首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The exclusive distribution of 5-HT6 receptor in the brain regions and high affinity for antipsychotic and antidepressant drugs makes 5-HT6 receptor a promising target in treatment of CNS diseases. Based on a pharmacophore model reported in the literature, we designed and synthesized a novel series of 5-HT6 receptor ligands having indole as a central aromatic core and 1-amino-4-methyl piperazine as positive ionizable group. Out of 32 compounds we have successfully identified 10 new compounds as 5-HT6 receptor antagonists. The structure–activity relationship (SAR) studies have been carried out by mapping the compounds with the 3D QSAR model.  相似文献   

2.
We have been exploring the potential of 5-HT2B antagonists as a therapy for chronic heart failure. To assess the potential of this therapeutic approach, we sought compounds possessing the following attributes: (a) potent and selective antagonism of the 5-HT2B receptor, (b) low impact of serum proteins on potency, and (c) desirable pharmacokinetic properties. This Letter describes our investigation of a biphenyl benzimidazole class of compounds that resulted in 5-HT2B antagonists possessing the above attributes. Improving potency in a human serum albumin shift assay proved to be the most significant SAR discovery.  相似文献   

3.
Due to numerous side effects of current antidepressants, the search for new, safer bioactive compounds is still a valid research topic in medical chemistry. In our research we decided to synthesize and determine SAR for new hexyl arylpiperazines (LACPs) derivated with saccharin moiety. High biological activity has been explained using molecular modelling methods. The compounds obtained show high affinity for the 5-HT1A (compound 18, Ki = 4 nM – antagonist mode) and D2 (compound 15, Ki = 7 nM – antagonist mode) receptor, and in some cases also 5-HT7 receptor (compound 17, Ki = 20 nM). A preliminary ADME analysis showed that the compounds exhibit CNS drugability properties. We have proved that carbon-chain lengthening may have a beneficial effect on increasing the activity towards serotonin and dopamine receptors.  相似文献   

4.
A series of 5-(piperidinylethyloxy)quinoline 5-HT1 receptor ligands have been studied by elaboration of the series of dual 5-HT1-SSRIs reported previously. These new compounds display a different in vitro pharmacological profile with potent affinity across the 5-HT1A, 5-HT1B and 5-HT1D receptors and selectivity against the serotonin transporter. Furthermore, they have improved pharmacokinetic profiles and CNS penetration.  相似文献   

5.
A series of indole, 7-azaindole, benzofuran, and benzothiophene compounds have been prepared and evaluated for affinity at D2-like dopamine receptors. These compounds share structural elements with the classical D2-like dopamine receptor antagonists haloperidol, N-methylspiperone and benperidol. Two new compounds, 4-(4-iodophenyl)-1-((4-methoxy-1H-indol-3-yl)methyl)piperidin-4-ol (6) and 4-(4-iodophenyl)-1-((5-methoxy-1H-indol-3-yl)methyl)piperidin-4-ol (7), were found to have high affinity to and selectivity for D2 versus D3 receptors. Changing the aromatic ring system from an indole to other heteroaromatic ring systems reduced the D2 binding affinity and the D2 versus D3 selectivity.  相似文献   

6.
Three 1-methoxy analogs of CP-47,497 (7, 8, and 19) have been synthesized and their affinities for the cannabinoid CB1 and CB2 receptors have been determined. Although these compounds exhibit selectivity for the CB2 receptor none have significant affinity for either receptor. Modeling and receptor docking studies were carried out, which provide a rationalization for the weak affinities of these compounds for either receptor.  相似文献   

7.
A technique for co-chromatography using tritiated steroids, radioimmunoassay (RIA), and a cytosol receptor binding assay was developed to examine estrogen components following elution from a reverse phase high pressure liquid chromatography (HPLC) system. Urine, fecal or plasma samples from several species of animals were assayed by this method and the results demonstrated compounds previously unreported. Two of these, one labelled Ex in primates, and one labelled Ew in birds are shown to have both cytosol receptor binding activity as well as immunoreactivity.  相似文献   

8.
We report on P2X7 receptor antagonists based on a lead adamantly-cyanoguanidine-aryl moiety. We have investigated the importance of the central cyanoguanidine moiety by replacing it with urea, thiourea or guanidine moieties. We have also investigated the linker length between the central moiety and the aryl portion. All compounds were assessed for their inhibitory potency in a pore-formation dye uptake assay at the P2X7 receptor. None of the compounds resulted in an improved potency illustrating the importance of the cyanoguanidine moiety in this chemotype.  相似文献   

9.
Novel series of pyrrole-pyrazinone and pyrazole-pyrazinone have been identified as potent and selective Vasopressin1b receptor antagonists. Exploration of the substitution pattern around the core of these templates allowed generation of compounds with high inhibitory potency at the Vasopressin1b receptor, including examples that showed good selectivity with respect to Vasopressin1a, Vasopressin2, and Oxytocin receptor subtypes.  相似文献   

10.
We report the synthesis of compounds structurally related to the high‐affinity dopamine D4 receptor ligand N‐{2‐[4‐(3‐cyanopyridin‐2‐yl)piperazin‐1‐yl]ethyl}‐3‐methoxybenzamide ( 1e ). All compounds were specifically designed as potential PET radioligands for brain D4 receptor visualization, having lipophilicity within a range for brain uptake and weak non‐specific binding (0.75<cLogP<3.15) and bearing a substituent for easy access to labeling with the positron emitter isotope 11C or 18F. The best compound of the series, N‐{2‐[4‐(4‐chlorophenyl)piperazin‐1‐yl]ethyl}‐6‐fluoropyridine‐3‐carboxamide ( 7a ), displayed excellent selectivity over D2 and D3 receptors (>100‐fold), but its D4 receptor affinity was suboptimal for imaging of brain D4 receptors (Ki=30 nM ).  相似文献   

11.
2-Phenyl-9-benzyl-8-azapurines, bearing at the 6 position an amido group interposed between the 8-azapurine moiety and an alkyl or a substituted phenyl group, have been synthesised and assayed as ligands for adenosine receptors. All the compounds show high affinity for the A1 adenosine receptor, and many of them also show a good selectivity for A1 with respect to A2A and A3 adenosine receptors. Based on the quite rich library containing such compounds and relevant biological data, QSAR models, able to rationalise the results and to give a quantitative estimate of the observed trends were also developed. The obtained models can assist in the design of new compounds selectively active on A1 adenosine receptor.  相似文献   

12.
Dopamine D1/D2 receptors are important targets for drug discovery in the treatment of central nervous system diseases. To discover new and potential D1/D2 ligands, 17 derivatives of tetrahydroprotoberberine (THPB) with various substituents were prepared by chemical synthesis or microbial transformation using Streptomyces griseus ATCC 13273. Their functional activities on D1 and D2 receptors were determined by cAMP assay and calcium flux assay. Seven compounds showed high activity on D1/D2 receptor with low IC50 values less than 1?µM. Especially, top compound 5 showed strong antagonistic activity on both D1 and D2 receptor with an IC50 of 0.391 and 0.0757?µM, respectively. Five compounds displayed selective antagonistic activity on D1 and D2 receptor. The SAR studies revealed that (1) the hydroxyl group at C-9 position plays an important role in keeping a good activity and small or fewer substituents on ring D of THPBs may also stimulate their effects, (2) the absence of substituents at C-9 position tends to be more selective for D2 receptor, and (3) hydroxyl substitution at C-2 position and the substitution at C-9 position may facilitate the conversion of D1 receptor from antagonist to agonist. Molecular docking simulations found that Asp 103/Asp 114, Ser 107/Cys 118, and Trp 285/ Trp 386 of D1/ D2 receptors are the key residues, which have strong interactions with the active D1/D2 compounds and may influence their functional profiles.  相似文献   

13.
The adenosine A2A receptor is considered to be an important target for the development of new therapies for Parkinson’s disease. Several antagonists of the A2A receptor have entered clinical trials for this purpose and many research groups have initiated programs to develop A2A receptor antagonists. Most A2A receptor antagonists belong to two different chemical classes, the xanthine derivatives and the amino-substituted heterocyclic compounds. In an attempt to discover high affinity A2A receptor antagonists and to further explore the structure–activity relationships (SARs) of A2A antagonism by the xanthine class of compounds, this study examines the A2A antagonistic properties of series of (E)-8-styrylxanthines, 8-(phenoxymethyl)xanthines and 8-(3-phenylpropyl)xanthines. The results document that among these series, the (E)-8-styrylxanthines have the highest binding affinities with the most potent homologue, (E)-1,3-diethyl-7-methyl-8-[(3-trifluoromethyl)styryl]xanthine, exhibiting a Ki value of 11.9 nM. This compound was also effective in reversing haloperidol-induced catalepsy in rats, providing evidence that it is in fact an A2A receptor antagonist. The importance of substitution at C8 with the styryl moiety was demonstrated by the finding that none of the 8-(phenoxymethyl)xanthines and 8-(3-phenylpropyl)xanthines exhibited high binding affinities for the A2A receptor.  相似文献   

14.
Previous studies have demonstrated that clobenpropit (N-(4-chlorobenzyl)-S-[3-(4(5)-imidazolyl)propyl]isothiourea) binds to both the human histamine H3 receptor (H3R) and H4 receptor (H4R). In this paper, we describe the synthesis and pharmacological characterization of a series of clobenpropit analogs, which vary in the functional group adjacent to the isothiourea moiety in order to study structural requirements for H3R and H4R ligands. The compounds show moderate to high affinity for both the human H3R and H4R. Furthermore, the changes in the functional group attached to the isothiourea moiety modulate the intrinsic activity of the ligands at the H4R, ranging from neutral antagonism to full agonism. QSAR models have been generated in order to explain the H3R and H4R affinities.  相似文献   

15.
Abstract

A variety of adenosine analogues have been recently evaluated in order Lo find more potent and selective agonists on adenosine receptors. The most potent adenosine analogues acting on A1 receptor, a high affinity receptor inhibitory to adenylate cyclase, are N6-substituted compounds. So 6-cyclohexyladenosine (CHA) and 6-L-phenylisopropyladenosine (L-PIA) are extremely potent agonists on A2 receptor, whereas they are relatively weak agonists on A receptor, a lower affinity receptor which is stirnulatory to cyclase, and they have no effect on the adenosine P site.  相似文献   

16.
Receptor binding profile of R 41 468, a novel antagonist at 5-HT2 receptors   总被引:37,自引:0,他引:37  
For a new antiserotonergic agent, R 41 468 and 13 reference compounds with alleged antiserotonergic activity, the receptor binding profile is reported, comprising Ki-values measured in ten different receptor binding models. R 41 468 appeared to be a particularly selective agent with respect to differentiation between two 5-hydroxytryptamine (5-HT) receptor models; it primarily displayed high binding affinity for 5-HT2 receptors and was inactive at 5-HT1 receptors. Besides showing a moderate binding affinity for histamine1 and α1 adrenergic receptors, the compound was very weakly active at dopamine receptors and inactive at the remaining receptors. Receptor binding profiles of the reference compounds differed widely. Apart from R 41 468 no other compound showed a similar selectivity towards 5-HT2 receptors. Reference compounds either poorly differentiated between 5-HT2 and 5-HT1 receptors, showed other primary effects, or were only moderately active. In the 5-HT2 and 5-HT1 receptor binding models the ‘D-receptor’ antagonist phenoxybenzamine was weakly active and the ‘M-receptor’ antagonist morphine was inactive. It is concluded that R 41 468 will be a particularly suitable tool to antagonize 5-HT action mediated by 5-HT2 receptors.  相似文献   

17.
Searching for CNS active cyclic amines derivatives containing heterocyclic xanthone core we designed and synthesized a set of fourteen novel 2- or 4-methylxanthone substituted by alkyl- or aryl-piperazine moieties. The compounds were evaluated in vivo for their potential antidepressant-like activity (in the forced swim test) and anxiolytic-like activity (four-plate test) and their inhibitory effect against rat 5-HT2 receptor was checked. The pharmacokinetic analysis of active compounds done by a non-compartmental approach have shown a rapid absorption of all studied molecules from intraperitoneal cavity and good penetration the blood-brain barrier after i.p. administration with brain to plasma ratios varied from 2.8 to 31.6. Genotoxicity and biotransformation of active compounds were studied. Compound 19 interactions with major classes of GPCRs, uptake systems and ion channels were tested and results indicated that it binds to 5-HT2A, 5-HT2B receptors and sodium channels.  相似文献   

18.
G protein-coupled receptors (GPCRs) are attractive targets for pharmaceutical research. With the recent determination of several GPCR X-ray structures, the applicability of structure-based computational methods for ligand identification, such as docking, has increased. Yet, as only about 1% of GPCRs have a known structure, receptor homology modeling remains necessary. In order to investigate the usability of homology models and the inherent selectivity of a particular model in relation to close homologs, we constructed multiple homology models for the A1 adenosine receptor (A1AR) and docked ∼2.2 M lead-like compounds. High-ranking molecules were tested on the A1AR as well as the close homologs A2AAR and A3AR. While the screen yielded numerous potent and novel ligands (hit rate 21% and highest affinity of 400 nM), it delivered few selective compounds. Moreover, most compounds appeared in the top ranks of only one model. These findings have implications for future screens.  相似文献   

19.
In the search for compounds with potential for development as positron emission tomography radioligands for brain D3 receptor imaging, a series of N-[4-(4-arylpiperazin-1-yl)butyl]arylcarboxamides with appropriate lipophilicity (2 < log P < 3.5) were synthesized and tested in vitro. Some of the final compounds showed moderate-to-high dopamine D3 receptor affinities but lacked selectivity over D2 receptors.  相似文献   

20.
Here we describe the design, synthesis, and pharmacological evaluation of a set of compounds structurally related to the high affinity serotonin 5-HT7 receptor agonist N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide (6, LP-211). Specific structural modifications were performed in order to maintain affinity for the target receptor and to improve the selectivity over 5-HT1A and adrenergic α1 receptors. The synthesized compounds have chemical features that could enable labeling with a positron emitter radioisotope (carbon-11 or fluorine-18) and lipophilicity within the range considered optimal for brain penetration and low non-specific binding. 4-[2-(4-Methoxyphenyl)phenyl]-N-(pyridin-4-ylmethyl)piperazinehexanamide (23a) and N-pyridin-4-ylmethyl-3-[4-[2-(4-methoxyphenyl)phenyl]piperazin-1-yl]ethoxy]propanamide (26a) were radiolabeled on the methoxy group with carbon-11. Positron emission tomography (PET) analysis revealed that [11C]-23a and [11C]-26a were P-glycoprotein (P-gp) substrates and rapidly metabolized, resulting in poor brain uptake. These features were not predicted by in vitro tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号