首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblasts organize the modular cell-adhesive glycoprotein fibronectin into a highly structured pericellular matrix by poorly understood mechanisms. Previous studies implicated an amino-terminal domain in matrix assembly and suggested that fibronectin's cell-adhesive domain and the corresponding fibroblast receptor were not involved in this process. To further elucidate the fibronectin region(s) involved in matrix assembly, we mapped a library of proteolytic fragments and antibodies to various fibronectin domains. The fragments and antibodies were used to probe the role of fibronectin's amino-terminal and cell-adhesive domains in a fibroblast matrix assembly assay. We found that fibronectin fragments including the first 25-kDa sequence of fibronectin and antibodies to amino-terminal domains inhibited pericellular matrix assembly. Polyclonal antibodies to the 40-kDa collagen binding domain following the 25-kDa amino-terminal domain also inhibited matrix assembly. However, collagen binding is not required for matrix assembly as neither monoclonals blocking collagen binding nor purified collagen binding domains themselves inhibited matrix assembly. Therefore, the amino-terminal region of fibronectin contains a site important in matrix assembly, and most activity is present in the first 25-kDa of fibronectin. Fibronectin's cell-adhesive domain and the fibroblast receptor binding to this domain also play an important role in fibronectin matrix assembly. Apart from a monoclonal antibody to the amino-terminal domain, only monoclonal antibodies binding to fibronectin's cell-adhesive domain and inhibiting cell adhesion also inhibited matrix assembly. In addition a 105-kDa fragment containing the cell-adhesive domain inhibited matrix assembly. We conclude that at least two discrete and widely separated sites in fibronectin with different binding properties--the carboxyl-terminal fibroblast cell-adhesive domain and an amino-terminal matrix assembly domain localized primarily within the first 25 kDa--are required for fibronectin pericellular matrix assembly by fibroblasts. Fibronectin's cell-adhesive domain and its cell surface-receptor complex appear to be involved in the matrix assembly process prior to a step involving the amino-terminal domain. We believe that this step is likely to be the initiation of cell-associated fibronectin fibril formation by the fibronectin-adhesive-receptor complex.  相似文献   

2.
The collagen-binding domain of human fibronectin has been expressed as a cro/beta-galactosidase fusion protein in Escherichia coli. The hybrid polypeptide was recognized by an anti-(human plasma fibronectin) serum and bound specifically to gelatin-Sepharose. The collagen-binding region was subdivided by constructing a series of overlapping bacterial expression plasmids. The fusion proteins produced by these constructs were analysed for gelatin-binding activity. The results indicate that the binding site lies within an approximately 12.5 kd fragment of fibronectin, and show that the following 14 amino acid sequence is critical for gelatin-binding activity: Ala-Ala-His-Glu-Glu-Ile-Cys-Thr-Thr-Asn-Glu-Gly-Val-Met. This sequence links the second type II homology unit with the adjacent type I repeat in the amino-terminal third of the fibronectin molecule.  相似文献   

3.
Several cell-mediated activities for the amino terminus of fibronectin have been documented. In the present study we describe a macrophage surface protein with binding activity directed to the amino terminus of the fibronectin molecule. The binding of a 29-kDa amino-terminal fibronectin fragment to macrophages reached steady state by 30 min and was half-maximal at approximately 2 x 10(-8) M. This binding was specifically inhibited by excess unlabeled 29-kDa fragment or intact fibronectin but not by a 180-kDa fibronectin fragment which lacks the amino terminus. Competitive binding studies of the 70-kDa amino-terminal fibronectin fragment to macrophages revealed a single binding site with KD = 7.14 x 10(-8) M and approximately 8 x 10(4) binding sites/cell. Radiolabeled surface proteins extracted from rat peritoneal macrophages and from the human U937 cell line were applied to an affinity column comprised of the 70-kDa amino-terminal fragment of fibronectin coupled to a solid support. A single trypsin-sensitive radiolabeled protein of 67 kDa, from either cell type, was eluted from this column with urea. This protein showed no immunologic identity with fibronectin, fibrin(ogen), or albumin. The 67-kDa protein exhibited identical apparent molecular weight under reducing and nonreducing conditions, as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. We have localized the fibronectin binding activity of this protein to within the 29-kDa amino-terminal domain of fibronectin. The 67-kDa protein eluted from the 70-kDa column failed to bind to a column comprised of the 45-kDa gelatin-binding fragment of fibronectin. Additionally, the 67-kDa protein was specifically eluted from the 70-kDa column by the 29-kDa amino-terminal fragment but not by the 45-kDa gelatin-binding fragment. These data suggest that this 67-kDa protein is a macrophage cell surface binding protein for the amino terminus of fibronectin.  相似文献   

4.
Fibronectin is organized into disulfide cross-linked, insoluble pericellular matrix fibrils by fibroblasts in vitro. Two sites, the Arg-Gly-Asp-Ser-containing cell attachment domain and a site located in the first 70 kDa of fibronectin, are required for matrix assembly. The first 70 kDa of fibronectin contain two structural motifs termed type I and type II homologies, which are repeated nine and two times, respectively. Previous work has implicated the amino-terminal region and the carboxyl terminus containing three type I repeats in matrix assembly, suggesting that type I repeats possess binding activity essential for fibronectin matrix assembly. To test this hypothesis, we developed a sensitive capture immunoassay to quantify insoluble matrix fibronectin and tested a panel of fibronectin fragments, containing all of the type I repeats found in the intact protein, for their ability to inhibit matrix assembly. Only fragments containing the first five type I repeats inhibited fibronectin matrix assembly, although sequences carboxyl-terminal to this domain enhanced this activity. Additional evidence for the specific recognition of the amino-terminal type I repeats by matrix assembling cells was found when the reversible, detergent-sensitive binding of a 125I-labeled fragment containing the first five type I repeats (29 kDa) to cell monolayers was studied. Only monolayers of cell lines that incorporate fibronectin into a fibrillar matrix specifically bound 125I-labeled 29 kDa. Binding of the radiolabeled amino-terminal fragment to matrix-forming cells was inhibited by unlabeled fragments containing the first five type I repeats but not by unlabeled fragments containing the remaining seven type I repeats. Matrix assembly is therefore not a generalized property of type I repeats. Rather, a critical site is located within the first 29 kDa of fibronectin.  相似文献   

5.
The deposition of fibronectin into the extracellular matrix is an integrin-dependent, multistep process that is tightly regulated in order to ensure controlled matrix deposition. Reduced fibronectin deposition has been associated with altered embryonic development, tumor cell invasion, and abnormal wound repair. In one of the initial steps of fibronectin matrix assembly, the amino-terminal region of fibronectin binds to cell surface receptors, termed matrix assembly sites. The present study was undertaken to investigate the role of extracellular signals in the regulation of fibronectin deposition. Our data indicate that the interaction of cells with the extracellular glycoprotein, vitronectin, specifically inhibits matrix assembly site expression and fibronectin deposition. The region of vitronectin responsible for the inhibition of fibronectin deposition was localized to the heparin-binding domain. Vitronectin's heparin-binding domain inhibited both beta(1) and non-beta(1) integrin-dependent matrix assembly site expression and could be overcome by treatment of cells with lysophosphatidic acid, an agent that promotes actin polymerization. The interaction of cells with the heparin-binding domain of vitronectin resulted in changes in actin microfilament organization and the subcellular distribution of the actin-associated proteins alpha-actinin and talin. These data suggest a mechanism whereby the heparin-binding domain of vitronectin regulates the deposition of fibronectin into the extracellular matrix through alterations in the organization of the actin cytoskeleton.  相似文献   

6.
Factor XIIIa cross-links plasma fibronectin as it is being assembled into the extracellular matrix of cultured human skin fibroblasts (Barry, E. L. R., and Mosher, D. F. (1988) J. Biol. Chem. 262, 10464-10469). We have further characterized this process. Fibroblasts were metabolically labeled with proline in the presence or absence of ascorbate and Factor XIIIa. Endogenous fibronectin in the extracellular matrix was cross-linked by Factor XIIIa. There was no evidence for cross-linking of collagenous proteins. Fibro-blast cell layers were incubated with iodinated 27-kDa heparin-binding or 70-kDa collagen- and heparin-binding amino-terminal fibronectin fragments. Factor XIIa cross-linked the fragments into high molecular weight aggregates. The amounts of cross-linked fragments reaches a steady state after 1 to 2 h, whereas intact fibronectin continues to be cross-linked for 24 h. When fibroblast cell layers were pulsed with iodinated fibronectin or amino-terminal fragments and Factor XIIIa was included in the chase media, the high molecular weight aggregates were formed in a step-wise manner. The smallest cross-linking steps were to high molecular weight extracellular matrix molecules forming approximately 270-, 300-, and 440-kDa complexes for the 27-kDa fragment, 70-kDa fragment, and intact fibronectin, respectively. When iodinated fibronectin was bound to fibroblast cell layers and chased into the matrix pool in the absence of Factor XIIIa, it could also be cross-linked into high molecular weight complexes when Factor XIIIa was added to the media. These results, therefore, indicate that both cellular and plasma fibronectin and amino-terminal fragments are cross-linked specifically by Factor XIIIa, that the cross-linking is probably to other fibronectin molecules rather than to collagenous proteins, and that both assembling and assembled fibronectin are substrates for Factor XIIIa.  相似文献   

7.
Cultured fibroblasts bind soluble protomeric fibronectin and mediate its conversion to insoluble disulfide-bonded multimers. The disulfide-bonded multimers are deposited in fibrillar pericellular matrix. Antifibronectin monoclonal antibodies were analyzed to identify domains of fibronectin required for assembly into matrix. Two antibodies, L8 and 9D2, inhibited binding and insolubilization of 125I-labeled plasma fibronectin by fibroblasts but did not inhibit binding of labeled amino-terminal 70-kDa fragment of fibronectin to matrix assembly sites. Immunoblotting of fibronectin fragments showed that the epitope for 9D2 is in the first type III homology sequence (III-1) whereas the epitope for L8 requires that the last type I sequence of the gelatin binding region (I-9) be contiguous to III-1 and is sensitive to reduction of disulfides in I-9. A 56-kDa gelatin-binding thermolysin fragment of fibronectin that contains III-1 and the L8 and 9D2 epitopes inhibited binding of fibronectin to cell layers 10-fold better than a 40-kDa gelatin-binding fragment that lacks III-1 and the antigenic sites. This 56-kDa fragment, however, did not bind specifically to cell layers. These results indicate that the I-9 and III-1 modules of fibronectin form a functional unit that mediates an interaction, perhaps between protomers, important in the assembly of fibronectin.  相似文献   

8.
Tumor cell adhesion to the extracellular matrix is an important consideration in tumor metastasis. Recent results show that multiple adhesion-promoting domains for melanoma cells can be purified from proteolytic digests of fibronectin [McCarthy, J. B., Hagen, S. T., & Furcht, L. T. (1986) J. Cell Biol. 102, 179-188]. Monoclonal antibodies were generated against a tryptic/catheptic 33K heparin binding fragment of fibronectin derived from the carboxyl terminal of the A chain. This region contains a tumor cell adhesion-promoting domain(s). The amino-terminal sequence was determined for this fragment, as well as a tryptic 31K fragment which is located to the carboxyl-terminal side of the 33K heparin binding fragment in A chains of fibronectin. The partial sequence data demonstrate that arginyl-glycyl-aspartyl-serine (RGDS) or the related arginyl-glutamyl-aspartyl-valine (REDV) is not present in the 33K heparin binding fragment, confirming earlier results which demonstrated that cells adhere to this fragment by an RGDS-independent mechanism. Two monoclonal antibodies, termed AHB-1 and AHB-2, recognized epitopes common to heparin binding fragments derived from the carboxyl terminus of both the A and B chains of fibronectin. Monoclonal antibody AHB-2 inhibited melanoma adhesion to the 33K heparin binding fragment of fibronectin in a concentration-dependent manner, whereas monoclonal antibody AHB-1 had no effect on adhesion to this fragment. Neither monoclonal antibody inhibited adhesion to intact fibronectin. However, monoclonal AHB-2 potentiated the inhibitory effect of suboptimal levels of exogenous RGDS on cell adhesion to intact fibronectin. AHB-2 recognized an epitope common to both the A- and B-chain carboxyl-terminal heparin binding region of fibronectin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Using low magnification Hoffman Modulation Contrast microscopy to rapidly identify precartilage mesenchymal condensations in chick limb bud cultures, we have determined the effect on condensation number of treatments disruptive of the interaction of cell surface components with endogenously produced fibronectin. A monoclonal antibody directed against the amino-terminal heparin-binding domain of fibronectin reduced the number of condensations by more than 50%, as did the oligopeptide gly-arg-gly, which is a repeated motif in that fibronectin domain. In contrast, monoclonal antibodies directed against the collagen- and integrin-binding domains of fibronectin, or oligopeptides containing the fibronectin integrin-recognition sequence arg-gly-asp-ser, had no significant effect on condensation number. Addition of Flavobacterium heparinase to cultures also reduced condensation number by more than 50%. Alcian blue staining of sulfated proteoglycan was greatly reduced in differentiated cultures that had been exposed to treatments that reduced condensation number. Taken together with the accompanying study, which directly demonstrates an adhesive interaction between the amino-terminal domain of extracellular fibronectin and heparin-like molecules on the surfaces of latex bead probes, the data presented here strongly indicate a major role for the corresponding cell-matrix interaction in mediating precartilage condensation in limb mesenchyme.  相似文献   

10.
Thrombospondin is a major glycoprotein of the platelet alpha-granule and is secreted during platelet activation. Several protease-resistant domains of thrombospondin mediate its interactions with components of the extracellular matrix including fibronectin, collagen, heparin, laminin, and fibrinogen. Thrombospondin, as well as fibronectin, is composed of several discretely located biologically active domains. We have characterized the thrombospondin binding domains of plasma fibronectin and determined the binding affinities of the purified domains; fibronectin has at least two binding sites for thrombospondin. Thrombospondin bound specifically to the 29-kDa amino-terminal heparin binding domain of fibronectin as well as to the 31-kDa non-heparin binding domain located within the larger 40-kDa carboxy-terminal fibronectin domain generated by chymotrypsin proteolysis. Platelet thrombospondin interacted with plasma fibronectin in a specific and saturable manner in blot binding as well as solid-phase binding assays. These interactions were independent of divalent cations. Thrombospondin bound to the 29-kDa fibronectin heparin binding domain with a Kd of 1.35 x 10(-9) M. The Kd for the 31-kDa domain of fibronectin was 2.28 x 10(-8) M. The 40-kDa carboxy-terminal fragment bound with a Kd of 1.65 x 10(-8) M. Heparin, which binds to both proteins, inhibited thrombospondin binding to the amino-terminal domain of fibronectin by more than 70%. The heparin effect was less pronounced with the non-heparin binding carboxy-terminal domain of fibronectin. By contrast, the binding affinity of the thrombospondin 150-kDa domain, which itself lacked heparin binding, was not affected by the presence of heparin. Based on these data, we conclude that thrombospondin binds with different affinities to two distinct domains in the fibronectin molecule.  相似文献   

11.
Transforming growth factor beta (TGF-beta) enhances the cell surface binding of 125I-fibronectin by cultured human fibroblasts. The effect of TGF-beta on cell surface binding was maximal after 2 h of exposure to TFG-beta and did not require epidermal growth factor or protein synthesis. The enhancement was dose dependent and was found with the 125I-labeled 70-kilodalton amino-terminal fragment of fibronectin as well as with 125I-fibronectin. Treatment of cultures with TGF-beta for 6 h resulted in a threefold increase in the estimated number of fibronectin binding sites. The increase in number of binding sites was accompanied by an increased accumulation of labeled fibronectin in detergent-insoluble extracellular matrix. The effect of TGF-beta was biphasic; after 6 h of exposure, less labeled fibronectin bound to treated cultures than to control cultures. Exposure of cells to TGF-beta for greater than 6 h caused a two- to threefold increase in the accumulation of cellular fibronectin in culture medium as detected by a quantitative enzyme-linked immunosorbent assay. The second phase of the biphasic effect and the increase in soluble cellular fibronectin were blocked by cycloheximide. Immunofluorescence staining of fibroblast cultures with antifibronectin revealed that TGF-beta caused a striking increase in fibronectin fibrils. The 70-kilodalton amino-terminal fragment of fibronectin, which blocks incorporation of fibronectin into extracellular matrix, blocked anchorage-independent growth of NRK-49F cells in the presence of epidermal growth factor. Our results show that an increase in the binding and rate of assembly of exogenous fibronectin is an early event preceding the increase in expression of extracellular matrix proteins. Such an early increase in cell surface binding of exogenous fibronectin may be a mechanism whereby TGF-beta can modify extracellular matrix characteristics rapidly after tissue injury or during embryonic morphogenesis.  相似文献   

12.
Fibroblasts have cell surface sites that mediate assembly of plasma and cellular fibronectin into the extracellular matrix. Cell adhesion to fibronectin can be mediated by the interaction of an integrin (alpha 5 beta 1) with the Arg-Gly-Asp-Ser (RGDS)-containing cell adhesion region of fibronectin. We have attempted to elucidate the role of the alpha 5 beta 1 fibronectin receptor in assembly of fibronectin in matrices. Rat monoclonal antibody mAb 13, which recognizes the integrin beta 1 subunit, completely blocked binding and matrix assembly of 125I-fibronectin as well as binding of the 125I-70-kD amino-terminal fragment of fibronectin (70 kD) to fibroblast cell layers. Fab fragments of the anti-beta 1 antibody were also inhibitory. Antibody mAb 16, which recognizes the integrin alpha 5 subunit, partially blocked binding of 125I-fibronectin and 125I-70-kD. When cell layers were coincubated with fluoresceinated fibronectin and either anti-beta 1 or anti-alpha 5, anti-beta 1 was a more effective inhibitor than anti-alpha 5 of binding of labeled fibronectin to the cell layer. Inhibition of 125I-fibronectin binding by anti-beta 1 IgG occurred within 20 min. Inhibition of 125I-fibronectin binding by anti-beta 1 Fab fragments or IgG could not be overcome with increasing concentrations of fibronectin, suggesting that anti-beta 1 and exogenous fibronectin may not compete for the same binding site. No beta 1-containing integrin bound to immobilized 70 kD. These data indicate that the beta 1 subunit plays an important role in binding and assembly of exogenous fibronectin, perhaps by participation in the organization, regeneration, or cycling of the assembly site rather than by a direct interaction with fibronectin.  相似文献   

13.
Plasma fibronectin binds saturably and reversibly to substrate-attached fibroblasts and is subsequently incorporated into the extracellular matrix (McKeown-Longo, P.J., and D. F. Mosher, 1983, J. Cell Biol., 97:466-472). We examined whether fragments of fibronectin are processed in a similar way. The amino-terminal 70,000-mol-wt catheptic D fragment of fibronectin bound reversibly to cell surfaces with the same affinity as intact fibronectin but did not become incorporated into extracellular matrix. The 70,000-mol-wt fragment blocked binding of intact fibronectin to cell surfaces and incorporation of intact fibronectin into extracellular matrix. Binding of the 70,000-mol-wt fragment to cells was partially abolished by cleavage into 27,000-mol-wt heparin-binding and 40,000-mol-wt gelatin-binding fragments and more completely abolished by reduction and alkylation of disulfide bonds. Binding of the 70,000-mol-wt fragment to cells was not blocked by gelatin or heparin. When coated onto plastic, the 70,000-mol-wt fragment did not mediate attachment and spreading of suspended fibroblasts. Conversely, fibronectin fragments that had attachment and spreading activity did not block binding of exogenous fibronectin to substrate-attached cells. These results indicate that there is a cell binding site in the 70,000-mol-wt fragment that is distinct from the previously described cell attachment site and is required for assembly of exogenous fibronectin into extracellular matrix.  相似文献   

14.
Studies with cultured fibroblasts have shown that plasma as well as cellular fibronectin can be organized into fibrillar structures and that this organization is mediated by sites at the cell surface. Treatment of human skin fibroblasts with cholera toxin resulted in a prompt decrease in the number of binding sites for 125I-labeled plasma fibronectin and a 125I-labeled 70-kDa amino-terminal fragment of fibronectin. This decrease was accompanied by less incorporation of labeled fibronectin into deoxycholate-insoluble extracellular matrix. Binding of 125I-fibronectin was also decreased in cultures treated with epinephrine, isoproterenol, or forskolin. These results, therefore, indicate that G proteins and the adenylate cyclase system are involved in regulation of fibronectin matrix assembly sites may be one mechanism whereby hormones or growth factors can modify extracellular matrix characteristics.  相似文献   

15.
We have isolated and sequenced cDNA clones encoding the entire sequence of the bovine cation-independent mannose 6-phosphate receptor. The deduced 2499-amino acid precursor has a calculated molecular mass of 275 kDa. Analysis of the sequence indicates that the protein has a 44-residue amino-terminal signal sequence, a 2269-residue extracytoplasmic region, a single 23-residue transmembrane region, and a 163-residue carboxyl-terminal cytoplasmic region. The extra-cytoplasmic region consists of 15 contiguous repeating domains, one of which contains a 43-residue insertion that is similar to the type II repeat of fibronectin. The 15 domains have an average size of 147 amino acids and a distinctive pattern of 8 cysteine residues. Alignment of the 15 domains and the extracytoplasmic domain of the cation-dependent mannose 6-phosphate receptor shows that all have sequence similarities and suggests that all are homologous.  相似文献   

16.
The interaction of cells with fibronectin generates a series of complex signaling events that serve to regulate several aspects of cell behavior, including growth, differentiation, adhesion, and motility. The formation of a fibronectin matrix is a dynamic, cell-mediated process that involves both ligation of the α5β1 integrin with the Arg-Gly-Asp (RGD) sequence in fibronectin and binding of the amino terminus of fibronectin to cell surface receptors, termed “matrix assembly sites,” which mediate the assembly of soluble fibronectin into insoluble fibrils. Our data demonstrate that the amino-terminal type I repeats of fibronectin bind to the α5β1 integrin and support cell adhesion. Furthermore, the amino terminus of fibronectin modulates actin assembly, focal contact formation, tyrosine kinase activity, and cell migration. Amino-terminal fibronectin fragments and RGD peptides were able to cross-compete for binding to the α5β1 integrin, suggesting that these two domains of fibronectin cannot bind to the α5β1 integrin simultaneously. Cell adhesion to the amino-terminal domain of fibronectin was enhanced by cytochalasin D, suggesting that the ligand specificity of the α5β1 integrin is regulated by the cytoskeleton. These data suggest a new paradigm for integrin-mediated signaling, where distinct regions within one ligand can modulate outside-in signaling through the same integrin.  相似文献   

17.
Factor XIII cross-linking of fibronectin at cellular matrix assembly sites   总被引:7,自引:0,他引:7  
We describe the effect of activated Factor XIII (Factor XIIIa, plasma transglutaminase) on the incorporation of plasma fibronectin into extracellular matrix by cultured human fibroblasts. In the absence of added Factor XIIIa, fibronectin binds to cultured fibroblast cell layers and is assembled into disulfide-bonded multimers of the extracellular matrix. When Factor XIIIa was included in the binding medium of skin fibroblasts, accumulation of 125I-fibronectin in the deoxycholate-insoluble matrix was increased. Fibronectin accumulating in the cell layer was cross-linked into nonreducible high molecular weight aggregates. The 70-kDa amino-terminal fragment of fibronectin inhibited the binding and cross-linking of 125I-fibronectin to cell layers, whereas fibrinogen had little effect. When 125I-fibronectin was incubated with isolated matrices or with cell layers pretreated with cytochalasin B, it did not bind and could not be cross-linked by Factor XIIIa into the matrix. HT-1080 human fibrosarcoma cells bound exogenous fibronectin following treatment with dexamethasone; Factor XIIIa cross-linked the bound fibronectin and caused its efficient transfer to the deoxycholate-insoluble matrix. These results indicate that exogenous fibronectin is susceptible to Factor XIIIa-catalyzed cross-linking at cellular sites of matrix assembly. Thus, Factor XIIIa-mediated fibronectin cross-linking complements disulfide-bonded multimer formation in the stabilization of assembling fibronectin molecules and thus enhances the formation of extracellular matrix.  相似文献   

18.
Fibronectin matrix assembly is a cell-dependent process which is upregulated in tissues at various times during development and wound repair to support the functions of cell adhesion, migration, and differentiation. Previous studies have demonstrated that the alpha 5 beta 1 integrin and fibronectin's amino terminus and III-1 module are important in fibronectin polymerization. We have recently shown that fibronectin's III-1 module contains a conformationally sensitive binding site for fibronectin's amino terminus (Hocking, D.C., J. Sottile, and P.J. McKeown-Longo. 1994. J. Biol. Chem. 269: 19183- 19191). The present study was undertaken to define the relationship between the alpha 5 beta 1 integrin and fibronectin polymerization. Solid phase binding assays using recombinant III-10 and III-1 modules of human plasma fibronectin indicated that the III-10 module contains a conformation-dependent binding site for the III-1 module of fibronectin. Unfolded III-10 could support the formation of a ternary complex containing both III-1 and the amino-terminal 70-kD fragment, suggesting that the III-1 module can support the simultaneous binding of III-10 and 70 kD. Both unfolded III-10 and unfolded III-1 could support fibronectin binding, but only III-10 could promote the formation of disulfide-bonded multimers of fibronectin in the absence of cells. III-10-dependent multimer formation was inhibited by both the anti-III-1 monoclonal antibody, 9D2, and amino-terminal fragments of fibronectin. A fragment of III-10, termed III-10/A, was able to block matrix assembly in fibroblast monolayers. Similar results were obtained using the III-10A/RGE fragment, in which the RGD site had been mutated to RGE, indicating that III-I0/A was blocking matrix assembly by a mechanism distinct from disruption of integrin binding. Texas red- conjugated recombinant III-1,2 localized to beta 1-containing sites of focal adhesions on cells plated on fibronectin or the III-9,10 modules of fibronectin. Monoclonal antibodies against the III-1 or the III-9,10 modules of fibronectin blocked binding of III-1,2 to cells without disrupting focal adhesions. These data suggest that a role of the alpha 5 beta 1 integrin in matrix assembly is to regulate a series of sequential self-interactions which result in the polymerization of fibronectin.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号