首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
The pollen tube grows rapidly, exclusively at its tip, to deliver its sperm for fertilization. The polarized tip growth of pollen tubes is dependent on the highly dynamic actin cytoskeleton. Plant LIM proteins (named after initials of containing proteins Lin11, Isl-1, and Mec-3) have been shown to regulate actin bundling in different cells, however, their roles in pollen tube growth have remained obscure. Here, we report the function of Arabidopsis LIM proteins PLIM2a and PLIM2b in pollen tube growth. The PLIM2a mutation resulted in short and swollen Arabidopsis pollen tube with defective actin bundles. The expression of the construct green fluorescent protein (GFP)-PLIM2b led to fluorescence of the actin bundles in germinating pollen and also the long actin bundles along the growing pollen tubes in Arabidopsis, but not of the short and sparse actin bundles that characterize the tip regions of the pollen tubes. There is a partially redundant function between PLIM2a and PLIM2b in the shank actin bundle organization during Arabidopsis pollen tube growth, as PLIM2b could rescue for the defective shank actin bundles in PLIM2a mutation pollen tubes. This report suggests critical roles of PLIM2a/PLIM2b in actin configuration during Arabidopsis pollen germination and tube growth.  相似文献   

4.
Sexual plant reproduction necessitates proper development of pollen, pollen germination and tube growth through various tissues of the pistil, the female organ of the flower. Finally, sperm cells are released to fertilize the female gametophyte. These processes require high metabolic activities of all tissues involved and rely on the delivery of nitrogen assimilates for success. However, transporters mediating nitrogen fluxes are mostly unknown. The presented work provides an expression analysis of members of the LHT amino acid transporter family in relation to pollen development and pollen–pistil interaction. Expression of Arabidopsis LHTs was analyzed during flower development and the location of LHT function resolved by transporter-GFP and promoter-GUS studies. GFP-LHT localization in onion cells indicates that all LHTs analyzed are targeted to the plasma membrane. We further showed that LHTs are expressed in anthers and male gametophytes where they are proposed to function in transport of amino acids for pollen development and maturation. Expression in germinating pollen, pollen tubes and transmitting tissue of the pistil points to a role of LHTs in support of the fertilization process. Overall, our study suggests that LHT function in flowers is cell or tissue specific, developmentally regulated and highly coordinated between male and female tissue.  相似文献   

5.
In flowering plants, the interaction of pollen tubes with female tissues is important for the accomplishment of double fertilization. Little information is known about the mechanisms that underlie signalling between pollen tubes and female tissues. In this study, two Arabidopsis pollen tube‐expressed CrRLK1L protein kinases, Buddha's Paper Seal 1 (BUPS1) and BUPS2, were identified as being required for normal tip growth of pollen tubes in the pistil. They are expressed prolifically in pollen and pollen tubes and are localized on the plasma membrane of the pollen tube tip region. Mutations in BUPS1 drastically reduced seed set. Most of the bups1 mutant pollen tubes growing in the pistil exhibited a swollen pollen tube tip, leading to failure of fertilization. The bups2 pollen tubes had a slightly abnormal morphology but could still accomplish double fertilization. The bups1 bups2 double mutant exhibited a slightly enhanced phenotype compared to the single bups1 mutants. The BUPS1 proteins could form homomers and heteromers with BUPS2, whereas BUPS2 could only form heteromers with BUPS1. The BUPS proteins could interact with the Arabidopsis pollen‐expressed RopGEFs in the yeast two‐hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. The results indicated that the BUPSs may mediate normal polar growth of pollen tubes in the pistil.  相似文献   

6.
During compatible pollination of the angiosperms, pollen tubes grow in the pistil transmitting tract (TT) and are guided to the ovule for fertilization. Lily (Lilium longiflorum) stigma/style Cys-rich adhesin (SCA), a plant lipid transfer protein (LTP), is a small, secreted peptide involved in pollen tube adhesion-mediated guidance. Here, we used a reverse genetic approach to study biological roles of Arabidopsis thaliana LTP5, a SCA-like LTP. The T-DNA insertional gain-of-function mutant plant for LTP5 (ltp5-1) exhibited ballooned pollen tubes, delayed pollen tube growth, and decreased numbers of fertilized eggs. Our reciprocal cross-pollination study revealed that ltp5-1 results in both male and female partial sterility. RT-PCR and β-glucuronidase analyses showed that LTP5 is present in pollen and the pistil TT in low levels. Pollen-targeted overexpression of either ltp5-1 or wild-type LTP5 resulted in defects in polar tip growth of pollen tubes and thereby decreased seed set, suggesting that mutant ltp5-1 acts as a dominant-active form of wild-type LTP5 in pollen tube growth. The ltp5-1 protein has additional hydrophobic C-terminal sequences, compared with LTP5. In our structural homology/molecular dynamics modeling, Tyr-91 in ltp5-1, replacing Val-91 in LTP5, was predicted to interact with Arg-45 and Tyr-81, which are known to interact with a lipid ligand in maize (Zea mays) LTP. Thus, Arabidopsis LTP5 plays a significant role in reproduction.  相似文献   

7.
In Petunia inflata, as in other species that shed bicellular pollen, early pollen tube growth in the pistil is slow, then increases 2- to 5-fold depending on the genotype of the female parent. We refer to the time point at which pollen tubes enter the accelerated phase of growth as the pollen growth transition (PGT). Here, we present evidence that pre-PGT and post-PGT growth are quantitatively and qualitatively different, and that the PGT is triggered when pollen tubes reach the transition zone (TZ) below the stigma. The capacity of various pistil zones to precipitate the PGT was tested through 'stump' pollinations: varying lengths of the pistil apex were excised, the cut surface of the remaining pistil (the stump) coated with stigmatic exudates then dusted with compatible pollen. Pollen applied to TZ tissues entered the PGT earlier than pollen growing in intact control pistils; the PGT was delayed in stylar stumps, largely because of delayed germination and reduced pre-PGT growth. In immature pistils, the PGT was delayed by several hours relative to its onset in mature pistils. The PGT fails to occur in pollen cultured in vitro. Collectively, the data suggest that pollen tubes become competent to enter the PGT when they reach a critical size, but the physicochemical environment of the transmitting tissue is necessary for triggering the cellular changes that result in accelerated growth. An analysis of the distribution of pollen tube tips before and after the PGT suggests that pollen competition is most intense during the pre-PGT phase.  相似文献   

8.
9.
In flowering plants, the process of pollen germination and tube growth is required for successful fertilization. A pollen receptor kinase from tomato (Solanum lycopersicum), LePRK2, has been implicated in signaling during pollen germination and tube growth as well as in mediating pollen (tube)-pistil communication. Here we show that reduced expression of LePRK2 affects four aspects of pollen germination and tube growth. First, the percentage of pollen that germinates is reduced, and the time window for competence to germinate is also shorter. Second, the pollen tube growth rate is reduced both in vitro and in the pistil. Third, tip-localized superoxide production by pollen tubes cannot be increased by exogenous calcium ions. Fourth, pollen tubes have defects in responses to style extract component (STIL), an extracellular growth-promoting signal from the pistil. Pollen tubes transiently overexpressing LePRK2-fluorescent protein fusions had slightly wider tips, whereas pollen tubes coexpressing LePRK2 and its cytoplasmic partner protein KPP (a Rop-GEF) had much wider tips. Together these results show that LePRK2 positively regulates pollen germination and tube growth and is involved in transducing responses to extracellular growth-promoting signals.  相似文献   

10.
It has recently been reported that high temperature slows in vivo pollen tube growth rates in Gossypium hirsutum pistils under field conditions. Although numerous physical and biochemical pollen-pistil interactions are necessary for in vivo pollen tube growth to occur, studies investigating the influence of heat-induced changes in pistil biochemistry on in vivo pollen tube growth rates are lacking. We hypothesized that high temperature would alter diurnal pistil biochemistry and that pollen tube growth rates would be dependent upon the soluble carbohydrate content of the pistil during pollen tube growth. G. hirsutum seeds were sown on different dates to obtain flowers exposed to contrasting ambient temperatures but at the same developmental stage. Diurnal pistil measurements included carbohydrate balance, glutathione reductase (GR; EC 1.8.1.7), soluble protein, superoxide dismutase (SOD; EC 1.15.1.1), NADPH oxidase (NOX; EC 1.6.3.1), adenosine triphosphate (ATP), and water-soluble calcium. Soluble carbohydrate levels in cotton pistils were as much as 67.5% lower under high temperature conditions (34.6 °C maximum air temperature; August 4, 2009) than under cooler conditions (29.9 °C maximum air temperature; August 14, 2009). Regression analysis revealed that pollen tube growth rates were highly correlated with the soluble carbohydrate content of the pistil during pollen tube growth (r2 = 0.932). Higher ambient temperature conditions on August 4 increased GR activity in the pistil only during periods not associated with in vivo pollen tube growth; pistil protein content declined earlier in the day under high temperatures; SOD and NOX were unaffected by either sample date or time of day; pistil ATP and water soluble calcium were unaffected by the warmer temperatures. We conclude that moderate heat stress significantly alters diurnal carbohydrate balance in the pistil and suggest that pollen tube growth rate through the style may be limited by soluble carbohydrate supply in the pistil.  相似文献   

11.
Plant sexual reproduction involves the growth of tip-polarized pollen tubes through the female tissues in order to deliver the sperm nuclei to the egg cells. Despite the importance of this crucial step, little is known about the molecular mechanisms involved in this spatial and temporal control of the tube growth. In order to study this process and to characterize the structural composition of the extracellular matrix of the male gametophyte, immunocytochemical and biochemical analyses of Arabidopsis pollen tube wall have been carried out. Results showed a well-defined localization of cell wall epitopes with highly esterified homogalacturonan and arabinogalactan-protein mainly in the tip region, weakly methylesterified homogalacturonan back from the tip and xyloglucan and (1→5)-α-L-arabinan all along the tube. Here, we present complementary data regarding (1) the ultrastructure of the pollen tube cell wall and (2) the immunolocalization of homogalacturonan and arabinan epitopes in 16-h-old pollen tubes and in the stigma and the transmitting tract of the female organ. Discussion regarding the pattern of the distribution of the cell wall epitopes and the possible mechanisms of cell adhesion between the pollen tubes and the female tissues is provided.Key words: arabinan, cell adhesion, cell wall, homogalacturonan, pistil, pollen tube growth, transmitting tractFertilization of flowering plants requires the delivery of the two sperm cells, carried by the fast growing tip-polarized pollen tube, to the egg cell. At every stage of the pollen tube development within the stigma, style and ovary, pollen tubes are guided to the ovules via multiple signals that need to pass through the cell wall of the pollen tube to reach their targets.16The analysis of Arabidopsis pollen tube cell wall has recently been reported.7 Results showed a well-defined localization of cell wall epitopes with highly methylesterified homogalacturonan (HG) and arabinogalactan-protein (AGP) mainly in the tip region, weakly methylesterified HG back from the tip and xyloglucan and arabinan all along the tube. In addition, according to the one letter nomenclature of xyloglucan,8 the main motif of Arabidopsis pollen tube xyloglucan was XXFG harboring one O-acetyl group. In order to bring new information regarding the possible interaction between the pollen tubes and the female tissues, the ultrastructural organization of the pollen tube cell wall, the cytological staining and immunolocalization of the cell wall epitopes of the pistil and especially the transmitting tract (TT), a specialized tissue where pollen tubes grow, were carried out.  相似文献   

12.
13.
In flowering plants, pollen tube growth is essential for delivery of male gametes into the female gametophyte or embryo sac for double fertilization. Although many genes have been identified as being involved in the process, the molecular mechanisms of pollen tube growth remains poorly understood. In this study, we identified that the Arabidopsis Transmembrane Protein 18 (AtTMEM18) gene played important roles in pollen tube growth. The AtTMEM18 shares a high similarity with the Transmembrane 18 proteins (TMEM18s) that are conserved in most eukaryotes and may play important roles in obesity in humans. Mutation in the AtTMEM18 by a Ds insertion caused abnormal callose deposition in the pollen grains and had a significant impact on pollen germination and pollen tube growth. AtTMEM18 is expressed in pollen grains, pollen tubes, root tips and other vegetative tissues. The pollen‐rescued assays showed that the mutation in AtTMEM18 also caused defects in roots, stems, leaves and transmitting tracts. AtTMEM18‐GFP was located around the nuclei. Genetic assays demonstrated that the localization of AtTMEM18 around the nuclei in the generative cells of pollen grains was essential for the male fertility. Furthermore, expression of the rice TMEM18‐homologous protein (OsTMEM18) driven by LAT52 promoter could recover the fertility of the Arabidopsis attmem18 mutant. These results suggested that the TMEM18 is important for plant growth in Arabidopsis.  相似文献   

14.
Summary Pollen size and pistil length data have been collected for 93 species of Rhododendron (Ericaceae) belonging to a number of different subgeneric taxa. For a sample of eight species in section Vireya, pollen tube growth in the style after selfor interspecific pollination has been quantified. Pollen volume and the time taken for pollen tubes to reach the ovary were both related to pistil length. Pollen-tube growth rates were generally greater for species with longer pistils and larger pollen. Increasing temperature increased the rate of pollen-tube growth. There was no detectable effect of pollen tube density on tube growth rate in the style. After interspecific pollinations tube growth rates in foreign styles could be faster or slower than in self styles. A semisterile individual with two viable pollen grains per tetrad and a plant grafted as scion to a longer-styled stock both showed more rapid pollen-tube growth than expected on the basis of pistil size. Data collected for 26 species in section Vireya showed that where extreme disparity of pollen/pistil size causes failure of interspecific crosses, one or more bridging species with intermediate pollen/pistil size can generally be selected.  相似文献   

15.
Higher order actin filament structures are necessary for cytoplasmic streaming, organelle movement, and other physiological processes. However, the mechanism by which the higher order cytoskeleton is formed in plants remains unknown. In this study, we identified a novel actin-cross-linking protein family (named CROLIN) that is well conserved only in the plant kingdom. There are six isovariants of CROLIN in the Arabidopsis genome, with CROLIN1 specifically expressed in pollen. In vitro biochemical analyses showed that CROLIN1 is a novel actin-cross-linking protein with binding and stabilizing activities. Remarkably, CROLIN1 can cross-link actin bundles into actin networks. CROLIN1 loss of function induces pollen germination and pollen tube growth hypersensitive to latrunculin B. All of these results demonstrate that CROLIN1 may play an important role in stabilizing and remodeling actin filaments by binding to and cross-linking actin filaments.  相似文献   

16.
Pollen tube growth has been studied in peach and has been related to changes in the pistil structures which the pollen tube has to traverse in its way from the stigma down to the ovule. Growth of the pollen tubes along the pistil is not continuous. While pollen tubes reach the base of the style 7 days after pollination, fertilization does not take place until 12 days later. Pollen tubes stop for 5 days at the top of the obturator and they further stop for 3 days before entering the ovule. The pollen tube growth is heterotrophic; starch, present all along the pistilar tract at anthesis, vanishes as the pollen tubes pass by. Discontinuous pollen tube growth appears to be controlled by the pistil. At anthesis the pistil is not fully matured. Maturation of the pistil implies a number of secretory processes that occur in a basipetal way starting from the stigma down to the style and ending in the ovule. Some of these secretions at the stigma and the style are triggered by pollination; others appear to be a maturative stage of the pistil and are produced in a discrete way. The fact that the pollen tube depends on these secretions together with the fact that these secretions are not continuously produced confer upon the pistil a role of controlling pollen tube kinetics and point out that, for a successful fertilization, male gametophyte development and pistil maturation need to by synchronized.  相似文献   

17.
Pollen and pistil in the progamic phase   总被引:6,自引:0,他引:6  
The progamic phase, the period of pollen tube growth through the pistil, is a period of specific interactions between the male gametophyte and the pistil. Understanding of pollen germination and pollen tube growth are relevant for the study of pollen-pistil interactions and for understanding the function of components specifically accumulated in the transmitting tissue cell walls and intercellular matrix that may interact with pollen tubes. Received: 18 January 2001 / Accepted: 19 June 2001  相似文献   

18.
Pollen tubes are among the fastest tip-growing plant cells and represent an excellent experimental system for studying the dynamics and spatiotemporal control of polarized cell growth. However, investigating pollen tube tip growth in the model plant Arabidopsis remains difficult because in vitro pollen germination and pollen tube growth rates are highly variable and largely different from those observed in pistils, most likely due to growth-promoting properties of the female reproductive tract. We found that in vitro grown Arabidopsis pollen respond to brassinosteroid (BR) in a dose-dependent manner. Pollen germination and pollen tube growth increased nine- and fivefold, respectively, when media were supplemented with 10 µM epibrassinolide (epiBL), resulting in growth kinetics more similar to growth in vivo. Expression analyses show that the promoter of one of the key enzymes in BR biosynthesis, CYP90A1/CPD, is highly active in the cells of the reproductive tract that form the pathway for pollen tubes from the stigma to the ovules. Pollen tubes grew significantly shorter through the reproductive tract of a cyp90a1 mutant compared to the wild type, or to a BR perception mutant. Our results show that epiBL promotes pollen germination and tube growth in vitro and suggest that the cells of the reproductive tract provide BR compounds to stimulate pollen tube growth.  相似文献   

19.
The regulation of pollen development and pollen tube growth is a complicated biological process that is crucial for sexual reproduction in flowering plants. Annexins are widely distributed from protists to higher eukaryotes and play multiple roles in numerous cellular events by acting as a putative “linker” between Ca2+ signaling, the actin cytoskeleton and the membrane, which are required for pollen development and pollen tube growth. Our recent report suggested that downregulation of the function of Arabidopsis annexin 5 (Ann5) in transgenic Ann5-RNAi lines caused severely sterile pollen grains. However, little is known about the underlying mechanisms of the function of Ann5 in pollen. This study demonstrated that Ann5 associates with phospholipid membrane and this association is stimulated by Ca2+ in vitro. Brefeldin A (BFA) interferes with endomembrane trafficking and inhibits pollen germination and pollen tube growth. Both pollen germination and pollen tube growth of Ann5-overexpressing plants showed increased resistance to BFA treatment, and this effect was regulated by calcium. Overexpression of Ann5 promoted Ca2+-dependent cytoplasmic streaming in pollen tubes in vivo in response to BFA. Lactrunculin (LatB) significantly prohibited pollen germination and tube growth by binding with high affinity to monomeric actin and preferentially targeting dynamic actin filament arrays and preventing actin polymerization. Overexpression of Ann5 did not affect pollen germination or pollen tube growth in response to LatB compared with wild-type, although Ann5 interacts with actin filaments in a manner similar to some animal annexins. In addition, the sterile pollen phenotype could be only partially rescued by Ann5 mutants at Ca2+-binding sites when compared to the complete recovery by wild-type Ann5. These data demonstrated that Ann5 is involved in pollen development, germination and pollen tube growth through the promotion of endomembrane trafficking modulated by calcium. Our results provide reliable molecular mechanisms that underlie the function of Ann5 in pollen.  相似文献   

20.
Pollen tubes deliver sperms to the ovule for fertilization via tip growth. The rapid turnover of F-actin in pollen tube tips plays an important role in this process. In this study, we demonstrate that Arabidopsis thaliana RIC1, a member of the ROP-interactive CRIB motif-containing protein family, regulates pollen tube growth via its F-actin severing activity. Knockout of RIC1 enhanced pollen tube elongation, while overexpression of RIC1 dramatically reduced tube growth. Pharmacological analysis indicated that RIC1 affected F-actin dynamics in pollen tubes. In vitro biochemical assays revealed that RIC1 directly bound and severed F-actin in the presence of Ca2+ in addition to interfering with F-actin turnover by capping F-actin at the barbed ends. In vivo, RIC1 localized primarily to the apical plasma membrane (PM) of pollen tubes. The level of RIC1 at the apical PM oscillated during pollen tube growth. The frequency of F-actin severing at the apex was notably decreased in ric1-1 pollen tubes but was increased in pollen tubes overexpressing RIC1. We propose that RIC1 regulates F-actin dynamics at the apical PM as well as the cytosol by severing F-actin and capping the barbed ends in the cytoplasm, establishing a novel mechanism that underlies the regulation of pollen tube growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号