首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.

Background

APOBEC3G (A3G) and related cytidine deaminases of the APOBEC3 family of proteins are potent inhibitors of many retroviruses, including HIV-1. Formation of infectious HIV-1 requires the suppression of multiple cytidine deaminases by Vif. HIV-1 Vif suppresses various APOBEC3 proteins through the common mechanism of recruiting the Cullin5-ElonginB-ElonginC E3 ubiquitin ligase to induce target protein polyubiquitination and proteasome-mediated degradation. The domains in Vif and various APOBEC3 proteins required for APOBEC3 recognition and degradation have not been fully characterized.

Methods and Findings

In the present study, we have demonstrated that the regions of APOBEC3F (A3F) that are required for its HIV-1-mediated binding and degradation are distinct from those reported for A3G. We found that the C-terminal cytidine deaminase domain (C-CDD) of A3F alone is sufficient for its interaction with HIV-1 Vif and its Vif-mediated degradation. We also observed that the domains of HIV-1 Vif that are uniquely required for its functional interaction with full-length A3F are also required for the degradation of the C-CDD of A3F; in contrast, those Vif domains that are uniquely required for functional interaction with A3G are not required for the degradation of the C-CDD of A3F. Interestingly, the HIV-1 Vif domains required for the degradation of A3F are also required for the degradation of A3C and A3DE. On the other hand, the Vif domains uniquely required for the degradation of A3G are dispensable for the degradation of cytidine deaminases A3C and A3DE.

Conclusions

Our data suggest that distinct regions of A3F and A3G are targeted by HIV-1 Vif molecules. However, HIV-1 Vif suppresses A3F, A3C, and A3DE through similar recognition determinants, which are conserved among Vif molecules from diverse HIV-1 strains. Mapping these determinants may be useful for the design of novel anti-HIV inhibitors.  相似文献   

2.
3.
4.
The host restriction factor Apobec3G is a cytidine deaminase that incorporates into HIV-1 virions and interferes with viral replication. The HIV-1 accessory protein Vif subverts Apobec3G by targeting it for proteasomal degradation. We propose a model in which Apobec3G N-terminal domains symmetrically interact via a head-to-head interface containing residues 122 RLYYFW 127. To validate this model and to characterize the Apobec3G–Apobec3G and the Apobec3G–Vif interactions, the mammalian protein–protein interaction trap two-hybrid technique was used. Mutations in the head-to-head interface abrogate the Apobec3G–Apobec3G interaction. All mutations that inhibit Apobec3G–Apobec3G binding also inhibit the Apobec3G–Vif interaction, indicating that the head-to head interface plays an important role in the interaction with Vif. Only the D128K, P129A and T32Q mutations specifically affect the Apobec3G–Vif association. In our model, D128, P129 and T32 cluster at the edge of the head-to-head interface, possibly forming a Vif binding site composed of two Apobec3G molecules. We propose that Vif either binds at the Apobec3G head-to-head interface or associates with an RNA-stabilized Apobec3G oligomer.  相似文献   

5.
J Goncalves  B Shi  X Yang    D Gabuzda 《Journal of virology》1995,69(11):7196-7204
Human immunodeficiency virus type 1 (HIV-1) encodes a Vif protein which is important for virus replication and infectivity. Vif is a cytoplasmic protein which exists in both membrane-associated and soluble forms. The membrane-associated form is an extrinsic membrane protein which is tightly associated with the cytoplasmic side of membranes. We have analyzed the mechanism of membrane targeting of Vif and its role in HIV-1 replication. Mutagenesis studies demonstrate that C-terminal basic domains are required for membrane association. Vif mutations which disrupt membrane association also inhibit HIV-1 replication, indicating that membrane localization of Vif is likely to be required for its biological activity in vivo. Membrane binding of Vif is almost completely abolished by trypsin treatment of membranes. These results demonstrate that membrane localization of Vif requires C-terminal basic domains and interaction with a membrane-associated protein(s). This interaction may serve to direct Vif to a specific cellular site, since immunofluorescence staining and plasma membrane fractionation studies show that Vif is localized predominantly to an internal cytoplasmic compartment rather than to the plasma membrane. The mechanism of membrane targeting of Vif is different in some respects from that of other extrinsic membrane proteins, such as Ras, Src, and MARCKS, which utilize a basic domain together with a lipid modification for membrane targeting. Membrane targeting of Vif is likely to play an important role in HIV-1 replication and thus may be a therapeutic target.  相似文献   

6.
7.
The cytidine deaminase hAPOBEC3G is an antiviral human factor that counteracts the replication of HIV-1 in absence of the Vif protein. hAPOBEC3G is packaged into virus particles and lethally hypermutates HIV-1. In this work, we examine the mechanisms governing hAPOBEC3G packaging. By GST pull-down and co-immunoprecipitation assays, we show that hAPOBEC3G binds to HIV-1 Pr55 Gag and its NC domain and to the RT and IN domains contained in Pr160 Gag-Pol. We demonstrate that the expression of HIV-1 Gag is sufficient to induce the packaging of hAPOBEC3G into Gag particles. Gag-Pol polypeptides containing RT and IN domains, as well as HIV-1 genomic RNA, seem not to be necessary for hAPOBEC3G packaging. Lastly, we show that hAPOBEC3G and its murine ortholog are packaged into HIV-1 and MLV Gag particles. We conclude that the Gag polypeptides from distant retroviruses have conserved domains allowing the packaging of the host antiviral factor APOBEC3G.  相似文献   

8.
9.
RNA and DNA binding properties of HIV-1 Vif protein: a fluorescence study   总被引:2,自引:0,他引:2  
The HIV-1 viral infectivity factor (Vif) is a small basic protein essential for viral fitness and pathogenicity. Some "non-permissive" cell lines cannot sustain replication of Vif(-) HIV-1 virions. In these cells, Vif counteracts the natural antiretroviral activity of the DNA-editing enzymes APOBEC3G/3F. Moreover, Vif is packaged into viral particles through a strong interaction with genomic RNA in viral nucleoprotein complexes. To gain insights into determinants of this binding process, we performed the first characterization of Vif/nucleic acid interactions using Vif intrinsic fluorescence. We determined the affinity of Vif for RNA fragments corresponding to various regions of the HIV-1 genome. Our results demonstrated preferential and moderately cooperative binding for RNAs corresponding to the 5'-untranslated region of HIV-1 (5'-untranslated region) and gag (cooperativity parameter omega approximately 65-80, and K(d) = 45-55 nM). In addition, fluorescence spectroscopy allowed us to point out the TAR apical loop and a short region in gag as primary strong affinity binding sites (K(d) = 9.5-14 nM). Interestingly, beside its RNA binding properties, the Vif protein can also bind the corresponding DNA oligonucleotides and their complementary counterparts with an affinity similar to the one observed for the RNA sequences, while other DNA sequences displayed reduced affinity. Taken together, our results suggest that Vif binding to RNA and DNA offers several non-exclusive ways to counteract APOBEC3G/3F factors, in addition to the well documented Vif-induced degradation by the proteasome and to the Vif-mediated repression of translation of these antiviral factors.  相似文献   

10.
Human immunodeficiency virus type 1 (HIV-1) Vif requires core binding factor β (CBF-β) to degrade the host APOBEC3 restriction factors. Although a minimum domain and certain amino acids of HIV-1 Vif, including hydrophobic residues at the N-terminal, have been identified as critical sites for binding with CBF-β, other regions that potentially mediate this interaction need to be further investigated. Here, we mapped two new regions of HIV-1 Vif that are required for interaction with CBF-β by generating a series of single-site or multiple-site Vif mutants and testing their effect on the suppression of APOBEC3G (A3G) and APOBEC3F (A3F). A number of the mutants, including G84A/SIEW86-89AAAA (84/86–89), E88A/W89A (88/89), G84A, W89A, L106S and I107S in the 84GxSIEW89 and L102ADQLI107 regions, affected Vif function by disrupting CBF-β binding. These Vif mutants also had altered interactions with CUL5, since CBF-β is known to facilitate the binding of Vif to CUL5. We further showed that this effect was not due to misfolding or conformational changes in Vif, as the mutants still maintained their interactions with other factors such as ElonginB, A3G and A3F. Notably, G84D and D104A had stronger effects on the Vif-CUL5 interaction than on the Vif-CBF-β interaction, indicating that they mainly influenced the CUL5 interaction and implying that the interaction of Vif with CUL5 contributes to the binding of Vif to CBF-β. These new binding interfaces with CBF-β in HIV-1 Vif provide novel targets for the development of HIV-1 inhibitors.  相似文献   

11.
The HIV-1 viral infectivity factor (Vif) is required for productive infection of non-permissive cells, including most natural HIV-1 targets, where it counteracts the antiviral activities of the cellular cytosine deaminases APOBEC-3G (A3G) and A3F. Vif is a multimeric protein and the conserved proline-rich domain (161)PPLP(164) regulating Vif oligomerization is crucial for its function and viral infectivity. Here, we expressed and purified wild-type Vif and a mutant protein in which alanines were substituted for the proline residues of the (161)PPLP(164) domain. Using dynamic light scattering, circular dichroism and fluorescence spectroscopy, we established the impact of these mutations on Vif oligomerization, secondary structure content and nucleic acids binding properties. In vitro, wild-type Vif formed oligomers of five to nine proteins, while Vif AALA formed dimers and/or trimers. Up to 40% of the unbound wild-type Vif protein appeared to be unfolded, but binding to the HIV-1 TAR apical loop promoted formation of β-sheets. Interestingly, alanine substitutions did not significantly affect the secondary structure of Vif, but they diminished its binding affinity and specificity for nucleic acids. Dynamic light scattering showed that Vif oligomerization, and interaction with folding-promoting nucleic acids, favor formation of high molecular mass complexes. These properties could be important for Vif functions involving RNAs.  相似文献   

12.
13.
The human immunodeficiency virus type-1 (HIV-1) integrase (IN) mediates insertion of viral DNA into human DNA, which is an essential step in the viral life cycle. In order to study minimal core domain in HIV-1 IN protein, we constructed nine deletion mutants by using PCR amplification. The constructs were expressed in Escherichia coli, and the proteins were subsequently purified and analyzed in terms of biological activity such as enzymatic and DNA-binding activities. The mutant INs with an N-terminal or C-terminal deletion showed strong disintegration activity though they failed to show endonucleolytic and strand transfer activities, indicating that the disintegration reaction does not require the fine structure of the HIV-1 IN protein. In the DNA-binding analysis using gel mobility shift assay and UV cross-linking method, it was found that both the central and C-terminal domains are essential for proper DNA-IN protein interaction although the central or C-terminal domain alone was able to be in close contact with DNA substrate. Therefore, our results suggest that the C-terminal domain act as a DNA-holding motive, which leads to proper interaction for enzymatic reaction between the IN protein and DNA.  相似文献   

14.
The HIV-1 viral infectivity factor (Vif) protein recruits an E3 ubiquitin ligase complex, comprising the cellular proteins elongin B and C (EloBC), cullin 5 (Cul5) and RING-box 2 (Rbx2), to the anti-viral proteins APOBEC3G (A3G) and APOBEC3F (A3F) and induces their polyubiquitination and proteasomal degradation. In this study, we used purified proteins and direct in vitro binding assays, isothermal titration calorimetry and NMR spectroscopy to describe the molecular mechanism for assembly of the Vif-EloBC ternary complex. We demonstrate that Vif binds to EloBC in two locations, and that both interactions induce structural changes in the SOCS box of Vif as well as EloBC. In particular, in addition to the previously established binding of Vif''s BC box to EloC, we report a novel interaction between the conserved Pro-Pro-Leu-Pro motif of Vif and the C-terminal domain of EloB. Using cell-based assays, we further show that this interaction is necessary for the formation of a functional ligase complex, thus establishing a role of this motif. We conclude that HIV-1 Vif engages EloBC via an induced-folding mechanism that does not require additional co-factors, and speculate that these features distinguish Vif from other EloBC specificity factors such as cellular SOCS proteins, and may enhance the prospects of obtaining therapeutic inhibitors of Vif function.  相似文献   

15.
We developed an in vitro binding assay to study the specific interaction between human immunodeficiency virus type 1 (HIV-1) RNA and the Gag polyprotein. Binding of the in vitro-expressed protein to in vitro-transcribed RNA was determined by altered migration of the protein in polyacrylamide gels. We found that a Gag precursor lacking the matrix domain bound specifically to HIV-1 RNA, while deletion of both matrix and capsid domains diminished the specificity of binding. Among several regions of HIV-1 RNA tested, strongest binding was seen with the 5'-most 261 nucleotides, while antisense RNA from the same region did not bind.  相似文献   

16.
Direct interaction between the envelope and matrix proteins of HIV-1.   总被引:22,自引:2,他引:20       下载免费PDF全文
P Cosson 《The EMBO journal》1996,15(21):5783-5788
The incorporation of the envelope (env) glycoprotein of the human immunodeficiency virus type 1 (HIV-1) into budding virions has been proposed to be mediated by an interaction between its cytoplasmic domain and the matrix protein of HIV-1. However, this interaction was never directly demonstrated and its role in the biogenesis of HIV-1 virions is still debated. Here, a direct interaction is reported between the matrix protein of HIV-1 and the cytoplasmic domain of the env protein of HIV-1. No interaction was seen with the env cytoplasmic domain of other retroviruses. The region of the HIV-1 env involved in the interaction was delineated by mutagenesis and is comprised of the C-terminal 67 amino acid residues of env. These results, as well as the analysis of mutants of the matrix protein, suggest that the interaction between the HIV-1 env and matrix proteins accounts for the specific incorporation of the env glycoprotein into HIV-1 virions.  相似文献   

17.
Human immunodeficiency virus-1 (HIV-1) has evolved a cunning mechanism to circumvent the antiviral activity of the APOBEC3 family of host cell enzymes. HIV-1 Vif [viral (also called virion) infectivity factor], one of several HIV accessory proteins, targets APOBEC3 proteins for proteasomal degradation and downregulates their expression at the mRNA level. Despite the importance of Vif for HIV-1 infection, there is little conformational data on Vif alone or in complex with other cellular factors due to incompatibilities with many structural techniques and difficulties in producing suitable quantities of the protein for biophysical analysis. As an alternative, we have turned to hydrogen exchange mass spectrometry (HX MS), a conformational analysis method that is well suited for proteins that are difficult to study using X-ray crystallography and/or NMR. HX MS was used to probe the solution conformation of recombinant full-length HIV-1 Vif. Vif specifically interacted with the previously identified binding partner Hck and was able to cause kinase activation, suggesting that the Vif studied by HX MS retained a biochemically competent conformation relevant to Hck interaction. HX MS analysis of Vif alone revealed low deuteration levels in the N-terminal portion, indicating that this region contained structured or otherwise protected elements. In contrast, high deuteration levels in the C-terminal portion of Vif indicated that this region was likely unstructured in the absence of cellular interacting proteins. Several regions within Vif displayed conformational heterogeneity in solution, including the APOBEC3G/F binding site and the HCCH zinc finger. Taken together, these HX MS results provide new insights into the solution conformation of Vif.  相似文献   

18.
We examined various HIV-1 Vif mutants for interaction with APOBEC3 proteins (A3G/A3F). All replication-defective proviral mutants were found to carry A3G/A3F in virions, and of these, a replication-defective mutant with Vif that binds to A3G in cells but not in virions was noted. Furthermore, a mutant Vif protein that suppresses A3F activity but does not exclude A3F from virions was identified. We also showed that incorporation of Vif into virions is dependent on its interaction with A3G/A3F. Taken together, we concluded that functional binding of Vif to A3G/A3F in cells and/or virions is critical for viral infectivity.  相似文献   

19.

Background

Cyclophilin A (CypA) represents a potential key molecule in future antiretroviral therapy since inhibition of CypA suppresses human immunodeficiency virus type 1 (HIV-1) replication. CypA interacts with the virus proteins Capsid (CA) and Vpr, however, the mechanism through which CypA influences HIV-1 infectivity still remains unclear.

Results

Here the interaction of full-length HIV-1 Vpr with the host cellular factor CypA has been characterized and quantified by surface plasmon resonance spectroscopy. A C-terminal region of Vpr, comprising the 16 residues 75GCRHSRIGVTRQRRAR90, with high binding affinity for CypA has been identified. This region of Vpr does not contain any proline residues but binds much more strongly to CypA than the previously characterized N-terminal binding domain of Vpr, and is thus the first protein binding domain to CypA described involving no proline residues. The fact that the mutant peptide Vpr75-90 R80A binds more weakly to CypA than the wild-type peptide confirms that Arg-80 is a key residue in the C-terminal binding domain. The N- and C-terminal binding regions of full-length Vpr bind cooperatively to CypA and have allowed a model of the complex to be created. The dissociation constant of full-length Vpr to CypA was determined to be approximately 320 nM, indicating that the binding may be stronger than that of the well characterized interaction of HIV-1 CA with CypA.

Conclusions

For the first time the interaction of full-length Vpr and CypA has been characterized and quantified. A non-proline-containing 16-residue region of C-terminal Vpr which binds specifically to CypA with similar high affinity as full-length Vpr has been identified. The fact that this is the first non-proline containing binding motif of any protein found to bind to CypA, changes the view on how CypA is able to interact with other proteins. It is interesting to note that several previously reported key functions of HIV-1 Vpr are associated with the identified N- and C-terminal binding domains of the protein to CypA.  相似文献   

20.
Virion infectivity factor (Vif) is essential for the replication of human immunodeficiency virus type 1 (HIV-1) in vivo, but its function remains uncertain. Recently, we have shown that Vif proteins are able to form multimers, including dimers, trimers, or tetramers. Because the multimerization of Vif proteins is required for Vif function in the viral life cycle, we propose that it could be a novel target for anti-HIV-1 therapeutics. Through a phage peptide display method, we have identified a set of 12-mer peptides containing a PXP motif that binds to HIV-1 Vif protein. These proline-enriched peptides potently inhibited the Vif-Vif interaction in vitro. We have also screened a set of synthesized Vif peptides (15-mer), which covers all the amino acids of the HIV-1 Vif protein sequence, for their ability to inhibit the Vif-Vif interaction in vitro. We demonstrated that Vif-derived proline-enriched peptides that contain the (161)PPLP(164) domain are able to inhibit the Vif-Vif interaction. Conversely, the deletion of the (161)PPLP(164) domain of Vif protein will significantly impair the capability of Vif proteins to interact with each other, indicating that the (161)PPLP(164) domain plays a key role in Vif multimerization. All these results demonstrate that the proline-enriched peptides block the multimerization of Vif through interfering with the polyproline interfaces of Vif formed by (161)PPLP(164) domain. Moreover, these peptides which inhibit the Vif-Vif interaction in vitro potently inhibit HIV-1 replication in the "nonpermissive" T-cells. We propose that this study starts a novel strategy to develop structural diverse inhibitors of Vif such as peptidomimetics or small organic molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号