a precursor of catecholamine synthesis in the brain1, 3, 4, the significance of phenylalanine is problematic. It was believed that the mammalian brain is devoid of enzymatic activity necessary to convert phenylalanine to tyrosine6, 7, while liver is known to be rich in the enzyme phenylalanine hydroxylase8. The earlier attempts to demonstrate hydroxylation of phenylalanine in brain tissue may have been unsuccessful due to methodological problems9. Recent evidence suggests that tyrosine hydroxylase prepared from peripheral sympathetically innervated tissues or from brain can hydroxylate either phenylalanine or tyrosine9. Initially, the rate of hydroxylation of phenylalanine by tyrosine hydroxylase was thought to be as little as 5% that of tyrosine9. It has been found recently, however, that structural variations in the pteridine cofactor present in the incubation mixture lead to striking changes in the ability of partially purified tyrosine hydroxylase from bovine adrenal medulla to hydroxylate phenylalanine10. Thus, tetrahydrobiopterin allowed the hydroxylation of phenylalanine to proceed at least as rapidly as that of tyrosine or faster10. As the structure of the endogenous pteridine cofactor of tyrosine hydroxylase is not known, it is possible that synthesis of catecholamines from phenylalanine as well as tyrosine could occur in intact neuronal tissues. Evidence has been presented that after the injection of large quantities of 14C-phenylalanine into the lateral ventricle of the rat brain, small amounts of labelled tyrosine and traces of newly synthesized catecholamines were detected in brain tissues, giving qualitative evidence that catecholamines may be synthesized in brain from phenylalanine in vivo11.  相似文献   

6.
The distribution of immunoreactivity for histamine was studied in the brain of the urodele Triturus carnifex using the indirect immunofluorescence method. Histamine-immunoreactive cell bodies were localized in the caudal hypothalamus within the dorsolateral walls of the infundibular recesses. These immunoreactive cell bodies were pear-shaped, bipolar and frequently of the cerebrospinal-fluid-contacting type. Histaminergic nerve fibers were detected in almost all parts of the brain. Dense innervation was seen in the telencephalic medial pallium and ventral striatum, the neuropil of the preoptic area, the septum, the paraventricular organ, the posterior commissure, the caudal hypothalamus, the ventral and lateral mesencephalic tegmentum. Medium density innervation was observed in the lateral mesencephalic tegmentum and optic tectum. Poor innervation was present in the telencephalic dorsal pallium and in the central gray of the medulla oblongata. Few fibers occurred in the olfactory bulbs and in the telencephalic lateral pallium. Double immunofluorescence staining, using an antibody against tyrosine hydroxylase, showed that histamine-immunostained somata and those containing tyrosine-hydroxylase-like immunoreactivity were co-distributed in the tuberal hypothalamus. No co-occurrence of histamine-like and tyrosine hydroxylase-like immunostaining was seen in the same neuron. The pattern of histamine-immunoreactive neurons in the newt was similar to that described in other vertebrates. Our observations, carried out on the apparently simplified brain of the newt confirm that the basic histaminergic system is well conserved throughout vertebrates.  相似文献   

7.
The subcellular distribution of the protein tyrosine hydroxylase (TH) after fractionation of rat brain tissue was studied by a sensitive technique of immunoblot quantification in the dopaminergic nigrostriatal and the dorsal noradrenergic pathways and in the ventrolateral medulla. This repartition indicates that in all catecholaminergic regions of the cell bodies studied, the contribution of the nerve endings to the total TH amount is very low (less than 7%), in contrast to that observed in the terminal fields. The correlative subcellular determination of the TH amount and activity in the same tissue could be a useful approach for studying experimentally induced mechanisms of catecholamine synthesis modulation in different brain catecholaminergic pathways.  相似文献   

8.
9.
The development of tyrosine hydroxylase- and neuropeptide Y-immunoreactive cell bodies in the foetal rat brain was analyzed immunohistochemically using antibodies raised against tyrosine hydroxylase and neuropeptide Y. Possible co-existence of these two substance within the same neurones was investigated by comparison of adjacent sections.

In the ventral medulla oblongata, neurones containing both neuropeptide Y- and tyrosine hydroxylase-like immunoreactivity were demonstrable in and around the lateral reticular nucleus as early as the 17th day of gestation. The total number and the proportion of cells exhibiting this co-existence increased from this stage up to birth. In the nucleus of the solitary tract in the dorsal medulla oblongata, NPY-immunoreactive cells bodies were first visualized at day 13 of gestation. However, although tyrosine hydroxylase-immunoreactive cells could also be seen within the nucleus at this and later ages, they occupied a different, more caudal and medial part. Consequently, no neurones containing both neuropeptide Y and tyrosine hydroxylase were apparent up to the day of birth. Finally, in the locus coeruleus, tyrosine hydroxylase-immunoreactive neurones were also demonstrable at day 13 of gestation. In this case, however, no neuropeptide Y-immunoreactive somata could be seen in the nucleus until day 21.

The present study indicates that the existence of neuropeptide Y and tyrosine hydroxylase in co-containing neurones is not inextricably linked, and suggests that the factors controlling the synthesis of these two substances are not identical.  相似文献   


10.
Tyrosine hydroxylase activity correlated significantly with norepinephrine concentration and turnover, when results from regions containing predominantly noradrenergic terminals were compared, and with dopamine concentration and turnover when results from regions containing predominantly dopaminergic terminals were compared. Regions containing dopamine or norepinephrine cell bodies were characterized by higher tyrosine hydroxylase activities as compared to regions containing mostly nerve terminals. Higher levels of tyrosine hydroxylase activity and transmitter turnover were observed in regions containing dopaminergic terminals than in regions containing norepinephrine terminals. These findings are consistent with the view that tyrosine hydroxylase activity is linked to rates of catecholamine utilization by neurons in the CNS.  相似文献   

11.
Exposure to high altitude (HA) affects neurotransmitter levels in the adult brain and induces a number of neurologic and behavioral disturbances. The present work was undertaken to investigate the effects of chronic exposure to a moderate hypoxic environment (natural altitude of 3800 m, 12.8% O2 in inspired air) on the development from birth until adulthood of brain monoamine enzymes in rats. The activity of synthesizing (tyrosine and tryptophan hydroxylase) and catabolizing (catechol-O-methyl transferase and monoamine oxidase) enzymes was studied in discrete brain areas (cerebral cortex, cerebellum, mesodiencephalon, hypothalamus, corpus striatum, and pons medulla) and was shown to be selectively affected by HA, depending on the age of the animal and the brain region. In general, enzyme activity was less susceptible to HA during the first week after birth than at later ages, some brain areas such as the hypothalamus showing significant alterations in some enzymes throughout development, and in all enzymes at adulthood. Furthermore, in all brain areas and at all ages, tyrosine and tryptophan hydroxylase were more affected by HA than the catabolizing enzymes, and their activity was increased in some areas (e.g., cerebral cortex and cerebellum) but decreased in other areas (e.g., hypothalamus, mesodiencephalon, corpus striatum). These enzymatic changes and the corresponding alterations in precursor amino acids, particularly tryptophan, seem to be due more to the direct effect of hypoxia on oxygen-dependent enzymes, than to the stress. It appears that an hypoxic environment may provoke both early and long-term alterations in catecholamine and serotonin metabolism, thus neurotransmitter imbalances may explain some of the alterations in neurologic and endocrine development characteristic of the hypoxic animal.Part of this report was presented at the Sixth International Meeting of the International Society of Neurochemistry, Copenhagen, 1977.  相似文献   

12.
The structure and function of the central nervous systems of opisthobranch gastropods have been studied extensively. However, the organisation and function of the peripheral nervous system are poorly understood. The cephalic sensory organs (CSOs) are known to be chemosensory structures in the head region of opisthobranchs. In the present study, we used immunohistochemical methods and confocal laserscanning microscopy to comparatively examine the CSOs of different opisthobranchs, namely Acteon tornatilis, Aplysia punctata, Archidoris pseudoargus and Haminoea hydatis. We wanted to characterise sensory epithelia in order to infer the function of sensory structures and the organs they constitute. Immunoreactivity against the three antigens tyrosine hydroxylase, FMRFamide and serotonin was very similar in the CSOs of all investigated species. Tyrosine hydroxylase-like immunoreactivity was detected primarily in subepidermal sensory cell bodies, which were much more abundant in the anteriorly situated CSOs. This observation indicates that these cells and the respective organs may be involved in contact chemoreception and mechanoreception. The dominant features of FMRFamide-like immunoreactivity, especially in the posterior CSOs, were tightly knotted fibres which reveal glomerulus-like structures. This suggests an olfactory role for these organs. Serotonin-like immunoreactivity was detected in an extensive network of efferent fibres, but was not found within any peripheral cell bodies. Serotonin-like immunoreactivity was found in the same glomerulus-like structures as FMRFamide-like immunoreactivity, indicating a function of serotonin in the efferent control of olfactory inputs. Besides this functional implication, this study could also add some knowledge on the doubtful homology of the CSOs in opisthobranch gastropods.  相似文献   

13.
The short-term influences of stress on the activities of tyrosine hydroxylase in vivo and in vitro were examined in mice. The in vivo tyrosine hydroxylase activity was estimated by the rate of dopa accumulation which was measured at 30 min after the injection of NSD-1015 (100 mg kg), an aromatic l-amino acid decarboxylase inhibitor, intraperitoneally and was compared with tyrosine hydroxylase activity measured in vitro. For the in vivo assay, both the accumulation of dopa (tyrosine hydroxylase activity) and that of 5-hydroxytryptophan (tryptophan hydroxylase activity) and the levels of monoamines and the metabolites (noradrenalin, adrenalin, dopamine, normetanephrine, 3-methoxytyramine and serotonin) and those of precursor amino acids, tyrosine and tryptophan, were investigated in ten different brain regions and in adrenals. The amount of dopa accumulation in the brain as a consequence of decarboxylase inhibition, in vivo tyrosine hydroxylase activity, was significantly increased by stress, in nerve terminals (striatum, limbic brain, hypothalamus, cerebral cortex and cerebellum) and also in adrenals. The effect of stress on tyrosine hydroxylase activity in vitro at a subsaturating concentration of 6-methyltetrahydropterin cofactor was also observed in nerve terminals (striatum, limbic brain, hypothalamus, and cerebral cortex). The amount of 5-hydroxytryptophan accumulation, the in vivo tryptophan hydroxylase activity, was also significantly increased in bulbus olfactorius, limbic brain, cerebral cortex, septum and lower brain stem. The influence of stress was also observed on the levels of precursor amino acids, tyrosine and tryptophan and monoamines in specific brain parts. These results suggest that the stress influences both catecholaminergic neurons and serotonergic neurons in nerve terminals in the brain. This effect was also observed on tyrosine hydroxylase activity in vitro in nerve terminals. However, in adrenals, the influence by stress was not observed on the in vitro activity, although dopa accumulation was increased.  相似文献   

14.
Fluorescence-activated cell sorting based on immunolabeling with a monoclonal antibody to tyrosine hydroxylase and a fluorescein-conjugated secondary antibody was used to identify striatal synaptosomes derived from nigrostriatal dopamine nerve terminals. The amount of tyrosine hydroxylase immunoreactivity in dopaminergic striatal synaptosomes prepared from control rats was compared to the amount in dopaminergic synaptosomes prepared from rats that had received intraventricular injections of 6-hydroxydopamine. Although the absolute number of dopaminergic synaptosomes was decreased in lesioned animals, those residual dopamine terminals present contained more tyrosine hydroxylase than did dopamine terminals from control rats. Both the decrease in the absolute number of dopamine terminals and the increase in tyrosine hydroxylase immunoreactivity in residual terminals were proportional to the extent of the lesion, as determined by measurement of striatal dopamine levels. These results suggest that an increase in the amount of tyrosine hydroxylase protein in residual terminals may represent one compensatory mechanism by which residual dopamine neurons maintain normal striatal function after partial destruction of the nigrostriatal dopamine projection.  相似文献   

15.
After the intraventricular injection of 6-hydroxydopamine (6-OHDA), there was a long lasting reduction in the brain concentrations of noradrenaline (NA) and dopamine (DA). The brain concentration of NA was affected by lower doses of 6-OHDA than were required to deplete DA. A high dose of 6-OHDA which depleted the brain of NA and DA by 81 per cent and 66 per cent respectively, had no significant effect on brain concentrations of 5-hydroxytryptamine (5-HT) or γ-aminobutyric acid (GABA). The fall in catecholamines was accompanied by a long lasting reduction in the activities of tyrosine hydroxylase and DOPA decarboxylase in the hypothalamus and striatum, areas in the brain which are rich in catecholamine containing nerve endings. There was, however, no consistent effect on catechol-O-methyl transferase or monamine oxidase activity in these brain regions. The initial accumulation of [3H]NA into slices of the hypothalamus and striatum was markedly reduced 22–30 days after 6-OHDA treatment. These results are consistent with the evidence in the peripheral sympathetic nervous system that 6-OHDA causes a selective destruction of adrenergic nerve endings and suggest that this compound may have a similar destructive effect on catecholamine neurones in the CNS.  相似文献   

16.
The present studies investigated the subcellular distribution of acetylcholine's effects upon the phosphorylation of tyrosine hydroxylase in isolated purified bovine adrenal chromaffin cells. After labeling the intact chromaffin cells with 32Pi, over 90% of the [32P]tyrosine hydroxylase was found in soluble fractions. Stimulation of the cells with acetylcholine, the natural secretagogue of chromaffin cells, increased the phosphorylation of tyrosine hydroxylase and over 90% of the increase was associated with soluble tyrosine hydroxylase. Homogenates and subcellular fractions from chromaffin cells were also prepared and phosphorylated in vitro in an attempt to optimize detection of tyrosine hydroxylase phosphorylation. In chromaffin cell homogenates, both 8-bromo-cyclic AMP and calcium increased 32P incorporation into tyrosine hydroxylase, and again over 90% of the increase was observed in soluble fractions. In the particulate fraction, phosphorylation of a band which comigrated with tyrosine hydroxylase in electrophoresis was occasionally detected but only with very long autoradiographic exposures.Tyrosine hydroxylase enzymatic activity in the isolated purified chromaffin cells was also found to be associated predominantly (approx 90%) with soluble fractions. In contrast, a large portion (40–50%) of the tyrosine hydroxylase activity from crude bovine adrenal medullae was associated with the particulate fraction.The data indicate that although tyrosine hydroxylase (and possibly kinases) can associate with particulate fractions when isolated from crude bovine adrenal medullae, the enzyme is predominantly soluble when isolated from the isolated cells. Further, the effects of acetylcholine on the isolated chromaffin cells are predominantly associated with this soluble tyrosine hydroxylase and its attendant kinases.  相似文献   

17.
Colocalization of vasoactive intestinal peptide, neuropeptide Y, calcitonin gene-related peptide, substance P, and tyrosine hydroxylase, respectively, with NADPH-diaphorase staining in rat adrenal gland was investigated using the double labelling technique. All vasoactive intestinal peptide- and some neuropeptide Y-immunoreactive intrinsic neuronal cell bodies seen in the gland were double stained with NADPH-diaphorase. Double labelling also occurred in some nerve fibres immunoreactive to vasoactive intestinal peptide and neuropeptide Y in the medulla and cortex. No colocalization of calcitonin gene-related peptide, substance P or tyrosine hydroxylase immunoreactivity with NADPH-diaphorase staining was observed. However, nerve fibres with varicosities immunoreactive for all the neuropeptides examined were closely associated with some of the NADPH-diaphorase-stained neuronal cell bodies. Thus, in rat adrenal gland, nitric oxide is synthesized in all ganglion cells containing vasoactive intestinal peptide and in some containing neuropeptide Y, but not in those containing calcitonin gene-related peptide, substance P or tyrosine hydroxylase.  相似文献   

18.
《FEBS letters》1986,205(1):6-10
Tyrosine hydroxylase, the rate limiting enzyme in the biosynthesis of catecholamine, is a tetramer composed of four subunits of the same molecular mass. A full length cDNA clone encoding tyrosine hydroxylase has been inserted into the SP6 expression system. Translation of the corresponding RNA in Xenopus oocyte results in enzymatic activity, demonstrating that a single gene contains all the necessary genetic information to code for a functional enzyme. The potential of this system in the analysis of posttranslational tyrosine hydroxylase modifications is discussed.  相似文献   

19.
Summary The coexistence of histamine, histidine decarboxylase (the enzyme synthesizing histamine), 5-hydroxytryptamine and tyrosine hydroxylase (the rate-limiting enzyme in catecholamine synthesis), was studied in the rat superior cervical ganglion with the indirect immunofluorescence method. Possible colocalization was examined by staining consecutive sections with two different antibodies, or alternatively in the same section by eluting the first antibody with a mild solution containing potassium permanganate and sulphuric acid, and by staining the same section with another antibody. It was shown that tyrosine hydroxylase immunoreactivity was found both in large principal nerve cells and in small cells, which on the basis of their size and high nucleus—cytoplasm ratio corresponded to small intensely fluorescent (SIF) cells. Histamine, histidine decarboxylase and 5-hydroxytryptamine immunoreactivities were observed only in SIF cells. Those SIF cells which were immunoreactive for histamine, histidine decarboxylase or 5-hydroxytryptamine also contained tyrosine hydroxylase immunoreactivity. On the other hand, all tyrosine hydroxylase-immunoreactive SIF cells were also immunoreactive for histidine decarboxylase or 5-hydroxytryptamine. Some of the SIF cells, which were non-reactive for histamine, were immunoreactive for tyrosine hydroxylase.  相似文献   

20.
Dopamine D1 and D2 receptor immunohistochemistry and Golgi techniques were used to study the structure of the adult rat arcuate-median eminence complex, and determine the distribution of the dopamine D1 and D2 receptor immunoreactivities therein, particularly in relation to the tubero-infundibular dopamine neurons. Punctate dopamine D1 and D2 receptor immunoreactivities, likely located on nerve terminals, were enriched in the lateral palisade zone built up of nerve terminals, while the densities were low to modest in the medial palisade zone. A codistribution of dopamine D1 receptor or dopamine D2 receptor immunoreactive puncta with tyrosine hydroxylase immunoreactive nerve terminals was demonstrated in the external layer. Dopamine D1 receptor but not dopamine D2 receptor immnunoreactivites nerve cell bodies were found in the ventromedial part of the arcuate nucleus and in the lateral part of the internal layer of the median eminence forming a continuous cell mass presumably representing neuropeptide Y immunoreactive nerve cell bodies. The major arcuate dopamine/ tyrosine hydroxylase nerve cell group was found in the dorsomedial part. A large number of tyrosine hydroxylase immunoreactive nerve cell bodies in this region demonstrated punctate dopamine D1 receptor immunoreactivity but only a few presented dopamine D2 receptor immunoreactivity which were mainly found in a substantial number of tyrosine hydroxylase cell bodies of the ventral periventricular hypothalamic nucleus, also belonging to the tuberoinfundibular dopamine neurons. Structural evidence for projections of the arcuate nerve cells into the median eminence was also obtained. Distal axons formed horizontal axons in the internal layer issuing a variable number of collaterals classified into single or multiple strands located in the external layer increasing our understanding of the dopamine nerve terminal networks in this region. Dopamine D1 and D2 receptors may therefore directly and differentially modulate the activity and/or Dopamine synthesis of substantial numbers of tubero-infundibular dopamine neurons at the somatic and terminal level. The immunohistochemical work also gives support to the view that dopamine D1 receptors and/or dopamine D2 receptors in the lateral palisade zone by mediating dopamine volume transmission may contribute to the inhibition of luteinizing hormone releasing hormone release from nerve terminals in this region.Key words: Dopamine D1 and D2 receptors, tubero-infundibular dopamine neurons, dopamine receptor colocalization, arcuate-median eminence complex, volume transmission, luteinizing hormone releasing hormone  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号