首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Prostaglandins E1 and E2 are thought to be inhibitors of the growth of systemic vascular smooth muscle cells (SMC). However, their effect on the proliferation of SMC from the pulmonary artery (PA) has not been described and was the subject of this investigation. Cultures of bovine PA SMC were exposed to PGE1 and PGE2 under various conditions and their growth was assessed. PGE1 and PGE2 did not inhibit the growth of PA SMC in 10% fetal calf serum (FCS), but instead caused a dose dependent (10 ng - 1 μg/ml) increase in [3H]-thymidine incorporation when added to cultures containing 0.5% FCS; the highest doses resulted in 95% and 75% increases in [3H]-thymidine uptake at 24 hours with PGE1 and PGE2 respectively. This was accompanied by a modest increase in actual cell numbers (e.g., 20% with 1 μg/ml PGE1). Furthermore, PGE1 could mimic insulin-like growth factor (IGF-1) by potentiating the stimulation of SMC growth by fibroblast growth factor, suggesting that PGE1 may act as a progression factor in the growth cycle of these cells. There was, however, no effect of PGE1 on the proliferation of bovine aortic SMC. We conclude that, contrary to most reported effects on systemic SMC, PGE1 and PGE2 do not inhibit the proliferation of PA SMC but rather stimulate it.  相似文献   

2.
The conversion of exogenous arachidonic acid into prostaglandins was studied in human placenta and fetal membrane microsomes. Only one prostaglandin was formed, prostaglandin E2 (PGE2), in fetal membrane microsomes. In placental microsomes PGE2 was further transformed into 15 keto-PGE2. Cofactor requirements and some characteristics of the system were studied. 1 to 3% conversion of arachidonic acid into prostaglandins was observed in placental microsomes and 5 to 8% conversion in fetal membrane microsomes.  相似文献   

3.
A model is proposed for the regulation of the placental blood flows to the near-term pregnancy. The model has three features. 1) The maternal uterine and fetal placental tissues can synthesize constrictor and dilator prostaglandins. 2) Prostaglandins can cross the placenta. 3) There must exist a prostaglandin which has a vasodilating action in one of the placental circulations and a vasoconstricting action in the other circulation.Evidence is provided to indicate that in the sheep, prostaglandin E2 (PGE2) can cross the placenta and has a vasodilating action in the uterine placental circulation and a vasoconstricting action in the umbilical placental circulation.The placenta and the lung are compared and PGE2 is shown to have similar actions in each of these organs.  相似文献   

4.
Formation of {3H}-PGF and {3H}-13,14,dihydro-15-keto-PGF from {3H}-PGE2 by the supernatant of uterine homogenates from estrous and ovariectomized rats, was studied, using the reaction system PGE2 + NADPH + {3H}-PGE2 + supernatant. Enzymatic conversion was lower in uterine supernatants from spayed rats than in uterine homogenates of rats at natural estrus.Spayed animals were injected with progesterone (P) or with estradiol-17-β (E0) at a dose of 1.0 or 50.0 ug. Conversion of {3H}-PGF to {3H}-PGE2 or to {3H}-13,14,dihydro-15-keto-PGF did not differ in control ovariectomized or ovariectomized rats receiving P or 1.0 ug E0. However, 50.0 ug E0 induced a significant oversion after 30 (P < 0.01) and 60 (P < 0.001) min of incubation.It is concluded that E0, at the 50.0 ug dose, but not the 1.0 ug dose of E0, nor progesterone, stimulated conversion of {3H}-PGE2 into {3H}-PGF or {3H}-13, 14,dihydro-15-keto-PGF, presumably through the activity of the enzyme PGE2-9-keto-reductase.  相似文献   

5.
The characteristics of L-lysine transport were investigated at brush-border (maternal) and basal (fetal) sides of the syncytiotrophoblast in the term guinea-pig placenta artificially perfused either through the umbilical vessels in situ or through both circulations simultaneously. Cellular uptake, efflux and transplacental transfer were determined using a single-circulation paired-tracer dilution technique. Unidirectional L-[3H]lysine uptake (%) (perfusate lysine 50 microM) was high on maternal (M = 87 +/- 1) and fetal (F = 73 +/- 2) sides. L-[3H]Lysine efflux back into the ipsilateral circulation was asymmetrical (F/M ratio = 2.3) and transplacental flux occurred in favour of the fetal circulation. Unidirectional lysine influx kinetics (0.05-8.00 mM) gave Km values of 1.75 +/- 0.70 mM and 0.90 +/- 0.25 mM at maternal and fetal sides, respectively; corresponding Vmax values were 1.95 +/- 0.38 and 0.87 +/- 0.10 mumol.min-1.g-1. At both sides, lysine influx (50 microM) could be inhibited (about 60-80%) by 4 mM L-lysine and L-ornithine and less effectively (about 10-40%) by L-citrulline, L-arginine, D-lysine and L-histidine. At the basal side: (i) lysine influx kinetics were greatly modified in the presence of 10 mM L-alanine (Km = 6.25 +/- 3.27 mM; Vmax = 2.62 +/- 0.94 mumol.min-1.g-1), but unchanged by equimolar L-phenylalanine or L-tryptophan; (ii) in the converse experiments, lysine (10 mM) did not affect the kinetic characteristics for either L-alanine or L-phenylalanine; (iii) L-lysine and L-alanine influx kinetics were not dependent on the sodium gradient; (iv) the inhibition of L-[3H]lysine uptake by 4 mM L-homoserine was partially (60%) Na+-dependent. At the maternal side the kinetic characteristics for alanine influx were highly Na+-dependent, while lysine influx was partially Na+-dependent only at low concentrations (0.05-0.5 mM). Bilateral perfusion with 2,4-dinitrophenol (1 mM) reduced L-[3H]lysine uptake into the trophoblast and abolished transplacental transfer. It is suggested that lysine transport in the guinea-pig placenta is mediated by a specific transport system (y+) for cationic amino-acids. The asymmetry in the degree of sodium-dependency at both trophoblast membranes may in part explain the maternal-to-foetal polarity of placental amino-acid transfer in vivo.  相似文献   

6.
Metabolism of radiolabeled arachidonic acid (*AA) by blastocysts and endometrial slices recovered from five gilts 16 days after detection of estrus was studies . Blastocysts from each gilt were divided into four 216 ± 18 mg, and each portion was placed into a separate petri dish containing 15 ml modified minimum essential medium (MEM)_. The incubates from each gilt received either 25, 50, 100 or 200 μg radioinert arachidonic acid (AA). Endometrium was dissected from each uterin horn, sliced and duplicate 509 ± 3 mg portions from each gilt were placed into petri dishes containing 15 ml MEM and 200 μm AA. All incubates received 5 νCi of *AA (either [14C]-arichidonic acid or [3H]-arichidonic acid). The incubates were rocked at 37°C for 24 h in an atmosphere of 50% n2:45% O2:5% CO2. After incubation, tissues and MEM were separated by centrifugation. Metabolism of *AA was assessed in extracts of MEM and tissue homogenates by separating *AA and its metabolites on columns of Sephades LH-20. Blastocysts produced compounds that migrated with [3H]-13,14-dihydro-15-keto-PGF2α (*PGFM), [3H]-PGE2 (*PGE2) and [3H]-PGF2α (*PGF2α). The greatest (P<.05) proportion (35.7 ± 1.8%) of the radioactivity in blastocyst MEM was recovered as PGE2. In blastocyst homogenates, most (66.2 ± 3.3%; P<0.05) of the radioactivity was in a nonporal peak assumed to be arachidonate esters. The concentration of AA ni MEM did not alter metabolism of *AA by blastocysts. Endometrial slices produced *PGFM and *PGE2 but only in small amounts, and they were capable of producing nonpolar, probably esterified, forms of *AA. It was concluded that porcine blastocysts produced and metabolized prostaglandins and that they make a contribution to the uterine milieu during early pregnancy.  相似文献   

7.
The biosynthesis of placental proteins and placental lactogen (HPL) was studied in vitro in 10–12 week, 16–18 week and term human placenta in the presence and absence of PGE. The highest 14C-leucine incorporation was detected in 10 to 12 weeks old placentas. Addition of PGE to the induction medium depressed the rate of incorporation of 14C-leucine into placental proteins on a dose dependent manner. Placentas most sensitive to this action of PGE were those obtained at 18 weeks gestation followed by placentas at term. In vivo application of PGE for tharapeutic induction of abortions resulted in the marked inhibition of placental protein synthesis in vitro.  相似文献   

8.
Metabolism of radiolabeled arachidonic acid (1AA) by blastocysts and endometrial slices recovered from five gilts 16 days after detection of estrus was studies in vitro. Blastocysts from each gilt were divided into four 216 ± 18 mg, and each portion was placed into a separate petri dish containing 15 ml modified minimum essential medium (MEM)_. The incubates from each gilt received either 25, 50, 100 or 200 μg radioinert arachidonic acid (AA). Endometrium was dissected from each uterin horn, sliced and duplicate 509 ± 3 mg portions from each gilt were placed into petri dishes containing 15 ml MEM and 200 μm AA. All incubates received 5 νCi of 1AA (either [14C]-arichidonic acid or [3H]-arichidonic acid). The incubates were rocked at 37°C for 24 h in an atmosphere of 50% n2:45% O2:5% CO2. After incubation, tissues and MEM were separated by centrifugation. Metabolism of 1AA was assessed in extracts of MEM and tissue homogenates by separating 1AA and its metabolites on columns of Sephades LH-20. Blastocysts produced compounds that migrated with [3H]-13,14-dihydro-15-keto-PGF2α (1PGFM), [3H]-PGE2 (1PGE2) and [3H]-PGF2α (1PGF2α). The greatest (P<.05) proportion (35.7 ± 1.8%) of the radioactivity in blastocyst MEM was recovered as PGE2. In blastocyst homogenates, most (66.2 ± 3.3%; P<0.05) of the radioactivity was in a nonporal peak assumed to be arachidonate esters. The concentration of AA ni MEM did not alter metabolism of 1AA by blastocysts. Endometrial slices produced 1PGFM and 1PGE2 but only in small amounts, and they were capable of producing nonpolar, probably esterified, forms of 1AA. It was concluded that porcine blastocysts produced and metabolized prostaglandins in vitro and that they make a contribution to the uterine milieu during early pregnancy.  相似文献   

9.
The conversion of (1-14C) PGH2 was studied in human placental and fetal membrane cellular preparations (tissue fragments, homogenate, cytosol, microsomes). Placental and amnion homogenates convert labelled PGH2 into PGE2 through a very active PGE2 isomerase. However isolated placental microsomes do not metabolise PGH2 into PGE2 but into T×A2 (identified as T×B2 by GC-MS) and presumably 12-HHT. This microsomal T×A2 synthetase is not active in the whole tissue nor in the homogenate. Placental cytosol gives mainly PGD2. No conversion into PGI2 (identofied as 6 keto PGF) nor PGF was observed in any fraction.Some aspects of PG synthesis regulation by the placental cytosol were studied: the cytosol contains a heat-stable factor that inhibits T×A2 synthesis and shifts PGH2 placental microsome metabolism towards PGE2. In addition the placental cytosol inhibits human platelet-aggregation through a heat-labile factor which is not PGI2 nor PGD2. A multiple step regulation of the various PG metabolites synthetised from arachidonic acid in the placenta can be outlined and its physiological implications are discussed.  相似文献   

10.
Formation of {3H}-PGF and {3H}-13,14,dihydro-15-keto-PGF from {3H}-PGE2 by the supernatant of uterine homogenates from estrous and ovariectomized rats, was studied, using the reaction system PGE2 + NADPH + {3H}-PGE2 + supernatant. Enzymatic conversion was lower in uterine supernatants from spayed rats than in uterine homogenates of rats at natural estrus.Spayed animals were injected with progesterone (P) or with estradiol-17-β (E0) at a dose of 1.0 or 50.0 ug. Conversion of {3H}-PGF to {3H}-PGE2 or to {3H}-13,14,dihydro-15-keto-PGF did not differ in control ovariectomized or ovariectomized rats receiving P or 1.0 ug E0. However, 50.0 ug E0 induced a significant oversion after 30 (P < 0.01) and 60 (P < 0.001) min of incubation.It is concluded that E0, at the 50.0 ug dose, but not the 1.0 ug dose of E0, nor progesterone, stimulated conversion of {3H}-PGE2 into {3H}-PGF or {3H}-13, 14,dihydro-15-keto-PGF, presumably through the activity of the enzyme PGE2-9-keto-reductase.  相似文献   

11.
The fetus and prematurely delivered newborn lamb have high concentrations of circulating PGE2 that may play a hormonal role, particularly in maintaining the patency of the ductus arteriosus. We studied the ability of the isolated, perfused lung from immature (100 ± 150 days) lamb fetuses to metabolize PGE2 as a function of PGE2 concentration in the perfusate. After an intra-arterial infusion of 3H-PGE2 and 14C-inulin (to act as a marker of extracellular space), the bulk of the 14C-inulin was rapidly cleared through the isolated lung and the majority of the 3H activity appeared after the 14C activity had fallen to negligible values. The 3H activity that was retained longer in the lung was primarily associated with the 15-keto prostaglandin E2 and 15-keto-13,14 dihydro prostaglandin E2 metabolites. Lungs from immature fetal lambs metabolized 25% less PGE2 than did lungs from animals near term. This is consistent with our prior observation that premature lambs have decreased plasma clearance rates (in vivo) and elevated circulating concentrations of PGE2 when compared with term newborn lambs.  相似文献   

12.
Folate (pteroylglutamate) and methotrexate rapid (seconds) uptake by the trophoblast was investigated from either the maternal or fetal circulations of the isolated dually-perfused guinea-pig placenta. Tissue uptake was measured by using a single-circulation paired-tracer (3H-test and 14C-extracellular marker) technique. [3H]Folate uptakes were 80 and 52% (mean) in perfusates without unlabelled folate, on maternal and fetal sides, respectively. There was negligible 3H-tracer backflux into the circulation up to 6 min probably due to metabolic sequestration. [3H]Methotrexate uptakes were about 85 and 22% on maternal and fetal sides, respectively; however these uptakes were followed by rapid and complete backflux of the label. Specific transplacental transfer of [3H]folate or [3H]methotrexate in either direction was not detectable within 5–6 min. At the brush-border side (maternal) uptake of [3H]folate was highly inhibited by 100 nM unlabelled folate or its reduced form, methyltetrahydrofolate (the main form in plasma); however, equimolar methotrexate (an antifolate chemotherapeutic agent) failed to produce any inhibition of folate uptake. Our findings demonstrate that on both sides of the placenta a high-affinity transport system exists for trophoblast uptake of folate compounds. For methotrexate, either a separate transport system may exist or methotrexate may have a very low affinity for the folate system. These results are distinct from the findings reported in mouse L1210 leukemia cells.  相似文献   

13.
The hemodynamic effects of PGF, PGE2, and norepinephrine injected into the umbilical arterial circulation were compared in nine fetal lambs in utero. Umbilical blood flow was measured with radioactive microspheres and an electromagnetic flow transducer implanted on the distal aorta of the fetus after ligation of external iliac arteries and other accessible distal aortic branches.PGF and norepinephrine increased fetal arterial pressure and umbilical blood flow while umbilical vascular resistance increased slightly (PGF) or not at all (norepinephrine). PGE2 increased fetal arterial pressure, decreased umbilical blood flow, and exerted a profound active vasoconstrictor effect on the fetal placental bed. Our data taken together with the observations of others suggest that prostaglandins may play a role in the circulatory adaptations of the fetus at birth and that PGE2 in high concentrations is likely to have deleterious hemodynamic consequences in the fetus in utero.  相似文献   

14.
Anaesthetized fetal guinea pigs near term were studied under conditions, where maternal placental flow of haemoglobin was maintained within the normal range. The rate of maternal fetal equilibration of intravenously injected 3H2O was found to be similar as in unanaesthetized animals (half time 4 min) indicating that fetal circulation was undisturbed under the present experimental conditions. Umbilical blood flow as determined by a modified 3H2O method was 0.13 ml . min-1 . g-1 of fetal body mass. Radioactive microspheres, injected into the fetal saphenous (jugular) vein, were distributed to the placenta, the lower body, the upper body and the lungs at a ratio of 31(47):27(39):30(6):12(8). From these data, cardiac output was calculated (0.38 ml . min-1 . g-1) and found to be almost equally distributed between the placenta, the lower body and the upper body. There was preferential streaming of the inferior vena caval blood to the upper body. There was no evidence for flow through a ductus venosus. The O2-saturation in the fetal carotid arterial blood was 59 +/- 4%. The O2-supply to the fetal tissues was estimated to be 3 times the oxygen consumption.  相似文献   

15.
Exposure to high lethal dose of ionizing radiation results in acute radiation syndrome with deleterious systemic effects to different organs. A primary target is the highly sensitive bone marrow and the hematopoietic system. In the current study C3H/HeN mice were total body irradiated by 7.7 Gy. Twenty four hrs and 5 days after irradiation 2×106 cells from different preparations of human derived 3D expanded adherent placental stromal cells (PLX) were injected intramuscularly. Treatment with batches consisting of pure maternal cell preparations (PLX-Mat) increased the survival of the irradiated mice from ∼27% to 68% (P<0.001), while cell preparations with a mixture of maternal and fetal derived cells (PLX-RAD) increased the survival to ∼98% (P<0.0001). The dose modifying factor of this treatment for both 50% and 37% survival (DMF50 and DMF37) was∼1.23. Initiation of the more effective treatment with PLX-RAD injection could be delayed for up to 48 hrs after irradiation with similar effect. A delayed treatment by 72 hrs had lower, but still significantly effect (p<0.05). A faster recovery of the BM and improved reconstitution of all blood cell lineages in the PLX-RAD treated mice during the follow-up explains the increased survival of the cells treated irradiated mice. The number of CD45+/SCA1+ hematopoietic progenitor cells within the fast recovering population of nucleated BM cells in the irradiated mice was also elevated in the PLX-RAD treated mice. Our study suggests that IM treatment with PLX-RAD cells may serve as a highly effective “off the shelf” therapy to treat BM failure following total body exposure to high doses of radiation. The results suggest that similar treatments may be beneficial also for clinical conditions associated with severe BM aplasia and pancytopenia.  相似文献   

16.
The response of the placental circulations to prostaglandin I2 (maternal dose 20 microgram/kg, fetal dose 180 microgram/kg) was observed in 10 near-term sheep with chronically implanted vascular catheters. The blood flows before and 90 s after the injection of prostaglandin I2 were measured using radioactive microspheres. The injection of prostaglandin I2 to the mother decreased th blood pressure from 109 +/- 4 to 69 +/- 5 mmHg (P < 0.001) and increased the vascular resistance of the maternal cotyledons from 0.166 +/- 0.018 to 0.209 +/- 0.02 mmHg/(ml/min) (P < 0.001). The vascular bed of the non-cotyledonary uterus vasodilated as the resistance fell from 0.705 +/- 0.02 to 0.266 +/- 0.02 mmHg/(ml/min). (P < 0.001). Prostaglandin I2 caused the fetal arteriovenous pressure to fall from 37.6 +/- 1.35 to 26.0 +/- 1.6 mmHg. There was no significant change in the vascular resistance of the fetal cotyledons. We observed vasodilation in the fetal membranes as vascular resistance fell from 1.06 +/- 0.14 to 0.75 +/- 0.10 mmHg/(ml/min) (P < 0.001). The infusion of prostaglandin I2 significantly depressed the response of the placenta and uterus to norepinephrine. We have not proved that prostaglandin I2 plays a direct role in maintaining placental vascular homeostasis but it may modulate the response of this organ to exogenous vasoactive agents.  相似文献   

17.
The developmental pattern of fetal and neonatal rabbit lungs to metabolize arachidonic acid (AA) to different cyclo-oxygenase products was studied in isolated rabbit lungs, which were perfused with Krebs bicarbonate buffer. 14C-AA (66 nmol) was injected into the pulmonary circulation and the nonrecirculating perfusion effluent was collected for four minutes. About ten per cent of the injected radioactivity was found in the 0–4 min perfusion effluent. The metabolites of AA in the effluent were analyzed by thin layer chromatography. The major metabolites of AA were PGE2 and its 15-keto-derivates, but also PGF and its 15-keto-derivates, TXB2 and 6-keto-PGF were found in the effluent. The most drastic developmental change was the increase in the amount of 15-keto-metabolites of PGE2 from late fetal period to the lungs of one day old rabbits (1.8 fold increase between birth and first postnatal day). Smaller changes were detected in the amounts of other cyclo-oxygenase products.  相似文献   

18.
The inactivation of prostaglandin E2 (PGE2) was studied in isolated perfused lungs of fetal and neonatal rabbits. 200 nmol of 14C-PGE2 was infused into the pulmonary circulation and the metabolites of PGE2 were analysed from the nonrecirculating perfusion effluent. The amount of the main metabolite, 13,14-dihydro-15-keto-PGE2, increased significantly between the 28th and 30th day of fetal life, remained relatively constant at the time of birth and increased again between 1st and 7th postnatal day. In contrast the amount of 15-keto-PGE2 remained relatively stable during the studied period. The activity of NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-OH-PGDH) was determined from the 100.000 g supernatant fraction of fetal, neonatal and maternal rabbit lungs using 14C-PGE2 (20 μM) as the substrate. In the lungs of late fetal rabbits the activity of 15-OH-PGDH was significantly higher compared to the early postnatal period. Maternal rabbit lungs possessed, however, very high activities compared to the studied perinatal lungs. The results show, that the activity of the pulmonary 15-OH-PGDH is high already during the late fetal period. The inactivation of PGE2 in isolated perfused lungs seems, however, to increase during the last prenatal days. Thus it seems possible that the uptake mechanism could be the rate limiting step in the metabolism of PGE2 in rabbit lungs during the perinatal period.  相似文献   

19.
Uterine cervical tissue was obtained from pregnant women undergoing abortion of caesarean section. The tissue was incubated in Krebs-Ringer bicarbonate buffer containing prostaglandin (PG) E2 and radioactive precursors for collagen (3H proline) and proteoglycans (3H glucosamine). After incubation the tissue-bond radioactivity was determined and related to the tissue dry weight.The effect of PGE2 on te net tissue radiolabelling varied with the gestational age and with the cervical status at operation. In early 1st trimester PGE2 increased the labelling with 3H proline but decreased that with 3H glucosamine. From the 12th week of gestation until term pregnancy conditions were reversed, i.e. the incorporation of 3H proline was reduced and that of 3H glucosamine was augmented following treatment with PGE2. After start of labour and rupture of the membrane, however, PGE2 diminished the labelling with 3H proline as well as 3H glucosamine. It is suggested that PGE2 is a modulator of biochemical events which underlie cervical ripening.  相似文献   

20.
Lipopolysaccharide (LPS) in high doses inhibits placental multidrug resistance P-glycoprotein (P-gp - Abcb1a/b) and breast cancer resistance protein (BCRP - Abcg2). This potentially impairs fetal protection against harmful factors in the maternal circulation. However, it is unknown whether LPS exposure, at doses that mimic sub-lethal clinical infection, alters placental multidrug resistance. We hypothesized that sub-lethal (fetal) LPS exposure reduces placental P-gp activity. Acute LPS (n = 19;150 µg/kg; ip) or vehicle (n = 19) were given to C57BL/6 mice at E15.5 and E17.5. Placentas and fetal-units were collected 4 and 24 h following injection. Chronic LPS (n = 6; 5 µg/kg/day; ip) or vehicle (n = 5) were administered from E11.5–15.5 and tissues were collected 4 h after final treatment. P-gp activity was assessed by [3H]digoxin accumulation. Placental Abcb1a/b, Abcg2, interleukin-6 (Il-6), Tnf-α, Il-10 and toll-like receptor-4 (Tlr-4) mRNA were measured by qPCR. Maternal plasma IL-6 was determined. At E15.5, maternal IL-6 was elevated 4 h after single (p<0.001) and chronic (p<0.05) LPS, but levels had returned to baseline by 24 h. Placental Il-6 mRNA was also increased after acute and chronic LPS treatments (p<0.05), whereas Abcb1a/b and Abcg2 mRNA were unaffected. However, fetal [3H]digoxin accumulation was increased (p<0.05) 4 h after acute LPS, and maternal [3H]digoxin myocardial accumulation was increased (p<0.05) in mice exposed to chronic LPS treatments. There was a negative correlation between fetal [3H]digoxin accumulation and placental size (p<0.0001). Acute and chronic sub-lethal LPS exposure resulted in a robust inflammatory response in the maternal systemic circulation and placenta. Acute infection decreased placental P-gp activity in a time- and gestational age-dependent manner. Chronic LPS decreased P-gp activity in the maternal myocardium and there was a trend for fetuses with smaller placentas to accumulate more P-gp substrate than their larger counterparts. Collectively, we demonstrate that acute sub-lethal LPS exposure during pregnancy impairs fetal protection against potentially harmful xenobiotics in the maternal circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号