首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of hypoxia on diaphragm relaxation rate during fatigue   总被引:2,自引:0,他引:2  
Van Lunteren, Erik, Augusto Torres, and Michelle Moyer.Effects of hypoxia on diaphragm relaxation rate during fatigue. J. Appl. Physiol. 82(5):1472-1478, 1997.Skeletal muscle fatigue is associated with aslowing of relaxation rate. Hypoxia may increase the rate at whichfatigue occurs, but, surprisingly, mild to moderate hypoxia has notbeen found to augment the degree of slowing of relaxation duringfatigue. The present study tested the hypothesis that severe hypoxiainteracts with fatigue in slowing the rate of muscle relaxation andthat this can be modulated by altering membranous ionic conductances.Rat diaphragm muscle strips were studied in vitro while aerated with95% O2-5%CO2 (normoxia) or 95%N2-5%CO2 (hypoxia). During continuous0.1-Hz stimulation, relaxation rate and force remained stable overtime, and relaxation rate was not slowed by hypoxia. Hypoxiaaccelerated force decline during continuous 5-Hz but not intermittent20-Hz stimulation. During both 5- and 20-Hz stimulation, relaxationrate became slower over time as force declined, the extent of which wasincreased significantly by hypoxia. The extent of hypoxia-augmentedslowing of relaxation rate during fatigue increased over time and was greater than expected for a given degree of force loss. 4-Aminopyridine did not attenuate or partially attenuated, whereas loweringextracellular Clconcentration fully attenuated, the hypoxia-induced prolongation ofrelaxation rate during repetitive stimulation. Thushypoxia slows relaxation rate to a greater extent than expected for a given degree of force decline, an effect that increases over time, isat most partially attenuated by loweringK+ conductance, and is fullyattenuated by lowering membranousCl conductance.

  相似文献   

2.
Aerobic fitness effects on exercise-induced low-frequency diaphragm fatigue   总被引:3,自引:0,他引:3  
Babcock, Mark A., David F. Pegelow, Bruce D. Johnson, andJerome A. Dempsey. Aerobic fitness effects on exercise-induced low-frequency diaphragm fatigue. J. Appl.Physiol. 81(5): 2156-2164, 1996.We usedbilateral phrenic nerve stimulation (BPNS; at 1, 10, and 20 Hz atfunctional residual capacity) to compare the amount of exercise-induceddiaphragm fatigue between two groups of healthy subjects, a high-fitgroup [maximal O2consumption (O2 max) = 69.0 ± 1.8 ml · kg1 · min1,n = 11] and a fit group(O2 max = 50.4 ± 1.7 ml · kg1 · min1,n = 13). Both groups exercised at88-92% O2 maxfor about the same duration (15.2 ± 1.7 and 17.9 ± 2.6 min forhigh-fit and fit subjects, respectively,P > 0.05). The supramaximal BPNS test showed a significant reduction (P < 0.01) in the BPNS transdiaphragmatic pressure (Pdi) immediatelyafter exercise of 23.1 ± 3.1% for the high-fit group and23.1 ± 3.8% (P > 0.05)for the fit group. Recovery of the BPNS Pdi took 60 min in both groups.The high-fit group exercised at a higher absolute workload, whichresulted in a higher CO2production (+26%), a greater ventilatory demand (+16%) throughout theexercise, and an increased diaphragm force output (+28%) over theinitial 60% of the exercise period. Thereafter, diaphragm force outputdeclined, despite a rising minute ventilation, and it was not differentbetween most of the high-fit and fit subjects. In summary, the high-fitsubjects showed diaphragm fatigue as a result of heavy enduranceexercise but were also partially protected from excessive fatigue,despite high ventilatory requirements, because their hyperventilatoryresponse to endurance exercise was reduced, their diaphragm wasutilized less in providing the total ventilatory response, and possiblytheir diaphragm aerobic capacity was greater.

  相似文献   

3.
Murphy, René J. L., Phillip F. Gardiner, Guy Rousseau,Michel Bouvier, and Louise Béliveau. Chronic -blockadeincreases skeletal muscle -adrenergic-receptor density and enhancescontractile force. J. Appl. Physiol.83(2): 459-465, 1997.The effects of a chronic 14-dayadministration of a selective2-adrenergic-receptor antagonist (ICI-118551) on skeletal muscle were evaluated in female Sprague-Dawley rats. Chronic ICI-118551 treatment did not modify musclemass, oxidative potential, or protein concentration of the medialgastrocnemius muscle, suggesting that maintenance of these skeletalmuscle characteristics is not dependent on2-adrenergic-receptor stimulation. However, the drug treatment increased-adrenergic-receptor density of the lateral gastrocnemius (42%) andcaused an increase in specific (g/g) isometric in situ contractileforces of the medial gastrocnemius [twitch, 56%; tetanic (200 Hz), 28%]. The elevated contractile forces observed after achronic treatment with ICI-118551 were completely abolished when the2-adrenergic antagonist wasalso administered acutely before measurement of contractile forces,suggesting that this response is2-adrenergic-receptor dependent. Possible mechanisms for the increased forces were studied. Caffeine administration potentiated twitch forces but had little effecton tetanic force in control animals. Administration of dibutyryladenosine 3,5-cyclic monophosphate in control animals also resulted in small increases of twitch force but did not modify tetanic forces. We conclude that increases in -adrenergic-receptor density and the stimulation of the receptors by endogenouscatecholamines appear to be responsible for increased contractileforces but that the mechanism remains to be demonstrated.

  相似文献   

4.
Tanaka, T., Y. Ohira, M. Danda, H. Hatta, and I. Nishi.Improved fatigue resistance not associated with maximum oxygen consumption in creatine-depleted rats. J. Appl.Physiol. 82 (6): 1911-1917, 1997.Effects offeeding of either creatine or its analog -guanidinopropionic acid(-GPA) on endurance work capacity and oxygen consumption werestudied in rats. Resting high-energy phosphate contents inhindlimb muscles were lower in the -GPA group and higher in thecreatine group than in controls. The glycogen contents in restinghindlimb muscles of rats fed -GPA were significantly higher thanthose in controls. The endurance run and swimming times to exhaustionwere significantly greater (32-70%) in the -GPA group than inthe control and creatine groups. However, there were nobeneficial effects on the maximum oxygen consumption (O2 max) and oxygentransport capacity of blood by the feeding of -GPA. None of theseparameters were significantly influenced by creatine supply. Bothmaximum exercise time andO2 max in the -GPAgroup were not changed by normalization of glycogen levels. Theactivities of mitochondrial enzymes in skeletal muscles were higher inthe -GPA group than in the controls. Thus endurance capacity isimproved if the respiratory capacity of muscles is increased, even whenthe contents of high-energy phosphates in muscles are lower. Increasedendurance capacity was not directly associated with the elevated levelsof muscle glycogen, oxygen transport capacity of blood, orO2 max.

  相似文献   

5.
Inspiratory muscle fatigue can probablydetermine hypercapnic respiratory failure. Diaphragm fatigue isdetected by electrical phrenic stimulation (ELS), but there is nosimple tool to assess rib cage muscle (RCM) fatigue. Cervical magneticstimulation (CMS) costimulates the phrenic nerves and RCM. We reasonedthat changes in transdiaphragmatic pressure twitch (Pdi,tw) with CMSand ELS should be different after selective diaphragm vs. RCM fatigue. Five volunteers performed inspiratory resistive tasks while voluntarily uncoupling diaphragm and RCM. BaselinePdi,twELS andPdi,twCMS were 28.57 ± 1.68 and 32.83 ± 2.92 cmH2O. Afterselective diaphragm loading,Pdi,twELS andPdi,twCMS were reduced by 39 and26%, with comparable decreases in gastric pressure twitch (Pga,tw).Esophageal pressure twitch (Pes,tw) was better preserved with CMS.Therefore Pes,tw/Pga,tw was lower with ELS than CMS (1.24 ± 0.16 vs. 1.73 ± 0.11, P = 0.05). After selectiveRCM loading, there was no diaphragm fatigue, butPes,twCMS was significantlyreduced (30%). These findings support the role of rib cagestiffening by CMS-related RCM contraction in the ELS-CMSdifferences and suggest that CMS can be used to assess RCM fatigue.

  相似文献   

6.
Creatine kinase(CK) provides ATP buffering in skeletal muscle and is expressed as1) cytosolic myofibrillar CK (M-CK)and 2) sarcomeric mitochondrial CK(ScCKmit) isoforms that differ in their subcellular localization. Wecompared the isometric contractile and fatigue properties of1) control CK-sufficient (Ctl),2) M-CK-deficient (M-CK[/]), and3) combined M-CK/ScCKmit-deficientnull mutant (CK[/]) diaphragm (Dia) todetermine the effect of the absence of M-CK activity on Dia performancein vitro. Baseline contractile properties were comparable across groupsexcept for specific force, which was ~16% lower inCK[/] Dia compared withM-CK[/] and Ctl Dia. During repetitiveactivation (40 Hz, duty cycle), force declined in all threegroups. This decline was significantly greater inCK[/] Dia compared with Ctl and M-CK[/] Dia. The pattern of forcedecline did not differ between M-CK[/] andCtl Dia. We conclude that Dia isometric muscle function is notabsolutely dependent on the presence of M-CK, whereas the completeabsence of CK acutely impairs isometric force generation duringrepetitive activation.

  相似文献   

7.
Watchko, Jon F., Monica J. Daood, Gary C. Sieck, John J. LaBella, Bill T. Ameredes, Alan P. Koretsky, and BeWieringa. Combined myofibrillar and mitochondrialcreatine kinase deficiency impairs mouse diaphragm isotonic function.J. Appl. Physiol. 82(5): 1416-1423, 1997.Creatine kinase (CK) is an enzyme central to cellular high-energy phosphate metabolism in muscle. To characterize the physiological role of CK in respiratory muscle during dynamic contractions, we compared the force-velocity relationships, power, andwork output characteristics of the diaphragm (Dia) from mice withcombined myofibrillar and sarcomeric mitochondrial CK deficiency (CK[/]) with CK-sufficient controls (Ctl).Maximum velocity of shortening was significantly lower inCK[/] Dia (14.1 ± 0.9 Lo/s,where Lo isoptimal fiber length) compared with Ctl Dia (17.5 ± 1.1 Lo/s)(P < 0.01). Maximum power wasobtained at 0.4-0.5 tetanic force in both groups; absolute maximumpower (2,293 ± 138 W/m2) andwork (201 ± 9 J/m2) werelower in CK[/] Dia compared with Ctl Dia(2,744 ± 146 W/m2 and 284 ± 26 J/m2, respectively)(P < 0.05). The ability ofCK[/] Dia to sustain shortening duringrepetitive isotonic activation (75 Hz, 330-ms duration repeated eachsecond at 0.4 tetanic force load) was markedly impaired, withCK[/] Dia power and work declining to zero by 37 ± 4 s, compared with 61 ± 5 s in Ctl Dia. We conclude that combined myofibrillar and sarcomeric mitochondrial CK deficiency profoundly impairs Dia power and work output, underscoring the functional importance of CK during dynamic contractions in skeletal muscle.

  相似文献   

8.
Ameredes, Bill T., and Mark A. Provenzano. Regionalintramuscular pressure development and fatigue in the caninegastrocnemius muscle in situ. J. Appl.Physiol. 83(6): 1867-1876, 1997.Intramuscular pressure (PIM) was measuredsimultaneously in zones of the medial head of thegastrocnemius-plantaris muscle group (zone I, popliteal origin; zoneII, central; zone III, near calcaneus tendon) to determine regionalmuscle mechanics during isometric tetanic contractions. PeakPIM averages were 586, 1,676, and993 mmHg deep in zones I, II, and III and 170, 371, and 351 mmHgsuperficially in zones I, II, and III, respectively. During fatigue,loss of PIM across zones wasgreatest in zone III (81%) and least in zone I (60%) when whole muscle tension loss was 49%. Recovery ofPIM was greatest in zone III andleast in zone II, achieving 86% and 67% of initial PIM, respectively, when tensionrecovered to 89%. These data demonstrate that1) regional mechanical performancecan be measured as PIM within awhole muscle, 2)PIM is nonuniform within thecanine gastrocnemius-plantaris muscle, being greatest in the deepcentral zone, and 3) fatigue andrecovery of PIM are dissimilaracross regions. These differences suggest distinct local effects that integrate to determine whole muscle mechanical capacity during andafter intense exercise.

  相似文献   

9.
Raimondi, G., J. M. Legramante, F. Iellamo, G. Frisardi, S. Cassarino, and G. Peruzzi. Noxious stimuli do not determine reflexcardiorespiratory effects in anesthetized rabbits. J. Appl. Physiol. 81(6): 2421-2427, 1996.Themain purpose of this study is to examine whether the stimulation of anexclusively pain-sensing receptive field (dental pulp) could determinecardiorespiratory effects in animals in which the cortical integrationof the peripheral information is abolished by deep anesthesia. In 15 anesthetized (-chloralose and urethan) rabbits, low (3-Hz)- andhigh-frequency (100-Hz) electrical dental pulp stimulation wasperformed. Because this stimulation caused dynamic and static reflexcontractions of the digastric muscles leading to jaw opening[jaw-opening reflex (JOR); an indirect sign of algoceptive fiberactivation], experimentally induced direct dynamic and staticcontractions of the digastric muscle were also performed. The low- andhigh-frequency stimulation of the dental pulp determined cardiovascular[systolic arterial pressure (SAP): 21.7 ± 4.6 and 10.8 ± 4.7 mmHg, respectively] andrespiratory [pulmonary ventilation(E): 145.1 ± 44.9 and 109.3 ± 28.4 ml /min, respectively] reflexresponses similar to those observed during experimentally induceddynamic (SAP: 17.5 ± 4.2 mmHg;E: 228.0 ± 58.5 ml /min) and static (SAP: 5.8 ± 1.5 mmHg;E: 148.0 ± 75.3 ml /min) muscular contractions. The elimination ofdigastric muscular contraction (JOR) obtained by muscular paralysis didaway with the cardiovascular changes induced by dental pulpstimulation, the effectiveness of which in stimulating dental pulpreceptors has been shown by recording trigeminal-evoked potentials insix additional rabbits. The main conclusion was that, indeeply anesthetized animals, an algesic stimulus is unable to determinecardiorespiratory effects, which appear to be exclusively linked to thestimulation of ergoreceptors induced by muscular contraction.

  相似文献   

10.
Repetitiveisometric tetanic contractions (1/s) of the caninegastrocnemius-plantaris muscle were studied either at optimal length(Lo) or shortlength (Ls;~0.9 · Lo),to determine the effects of initial length on mechanical and metabolicperformance in situ. Respective averages of mechanical and metabolicvariables were(Lo vs.Ls, allP < 0.05) passive tension (preload) = 55 vs. 6 g/g, maximal active tetanic tension(Po) = 544 vs. 174 (0.38 · Po)g/g, maximal blood flow () = 2.0 vs. 1.4 ml · min1 · g1,and maximal oxygen uptake(O2) = 12 vs. 9 µmol · min1 · g1.Tension at Lodecreased to0.64 · Po over20 min of repetitive contractions, demonstrating fatigue; there were nosignificant changes in tension atLs. In separatemuscles contracting atLo, was set to that measured atLs (1.1 ml · min1 · g1),resulting in decreased O2(7 µmol · min1 · g1),and rapid fatigue, to0.44 · Po. Thesedata demonstrate that 1)muscles at Lohave higher andO2 values than those at Ls;2) fatigue occurs atLo with highO2, adjusting metabolic demand (tension output) to match supply; and3) the lack of fatigue atLs with lowertension, , andO2 suggestsadequate matching of metabolic demand, set low by shortmuscle length, with supply optimized by low preload. Thesedifferences in tension andO2 betweenLo andLs groupsindicate that muscles contracting isometrically at initial lengthsshorter than Loare working under submaximal conditions.

  相似文献   

11.
Respiratory muscle work compromises leg blood flow during maximal exercise   总被引:10,自引:0,他引:10  
Harms, Craig A., Mark A. Babcock, Steven R. McClaran, DavidF. Pegelow, Glenn A. Nickele, William B. Nelson, and Jerome A. Dempsey.Respiratory muscle work compromises leg blood flow during maximalexercise. J. Appl. Physiol.82(5): 1573-1583, 1997.We hypothesized that duringexercise at maximal O2 consumption (O2 max),high demand for respiratory muscle blood flow() would elicit locomotor muscle vasoconstrictionand compromise limb . Seven male cyclists(O2 max 64 ± 6 ml · kg1 · min1)each completed 14 exercise bouts of 2.5-min duration atO2 max on a cycleergometer during two testing sessions. Inspiratory muscle work waseither 1) reduced via aproportional-assist ventilator, 2)increased via graded resistive loads, or3) was not manipulated (control).Arterial (brachial) and venous (femoral) blood samples, arterial bloodpressure, leg (legs;thermodilution), esophageal pressure, andO2 consumption(O2) weremeasured. Within each subject and across all subjects, at constantmaximal work rate, significant correlations existed(r = 0.74-0.90;P < 0.05) between work of breathing(Wb) and legs (inverse), leg vascular resistance (LVR), and leg O2(O2 legs;inverse), and between LVR and norepinephrine spillover. Mean arterialpressure did not change with changes in Wb nor did tidal volume orminute ventilation. For a ±50% change from control in Wb,legs changed 2 l/min or 11% of control, LVRchanged 13% of control, and O2extraction did not change; thusO2 legschanged 0.4 l/min or 10% of control. TotalO2 max was unchangedwith loading but fell 9.3% with unloading; thusO2 legsas a percentage of totalO2 max was 81% incontrol, increased to 89% with respiratory muscle unloading, anddecreased to 71% with respiratory muscle loading. We conclude that Wbnormally incurred during maximal exercise causes vasoconstriction inlocomotor muscles and compromises locomotor muscle perfusion andO2.

  相似文献   

12.
Carvalho, Paula, Shane R. Johnson, Nirmal B. Charan.Non-cAMP-mediated bronchial arterial vasodilation in response toinhaled -agonists. J. Appl.Physiol. 84(1): 215-221, 1998.We studied thedose-dependent effects of inhaled isoetharine HCl, a -adrenergicbronchodilator (2.5, 5.0, 10.0, and 20.0 mg), on bronchial blood flow(br) in anesthetized sheep. Isoetharine resulted ina dose-dependent increase in br. With atotal dose of 17.5 mg, br increased from baselinevalues of 22 ± 3.4 (SE) to 60 ± 16 ml/min(P < 0.001), an effect independentof changes in cardiac output and systemic arterial pressure. To furtherstudy whether synthesis of endogenous nitric oxide (NO) affects-agonist-induced increases in br, weadministered isoetharine (20 mg) by inhalation before and after theNO-synthase inhibitorN-nitro-L-argininemethyl ester (L-NAME).Intravenous L-NAME (30 mg/kg) rapidly decreased br by ~80% of baseline,whereas L-NAME via inhalation(10 mg/kg) resulted in a delayed and smaller (~22%) decrease.Pretreatment with L-NAME viaboth routes of administration attenuated bronchial arterialvasodilation after subsequent challenge with isoetharine. We concludethat isoetharine via inhalation increases br in adose-dependent manner and that -agonist-induced relaxation ofvascular smooth muscle in the bronchial vasculature is partiallymediated via synthesis of NO.

  相似文献   

13.
Chilibeck, P. D., D. H. Paterson, D. A. Cunningham, A. W. Taylor, and E. G. Noble. Muscle capillarization,O2 diffusion distance, andO2 kinetics in old andyoung individuals. J. Appl. Physiol.82(1): 63-69, 1997.The relationships between muscle capillarization, estimated O2diffusion distance from capillary to mitochondria, andO2 uptake(O2) kineticswere studied in 11 young (mean age, 25.9 yr) and 9 old (mean age, 66.0 yr) adults. O2kinetics were determined by calculating the time constants () forthe phase 2 O2 adjustment to andrecovery from the average of 12 repeats of a 6-min, moderate-intensityplantar flexion exercise. Muscle capillarization was determined fromcross sections of biopsy material taken from lateral gastrocnemius.Young and old groups had similarO2 kinetics(O2-on = 44 vs. 48 s;O2-off = 33 vs. 44 s, for young and old, respectively), muscle capillarization, andestimated O2 diffusion distances.Muscle capillarization, expressed as capillary density or averagenumber of capillary contacts per fiber/average fiber area, and theestimates of diffusion distance were significantly correlated toO2-off kinetics in theyoung (r = 0.68 to 0.83;P < 0.05). We conclude that1) capillarization andO2 kinetics during exerciseof a muscle group accustomed to everyday activity (e.g., walking) arewell maintained in old individuals, and2) in the young, recovery of O2 after exercise isfaster, with a greater capillary supply over a given muscle fiber areaor shorter O2 diffusion distances.

  相似文献   

14.
Rudolph, Alan S., Anthony Sulpizio, Paul Hieble, VictorMacdonald, Mark Chavez, and Giora Feuerstein. Liposomeencapsulation attenuates hemoglobin-induced vasoconstriction in rabbitarterial segments. J. Appl. Physiol.82(6): 1826-1835, 1997.Free hemoglobin (Hb) induces a potentvasoconstrictor response that may limit its therapeutic application asa red blood cell replacement. We have investigated whetherencapsulation of stroma-free Hb (SFHb) or cross-linked Hb (-Hb)in liposomes modulates Hb vasoactivity in isolated blood vessels.Relaxation of rabbit thoracic vessels was measured before and afterexposure to acellular SFHb, -Hb, and liposome-encapsulated SFHbor -Hb. SFHb and -Hb caused significant inhibition ofcarbachol-induced relaxation at 0.5 mg/dl, whereas encapsulationinhibited vessel relaxation at 30- to 60-fold higher Hb concentrations.The contractile response of rabbit ear arterial segments to electricalstimulation in the presence of acellular -Hb resulted in a 150%increase (EC150) in contractileamplitude at 0.23 mg/dl, whereas theEC150 for encapsulated -Hbwas 13.7 mg/dl. Mechanistic studies of the vasoconstrictor activity ofHb demonstrated that acellular -Hb had no effect onnorepinephrine release in the rabbit ear artery. In addition, neitheracellular nor encapsulated -Hb preparations inhibited endothelialnitric oxide (NO) synthase activity isolated from bovine pulmonaryartery. However, inhibition of vessel relaxation by acellular orencapsulated -Hb was reversed by the NO donor S-nitrosylpenacillamine, implicatingHb-NO binding as a possible mechanism for the vasoconstrictor response.In vitro stopped-flow kinetic studies of Hb-NO binding showed similarrates of reaction for conversion of oxyhemoglobin to methemoglobin(metHb; <2 ms), followed by rapid conversion of metHb to NO-Hb (300 ms) for both acellular and encapsulated -Hb, demonstrating thatliposome encapsulation does not retard NO-Hb binding. The attenuatedvasoactivity of encapsulated Hb may, therefore, result from the limitedaccess of encapsulated Hb to NO imposed by the physical size of theliposome and reduced penetration of Hb across the vascular endothelium.

  相似文献   

15.
O'Hagan, Kathleen P., Susan M. Casey, and Philip S. Clifford. Muscle chemoreflex increases renalsympathetic nerve activity during exercise. J. Appl.Physiol. 82(6): 1818-1825, 1997.Activation ofthe muscle chemoreflex increases sympathetic drive to skeletal musclein humans. This study investigated whether activation of the musclechemoreflex augments the renal sympathetic nerve activity (RSNA)response to dynamic exercise in rabbits. The muscle chemoreflex wasevoked by hindlimb ischemia during exercise on a motorized treadmill.Seven New Zealand White rabbits performed a nonischemic controlprotocol and a hindlimb ischemia protocol in which terminal aorticblood flow (ta) was reduced to 51 ± 2% ofpreocclusion ta by partial aortic occlusion after 1.5 min of exercise. Mean arterial pressure (MAP), heart rate, RSNA andta increased in response to exercise and weresimilar between trials during the first 1.5 min of exercise. In thecontrol trial, ta, MAP, and RSNA were stable at anelevated level through an additional 3.5 min of exercise. Hindlimbischemia produced a potent pressor response that plateaued after 2.5 min (+17 ± 4 mmHg, where  designates change). RSNA began toincrease after 1.5 min of ischemic exercise and was significantlyelevated relative to preocclusion RSNA at 2.5 (+25 ± 9%) and3.5 (+47 ± 12%) min of occlusion. These results suggest thatthe muscle chemoreflex can augment sympathoexcitatory drive to thekidney during dynamic exercise.

  相似文献   

16.
Moon, Jon K., and Nancy F. Butte. Combined heart rateand activity improve estimates of oxygen consumption and carbon dioxideproduction rates. J. Appl. Physiol.81(4): 1754-1761, 1996.Oxygen consumption(O2) andcarbon dioxide production (CO2) rates were measuredby electronically recording heart rate (HR) and physical activity (PA).Mean daily O2 andCO2 measurements by HR andPA were validated in adults (n = 10 women and 10 men) with room calorimeters. Thirteen linear and nonlinear functions of HR alone and HR combined with PA were tested as models of24-h O2 andCO2. Mean sleepO2 andCO2 were similar to basalmetabolic rates and were accurately estimated from HR alone[respective mean errors were 0.2 ± 0.8 (SD) and0.4 ± 0.6%]. The range of prediction errorsfor 24-h O2 andCO2 was smallestfor a model that used PA to assign HR for each minute to separateactive and inactive curves(O2, 3.3 ± 3.5%; CO2, 4.6 ± 3%). There were no significant correlations betweenO2 orCO2 errors and subject age,weight, fat mass, ratio of daily to basal energy expenditure rate, orfitness. O2,CO2, and energy expenditurerecorded for 3 free-living days were 5.6 ± 0.9 ml · min1 · kg1,4.7 ± 0.8 ml · min1 · kg1,and 7.8 ± 1.6 kJ/min, respectively. Combined HR and PA measured 24-h O2 andCO2 with a precisionsimilar to alternative methods.

  相似文献   

17.
Treppo, Steven, Srboljub M. Mijailovich, and José G. Venegas. Contributions of pulmonary perfusion and ventilation toheterogeneity in A/measured by PET. J. Appl. Physiol. 82(4): 1163-1176, 1997. To estimate the contributions of the heterogeneity in regionalperfusion () and alveolar ventilation(A) to that of ventilation-perfusionratio (A/), we haverefined positron emission tomography (PET) techniques to image localdistributions of andA per unit of gas volume content(s and sA,respectively) and VA/ indogs. sA was assessed in two ways:1) the washout of 13NN tracer after equilibrationby rebreathing (sAi), and2) the ratio of an apneic image after a bolus intravenousinfusion of 13NN-saline solution to an image collectedduring a steady-state intravenous infusion of the same solution(sAp).sAp was systematically higher than sAi in allanimals, and there was a high spatial correlation betweens andsAp in both body positions(mean correlation was 0.69 prone and 0.81 supine) suggesting thatventilation to well-perfused units was higher than to those poorlyperfused. In the prone position, the spatial distributions ofs, sAp, and A/ were fairlyuniform with no significant gravitational gradients; however, in thesupine position, these variables were significantly more heterogeneous,mostly because of significant gravitational gradients (15, 5.5, and10%/cm, respectively) accounting for 73, 33, and 66% of thecorresponding coefficient of variation (CV)2 values. Weconclude that, in the prone position, gravitational forces in blood andlung tissues are largely balanced out by dorsoventral differences inlung structure. In the supine position, effects of gravity andstructure become additive, resulting in substantial gravitationalgradients in s andsAp, with the higherheterogeneity inA/ caused by agravitational gradient in s, only partially compensated by that in sA.

  相似文献   

18.
Proctor, David N., and Michael J. Joyner. Skeletalmuscle mass and the reduction ofO2 max in trainedolder subjects. J. Appl. Physiol.82(5): 1411-1415, 1997.The role of skeletal muscle mass in theage-associated decline in maximalO2 uptake (O2 max) is poorlydefined because of confounding changes in muscle oxidative capacity andin body fat and the difficulty of quantifying active muscle mass duringexercise. We attempted to clarify these issues byexamining the relationship between several indexes of muscle mass, asestimated by using dual-energy X-ray absorptiometry and treadmillO2 max in 32 chronically endurance-trained subjects from four groups(n = 8/group): young men(20-30 yr), older men (56-72 yr), young women(19-31 yr), and older women (51-72 yr).O2 max per kilogrambody mass was 26 and 22% lower in the older men (45.9 vs. 62.0 ml · kg1 · min1)and older women (40.0 vs. 51.5 ml · kg1 · min1).These age differences were reduced to 14 and 13%, respectively, whenO2 max was expressedper kilogram of appendicular muscle. When appropriately adjusted forage and gender differences in appendicular muscle mass by analysis ofcovariance, whole body O2 max was 0.50 ± 0.09 l/min less (P < 0.001) in theolder subjects. This effect was similar in both genders.These findings suggest that the reducedO2 max seen in highlytrained older men and women relative to their younger counterparts isdue, in part, to a reduced aerobic capacity per kilogram of activemuscle independent of age-associated changes in body composition, i.e.,replacement of muscle tissue by fat. Because skeletal muscleadaptations to endurance training can be well maintained in oldersubjects, the reduced aerobic capacity per kilogram of muscle likelyresults from age-associated reductions in maximalO2 delivery (cardiac outputand/or muscle blood flow).

  相似文献   

19.
Gosselin, Luc E., David Megirian, Joshua Rodman, DonnaMueller, and Gaspar A. Farkas. Respiratory muscle reserve in ratsduring heavy exercise. J. Appl.Physiol. 83(4): 1405-1409, 1997.The extent towhich the respiratory pump muscles limit maximal aerobic capacity inquadrupeds is not entirely clear. To examine the effect of reducedrespiratory muscle reserve on aerobic capacity, whole bodypeak oxygen consumption(O2 peak) wasmeasured in healthy Sprague-Dawley rats before and after Sham,unilateral, or bilateral hemidiaphragm denervation (Dnv) surgery.O2 peak wasdetermined by using a graded treadmill running test.Hemidiaphragm paralysis was verified after testing byrecording the absence of electromyographic activity duringinspiration. Before surgery, O2 peak averaged 86, 87, and 92 ml · kg1 · min1for the Sham, unilateral, and bilateral Dnv groups, respectively. Twoweeks after surgery, there was no significant change inO2 peak foreither the Sham or unilateral Dnv group. However,O2 peak decreased~19% in the bilateral Dnv group 2 wk after surgery. These findingsstrongly suggest that the pulmonary system in rats is designed suchthat during heavy exercise, the remaining respiratory pump muscles areable to compensate for the loss of one hemidiaphragm, but not of both.

  相似文献   

20.
Tokics, Leif, Göran Hedenstierna, Leif Svensson, BoBrismar, Torsten Cederlund, Hans Lundquist, and ÅkeStrandberg. / distributionand correlation to atelectasis in anesthetized paralyzed humans.J. Appl. Physiol. 81(4):1822-1833, 1996.Regional ventilation and perfusion were studiedin 10 anesthetized paralyzed supine patients by single-photon emissioncomputerized tomography. Atelectasis was estimated from twotransaxial computerized tomography scans. The ventilation-perfusion(/) distribution was alsoevaluated by multiple inert gas elimination. While the patients wereawake, inert gas / ratio wasnormal, and shunt did not exceed 1% in any patient. Computerizedtomography showed no atelectasis. During anesthesia, shunt ranged from0.4 to 12.2%. Nine patients displayed atelectasis (0.6-7.2% ofthe intrathoracic area), and shunt correlated with the atelectasis(r = 0.91, P < 0.001). Shunt was located independent lung regions corresponding to the atelectatic area. There wasconsiderable / mismatch, withventilation mainly of ventral lung regions and perfusion of dorsalregions. Little perfusion was seen in the most ventral parts (zone 1)of caudal (diaphragmatic) lung regions. In summary, shunt during anesthesia is due to atelectasis in dependent lung regions. The / distributions differ fromthose shown earlier in awake subjects.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号