首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer's disease (AD) accounts for an estimated 60% to 80% of all dementia cases. The present study is aimed at evaluating the neuroprotective efficacy of vitexin, an apigenin flavone glycoside using transgenic Caenorhabditis elegans strain (CL2006) of AD. The neuroprotective effect of vitexin was determined using physiological assays, quantitative polymerase chain reaction, and Western blotting. The results of survival and paralysis assay indicate that vitexin (200 μM) significantly extended the lifespan of the nematodes. Vitexin‐treated nematodes showed a significant reduction in the expression of Aβ, ace‐1, and ace‐2 genes when compared to control. Further, vitexin significantly upregulated the expression of acr‐8 and dnj‐14, and increased the lifespan of the nematodes. Vitexin was also found to modulate the unfolded protein response genes (hsp‐4, pek‐1, ire‐1, and xbp‐1) and suppress the expression of Aβ. Overall, the results show that vitexin acts as a neuroprotective agent and protects transgenic C. elegans strains from Aβ proteotoxicity.  相似文献   

2.
The accumulation of cross‐β‐sheet amyloid fibrils is the hallmark of amyloid diseases. Recently, we reported the discovery of amyloid disaggregase activities in extracts from mammalian cells and Caenorhabditis elegans. However, we have discovered a problem with the interpretation of our previous results as Aβ disaggregation in vitro. Here, we show that Aβ fibrils adsorb to the plastic surface of multiwell plates and Eppendorf tubes. This adsorption is markedly increased in the presence of complex biological mixtures subjected to a denaturing air‐water interface. The time‐dependent loss of thioflavin T fluorescence that we interpreted previously as disaggregation is due to increased adsorption of Aβ amyloid to the surfaces of multiwell plates and Eppendorf tubes in the presence of biological extracts. As the proteins in biological extracts denature over time at the air‐water interface due to agitation/shaking, their adsorption increases, in turn promoting adsorption of amyloid fibrils. We delineate important control experiments that quantify the extent of amyloid adsorption to the surface of plastic and quartz containers. Based on the results described in this article, we conclude that our interpretation of the kinetic fibril disaggregation assay data previously reported in Bieschke et al., Protein Sci 2009;18:2231–2241 and Murray et al., Protein Sci 2010;19:836–846 is invalid when used as evidence for a disaggregase activity. Thus, we correct the two prior publications reporting that worm or mammalian cell extracts disaggregate Aβ amyloid fibrils in vitro at 37°C (see Corrigenda in this issue of Protein Science). We apologize for misinterpreting our previous data and for any confounding experimental efforts this may have caused.  相似文献   

3.
Toxic protein aggregation (proteotoxicity) is a unifying feature in the development of late‐onset human neurodegenerative disorders. Reduction of insulin/IGF‐1 signaling (IIS), a prominent lifespan, developmental and reproductive regulatory pathway, protects worms from proteotoxicity associated with the aggregation of the Alzheimer’s disease‐linked Aβ peptide. We utilized transgenic nematodes that express human Aβ and found that late life IIS reduction efficiently protects from Aβ toxicity without affecting development, reproduction or lifespan. To alleviate proteotoxic stress in the animal, the IIS requires heat shock factor (HSF)‐1 to modulate a protein disaggregase, while DAF‐16 regulates a presumptive active aggregase, raising the question of how these opposing activities could be co‐regulated. One possibility is that HSF‐1 and DAF‐16 have distinct temporal requirements for protection from proteotoxicity. Using a conditional RNAi approach, we found an early requirement for HSF‐1 that is distinct from the adult functions of DAF‐16 for protection from proteotoxicity. Our data also indicate that late life IIS reduction can protect from proteotoxicity when it can no longer promote longevity, strengthening the prospect that IIS reduction might be a promising strategy for the treatment of neurodegenerative disorders caused by proteotoxicity.  相似文献   

4.
5.
BackgroundAmyloid β (Aβ) peptide aggregation is the main molecular mechanism underlying the development of Alzheimer's disease, the most widespread form of senile dementia worldwide. Increasing evidence suggests that the key factor leading to impaired neuronal function is accumulation of water-soluble Aβ oligomers rather than formation of the senile plaques created by the deposition of large fibrillary aggregates of Aβ. However, several questions remain about the preliminary steps and the progression of Aβ oligomerization.MethodsWe show that the initial stages of the aggregation of fluorescently labeled Aβ can be determined with a high degree of precision and at physiological (i.e., nanomolar) concentrations by using either steady-state fluorimetry or time-correlated single-photon counting.ResultsWe study the dependence of the oligomerization extent and rate on the Aβ concentration. We determine the chemical binding affinity of fluorescently labeled Aβ for liposomes that have been recently shown to be pharmacologically active in vivo, reducing the Aβ burden within the brain. We also probe their capacity to hinder the Aβ oligomerization process in vitro.ConclusionsWe introduced a fluorescence assay allowing investigation of the earliest steps of Aβ oligomerization, the peptide involved in Alzheimer's disease. The assay proved to be sensitive even at Aβ concentrations as low as those physiologically observed in the cerebrospinal fluid.General significanceThis work represents an extensive and quantitative study on the initial events of Aβ oligomerization at physiological concentration. It may enhance our comprehension of the molecular mechanisms leading to Alzheimer's disease, thus paving the way to novel therapeutic strategies.  相似文献   

6.
7.
The inhibition of fibril formation of amyloid β (Aβ) and the disaggregation of Aβ fibrils are the promising approaches for a medical treatment of Alzheimer's disease (AD) therapy. In this study, we investigated the effects of liposomes on dopamine-induced disaggregation of Aβ fibrils by using the variety of liposomes. The used liposomes were normal liposomes, raft-forming liposomes, charged liposomes and oxidized liposomes. Those liposome could accelerate the disaggregation rate of fibrils. From the comparison of normal and charged liposomes, a certain contribution of dopamine via an electrostatic interaction to the disaggregation was confirmed. From raft-forming and oxidized liposomes, we revealed a significant contribution of bound water to liposomes, which could assist the formation of the quinine-form of dopamine by a removal of its proton. It is, therefore, concluded that the membrane surface of liposomes is considered to be an adequate environment for the dopamine-induced disaggregation of fibrils.  相似文献   

8.
Abstract: Perlecan is a specific heparan sulfate proteoglycan that accumulates in the fibrillar β-amyloid (Aβ) deposits of Alzheimer's disease. Perlecan purified from the Engelbreth-Holm-Swarm tumor was used to define perlecan's interactions with Aβ and its effects on Aβ fibril formation. Using a solid-phase binding immunoassay, freshly solubilized full-length Aβ peptides bound immobilized perlecan at two sites, representing both high-affinity [KD = ~5.8 × 10?11M for Aβ (1–40); KD = ~6.5 × 10?12M for Aβ (1–42)] and lower-affinity [KD = 3.5 × 10?8M for Aβ (1–40); KD = 4.3 × 10?8M for Aβ (1–42)] interactions. An increase in the binding capacity of Aβ (1–40) to perlecan correlated with an increase in Aβ amyloid fibril formation during a 1-week incubation period. The high-capacity binding of Aβ (1–40) to perlecan was similarly observed using perlecan heparan sulfate glycosaminoglycans and was completely abolished by heparin, but not by chondroitin-4-sulfate. Using a thioflavin T fluorometry assay, perlecan accelerated the rate of Aβ (1–40) amyloid fibril formation, causing a significant increase in Aβ fibril assembly over a 2-week incubation period at 1 h (2.8-fold increase), 1 day (3.6-fold increase), and 3 days (2.8-fold increase) in comparison with Aβ (1–40) alone. Perlecan also initially accelerated the formation of Aβ (1–42) fibrils within 1 h and maintained significantly higher levels of Aβ (1–42) thioflavin T fluorescence throughout a 2-week experimental period in comparison with Aβ (1–42) alone, suggesting perlecan's ability to maintain amyloid fibril stability. Perlecan's effects on Aβ (1–40) fibril formation and maintenance of Aβ (1–42) fibril stability occurred in a dose-dependent manner and was also mediated primarily by perlecan's glycosaminoglycan chains. Perlecan was the most effective enhancer and accelerator of Aβ fibril formation when compared directly with other amyloid plaque components, including apolipoprotein E, α1-antichymotrypsin, P component, C1q, and C3. This study, therefore, demonstrates that perlecan not only binds to the predominant isoforms of Aβ, but also accelerates Aβ fibril formation and stabilizes amyloid fibrils once formed, confirming pivotal roles for perlecan in the pathogenesis of Aβ amyloidosis in Alzheimer's disease.  相似文献   

9.
10.
Alzheimer's disease (AD) is the most common form of age‐related neurodegenerative disease resulting in dementia. The current notion is that AD is based on a pathological plaque‐forming accumulation of amyloid‐β (Aβ) peptides that originate from a disturbed balance between production and removal of Aβ peptides. Loss of Aβ uptake capacity by brain microglia is linked to Aβ plaque formation and AD onset. In this issue of The EMBO Journal, Daria and colleagues show that this microglia dysfunction is reversible and that existing Aβ plaques can be cleared, suggesting that restoring microglia function may be vital for treating AD.  相似文献   

11.
One of the neuropathological hallmarks of Alzheimer's disease (AD)—causing neurodegeneration and consequent memory deterioration, and eventually, cognitive decline—is amyloid-β (Aβ) aggregation forming amyloid plaques. Our previous study showed the potential of a tocotrienol-rich fraction—a mixture of naturally occurring of vitamin E analogs—to inhibit Aβ aggregation and restore cognitive function in an AD mouse model. The current study examined the effect of three vitamin E analogs—α-tocopherol (α-TOC), α-tocotrienol (α-T3), and γ-tocotrienol (γ-T3)—on Aβ aggregation, disaggregation, and oligomerization in vitro. Thioflavin T (ThT) assay showed α-T3 reduced Aβ aggregation at 10 μM concentration. Furthermore, both α-T3 and γ-T3 demonstrated Aβ disaggregation, as shown by the reduction of ThT fluorescence. However, α-TOC showed no significant effect. We confirmed the results for ThT assays with scanning electron microscopy imaging. Further investigation in photo-induced cross-linking of unmodified protein assay indicated a reduction in Aβ oligomerization by γ-T3. The present study thus revealed the individual effect of each tocotrienol analog in reducing Aβ aggregation and oligomerization as well as disaggregating preformed fibrils.  相似文献   

12.
Alzheimer's disease is a progressive neurodegenerative disease characterized by extracellular deposits of β‐amyloid (Aβ) plaques. Aggregation of the Aβ42 peptide leading to plaque formation is believed to play a central role in Alzheimer's disease pathogenesis. Anti‐Aβ monoclonal antibodies can reduce amyloid plaques and could possibly be used for immunotherapy. We have developed a monoclonal antibody C706, which recognizes the human Aβ peptide. Here we report the crystal structure of the antibody Fab fragment at 1.7 Å resolution. The structure was determined in two crystal forms, P21 and C2. Although the Fab was crystallized in the presence of Aβ16, no peptide was observed in the crystals. The antigen‐binding site is blocked by the hexahistidine tag of another Fab molecule in both crystal forms. The poly‐His peptide in an extended conformation occupies a crevice between the light and heavy chains of the variable domain. Two consecutive histidines (His4–His5) stack against tryptophan residues in the central pocket of the antigen‐binding surface. In addition, they form hydrogen bonds to the acidic residues at the bottom of the pocket. The mode of his‐tag binding by C706 resembles the Aβ recognition by antibodies PFA1 and WO2. All three antibodies recognize the same immunodominant B‐cell epitope of Aβ. By similarity, residues Phe–Arg–His of Aβ would be a major portion of the C706 epitope. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
《Free radical research》2013,47(7):813-820
Abstract

This group has invented a novel deuterohemin containing peptide deuterohemin-AlaHisThrValGluLys (DhHP-6), which has various biological activities including protection of murine ischemia reperfusion injury, improving cell survival and preventing apoptosis. It was hypothesized that DhHP-6 is beneficial on the lifespan of Caenorhabditis elegans (C. elegans) and increases their resistance to heat and oxidative stress. C. elegans were treated with different concentrations of DhHP-6. Survival time and sensitivity to heat and paraquat were investigated. The data demonstrated that the mean survival time of C. elegans was significantly increased (p < 0.05) in the DhHP-6 treated group compared with the control group. The maximum lifespan was not affected by DhHP-6 treatment. DhHP-6 improved the survival rate of C. elegans in the acute heat stress (35°C) and rescued the C. elegans' sensitivity to paraquat in acute oxidative stress. Superoxide dismutase 3 (SOD-3) protein was up-regulated by DhHP-6 treatment. It was further demonstrated that stress resistance genes such as hsp-16.1, hsp-16.49 and sir-2.1 were regulated by DhHP-6. DAF-16 and SIR-2.1 genes are essential for the beneficial effect of DhHP-6. Therefore, the investigation into the beneficial effect of DhHP-6 on C. elegans' lifespan has the potential to develop novel drugs to prevent ageing.  相似文献   

14.
BackgroundResearches on diagnosis and treatment of Alzheimer's disease, the most common type of dementia, are still ongoing. Taurine is frequently used in Alzheimer's disease models due to its protective effects. Metal cation dyshomeostasis is an important etiological factor for Alzheimer's disease. Transthyretin protein is thought to act as a transporter for the Aβ protein that accumulates in the brain and is eliminated in the liver and kidneys via the LRP-1 receptor. However, the effect of taurine on this mechanisms is not fully known.Methods30 male rats, aged 28 ± 4 months, were divided into 5 groups (n = 6) as follows: control group, sham group, Aβ 1–42 group, taurine group and taurine+Aβ 1–42 group. Oral taurine pre-supplementation was given as 1000 mg/kg-body weight/day for 6 weeks to taurine and taurine+Aβ 1–42 groups.ResultsPlasma copper, heart transthyretin and Aβ 1–42, brain and kidney LRP-1 levels were found to be decreased in the Aβ 1–42 group. Brain transthyretin was higher in taurine+Aβ 1–42 group and brain Aβ 1–42 was higher in Aβ 1–42 and taurine+Aβ 1–42 groups.ConclusionTaurine pre-supplementation maintained cardiac transthyretin levels, decreased cardiac Aβ 1–42 levels and increased brain and kidney LRP-1 levels. Taurine may have a potential to be used as a protective agent for aged people at high risk for Alzheimer's disease.  相似文献   

15.
16.
Since the identification of the apolipoprotein E (apoE) *ε4 allele as a major genetic risk factor for late-onset Alzheimer's disease, significant efforts have been aimed at elucidating how apoE4 expression confers greater brain amyloid-β (Aβ) burden, earlier disease onset and worse clinical outcomes compared to apoE2 and apoE3. ApoE primarily functions as a lipid carrier to regulate cholesterol metabolism in circulation as well as in the brain. However, it has also been suggested to interact with hydrophobic Aβ peptides to influence their processing in an isoform-dependent manner. Here, we review evidence from in vitro and in vivo studies extricating the effects of the three apoE isoforms, on different stages of the Aβ processing pathway including synthesis, aggregation, deposition, clearance and degradation. ApoE4 consistently correlates with impaired Aβ clearance, however data regarding Aβ synthesis and aggregation are conflicting and likely reflect inconsistencies in experimental approaches across studies. We further discuss the physical and chemical properties of apoE that may explain the inherent differences in activity between the isoforms. The lipidation status and lipid transport function of apoE are intrinsically linked with its ability to interact with Aβ. Traditionally, apoE-oriented therapeutic strategies for Alzheimer's disease have been proposed to non-specifically enhance or inhibit apoE activity. However, given the wide-ranging physiological functions of apoE in the brain and periphery, a more viable approach may be to specifically target and neutralise the pathological apoE4 isoform.  相似文献   

17.

Glycogen synthase kinase 3β (GSK3β) is considered an important element of glycogen metabolism; however, it has many other regulatory roles. Changes in the GSK3β signaling mechanism have been associated with various disorders, such as Alzheimer’s disease (AD), type II diabetes, and cancer. Although the effects of GSK3β inhibitors on reducing the pathological effects of AD have been described, an effective inhibitor has not yet been developed. Epibrassinolide (EBR), a brassinosteroid (BR), is structurally similar to mammalian steroid hormones. Our studies have shown that EBR has an inhibitory effect on GSK3β in different cell lines. Roscovitine (ROSC), a cyclin-dependent kinase (CDK) inhibitor, has also been identified as a potential GSK3 inhibitor. Within the scope of this study, we propose that EBR and/or ROSC might have mechanistic action in AD models. To test this hypothesis, we used in vitro models and Caenorhabditis elegans (C. elegans) AD strains. Finally, EBR treatment successfully protected cells from apoptosis and increased the inhibitory phosphorylation of GSK3β. In addition, EBR and/or ROSC treatment had a positive effect on the survival rates of C. elegans strains. More interestingly, the paralysis phenotype of the C. elegans AD model due to Aβ42 toxicity was prevented by EBR and/or ROSC. Our findings suggest that EBR and ROSC administration have neuroprotective effects on both in vitro and C. elegans models via inhibitory GSK3β phosphorylation at Ser9.

  相似文献   

18.
Caenorhabditis elegans has a number of distinct advantages that are useful for understanding the basis for cellular and organismal dysfunction underlying age-associated diseases of protein misfolding. Although protein aggregation, a key feature of human neurodegenerative diseases, has been typically explored in vivo at the single-cell level using cells in culture, there is now increasing evidence that proteotoxicity has a non-cell-autonomous component and is communicated between cells and tissues in a multicellular organism. These discoveries have opened up new avenues for the use of C. elegans as an ideal animal model system to study non-cell-autonomous proteotoxicity, prion-like propagation of aggregation-prone proteins, and the organismal regulation of stress responses and proteostasis. This Review focuses on recent evidence that C. elegans has mechanisms to transmit certain classes of toxic proteins between tissues and a complex stress response that integrates and coordinates signals from single cells and tissues across the organism. These findings emphasize the potential of C. elegans to provide insights into non-cell-autonomous proteotoxic mechanisms underlying age-related protein-misfolding diseases.KEY WORDS: Caenorhabditis elegans, Cell non-autonomous proteotoxicity, Prion-like spreading  相似文献   

19.
Abstract: The major pathological feature of Alzheimer's disease is the presence of a high density of amyloid plaques in the brain tissue of patients. The plaques are predominantly composed of human β-amyloid peptide (Aβ), a 39–43-mer peptide the neurotoxicity of which is related to its aggregation state. Previous work has demonstrated that certain metals that have been implicated as risk factors for Alzheimer's disease (Al, Fe, and Zn) also cause substantial aggregation of Aβ. In particular, we reported that zinc cations at concentrations of >10?4M dramatically accelerate the rate of Aβ aggregation at physiological peptide concentrations at 37°C in vitro. In the present study, we investigate the effect of Zn2+ on aggregation of radiolabeled and unlabeled human and rat Aβ over a wide range of peptide concentrations in the presence and absence of salt and blocking protein. Aggregation was assayed by centrifugation and filtration using amino acid analysis, immunoassay, and γ-counting for quantification over a wide range of concentrations of Zn2+ and Aβ above and below physiological values. The results of this study demonstrate the following: (a) Radio-iodinated Aβ accurately tracked unlabeled Aβ, (b) zinc concentrations of at least 10?4M were required to induce significant aggregation of Aβ, and (c) rat and human Aβ species were cleared from aqueous solutions by similar concentrations of zinc. These results stand in significant quantitative disagreement (~100-fold in zinc concentration) with one previous study that reported significant aggregation of Aβ by <1 µM Zn2+. Differences between the present study and the latter study from another laboratory appear to result from inappropriate reliance on optical density to measure Aβ concentrations and nonspecific loss of Aβ to plastic in the absence of blocking protein.  相似文献   

20.
One new bisabolane‐type sesquiterpenoid, together with four known bisabolane‐type sesquiterpenoid derivatives and seven phenolics, was isolated from the rhizomes of Curcuma longa. Their structures were elucidated by extensive spectroscopic (IR, HR‐ESI‐MS, and NMR) data analysis. The possible anti‐Alzheimer's disease (AD) activities of the isolated compounds were also evaluated using Caenorhabditis elegans AD pathological model, and 1β‐hydroxybisabola‐2,10‐dien‐4‐one had the highest possible anti‐AD activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号