首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of reduction of indigocarmine-dye-oxidized Fe protein of nitrogenase from Klebsiella pneumoniae (Kp2ox) by sodium dithionite in the presence and absence of MgADP were studied by stopped-flow spectrophotometry at 23 degrees C and at pH 7.4. Highly co-operative binding of 2MgADP (composite K greater than 4 X 10(10) M-2) to Kp2ox induced a rapid conformation change which caused the redox-active 4Fe-4S centre to be reduced by SO2-.(formed by the predissociation of dithionite ion) with k = 3 X 10(6) M-1.s-1. This rate constant is at least 30 times lower than that for the reduction of free Kp2ox (k greater than 10(8) M-1.s-1). Two mechanisms have been considered and limits obtained for the rate constants for MgADP binding/dissociation and a protein conformation change. Both mechanisms give rate constants (e.g. MgADP binding 3 X 10(5) less than k less than 3 X 10(6) M-1.s-1 and protein conformation change 6 X 10(2) less than k less than 6 X 10(3) s-1) that are similar to those reported for creatine kinase (EC 2.7.3.2). The kinetics also show that in the catalytic cycle of nitrogenase with sodium dithionite as reductant replacement of 2MgADP by 2MgATP occurs on reduced and not oxidized Kp2. Although the Kp2ox was reduced stoichiometrically by SO2-. and bound two equivalents of MgADP with complete conversion into the less-reactive conformation, it was only 45% active with respect to its ability to effect MgATP-dependent electron transfer to the MoFe protein.  相似文献   

2.
The kinetics of electron-transfer reactions involving flavodoxins from Klebsiella pneumoniae (KpFld), Azotobacter chroococcum (AcFld), Anacystis nidulans (AnFld) and Megasphaera elsdenii (MeFld), the free, MgADP-bound and MgATP-bound forms of the Fe protein component of nitrogenase from K. pneumoniae [Kp2, Kp2(MgADP)2 and Kp2(MgATP)2] and Na2S2O4 were studied by stopped-flow spectrophotometry. Kinetic evidence was obtained for the formation of binary protein complexes involving KpFldSQ (semiquinone) with either Kp2(MgADP)2 (KD = 49 microM) or Kp2(MgATP)2 (KD = 13 microM) but not with Kp2 (KD greater than 730 microM). The binding of 2MgATP or 2MgADP to Kp2 therefore not only shifts the midpoint potential (Em) of the [4Fe-4S] centre from -200 mV to -320 mV or -350 mV respectively but also changes the affinity of Kp2 for KpFldSQ. Thermodynamically unfavourable electron from Kp2(MgADP)2 and Kp2(MgATP)2 to KpFldSQ occurs within the protein complexes with k = 1.2 s-1 (delta E = -72 mV) and 0.5 s-1 (delta E = -120 mV) respectively. Although AcFldSQ is reduced by Kp2, Kp2(MgADP)2 and Kp2(MgATP)2 (k = 8 x 10(3), 2.4 x 10(3) and 9 x 10(2) M-1.s-1 respectively), protein-complex formation is weak in each case (KD greater than 700 microM). Electron transfer in the physiologically important and thermodynamically favourable direction from Kp2FldHQ (hydroquinone) and AcFldHQ to Kp2ox.(MgADP)2 (the state of Kp2 that accepts electrons from FldHQ in the catalytic cycle of nitrogenase) is rapid (k greater than 10(6) M-1.s-1). The second-order rate constants for the reduction of KpFldSQ, AcFldSQ, AnFldSQ and MeFldSQ by SO2.- (active reductant formed by the predissociation of S2O4(2-) ion) exhibited the linear free-energy relationship predicted by the Marcus theory of electron transfer.  相似文献   

3.
The mid-point potentials of the Fe protein components (Ac2 and Ac2* respectively) of the Mo nitrogenase and V nitrogenase from Azotobacter chroococcum were determined in the presence of MgADP to be -450 mV (NHE) [Ac2(MgADP)2-Ac2*ox.(MgADP)2 couple] and -463 mV (NHE) [Ac2* (MgADP)2-Ac2*ox.(ADP)2 couple] at 23 degrees C at pH 7.2. These values are consistent with a flavodoxin characterized by Deistung & Thorneley [(1986) Biochem. J. 239, 69-75] with Em = -522 mV (NHE) being an effective electron donor to both the Mo nitrogenase and the V nitrogenase in vivo. Ac2*ox.(MgADP)2 and Ac2*ox.(MgADP)2 were reduced by SO2.- (formed by the predissociation of dithionite ion, S2O4(2-)) at similar rates, k = 4.7 X 10(6) +/- 0.5 X 10(6) M-1.s-1 and 3.2 X 10(6) +/- 0.2 X 10(6) M-1.s-1 respectively, indicating structural homology at the electron-transfer site associated with the [4Fe-4S] centre in these proteins.  相似文献   

4.
G Wang  M Kawai 《Biophysical journal》1996,71(3):1450-1461
The elementary steps surrounding the nucleotide binding step in the cross-bridge cycle were investigated with sinusoidal analysis in rabbit soleus slow-twitch muscle fibers. The single-fiber preparations were activated at pCa 4.40, ionic strength 180 mM, 20 degrees C, and the effects of MgATP (S) and MgADP (D) concentrations on three exponential processes B, C, and D were studied. Our results demonstrate that all apparent (measured) rate constants increased and saturated hyperbolically as the MgATP concentration was increased. These results are consistent with the following cross-bridge scheme: [cross-bridge scheme: see text] where A = actin, M = myosin, S = MgATP, and D = MgADP. AM+S is a collision complex, and AM*S is its isomerized form. From our studies, we obtained K0 = 18 +/- 4 mM-1 (MgADP association constant, N = 7, average +/- sem), K1a = 1.2 +/- 0.3 mM-1 (MgATP association constant, N = 8 hereafter), k1b = 90 +/- 20 s-1 (rate constant of ATP isomerization), k-1b = 100 +/- 9 s-1 (rate constant of reverse isomerization), K1b = 1.0 +/- 0.2 (equilibrium constant of isomerization), k2 = 21 +/- 3 s-1 (rate constant of cross-bridge detachment), k-2 = 14.1 +/- 1.0 s-1 (rate constant of reversal of detachment), and K2 = 1.6 +/- 0.3 (equilibrium constant of detachment). K0 is 8 times and K1a is 2.2 times those in rabbit psoas, indicating that nucleotides bind to cross-bridges more tightly in soleus slow-twitch muscle fibers than in psoas fast-twitch muscle fibers. These results indicate that cross-bridges of slow-twitch fibers are more resistant to ATP depletion than those of fast-twitch fibers. The rate constants of ATP isomerization and cross-bridge detachment steps are, in general, one-tenth to one-thirtieth of those in psoas.  相似文献   

5.
J Tsuzuki  J A Kiger 《Biochemistry》1978,17(15):2961-2970
Cyclic AMP-dependent protein kinase and its regulatory subunit were isolated from Drosophila melanogaster embryos. The profiles of cyclic AMP binding by these proteins were significantly different. In order to explain such a difference and to find the mode of enzyme activation by cyclic AMP, a kinetic study of cyclic AMP binding was carried out. First, the association rate constant k1 and dissociation rate constant k-1 in the cyclic AMP-regulatory subunit interaction at 0 degrees C were estimated to be 2.3 X 10(6)M-1s-1 and 1.1 X 10(-3)s-1, respectively. Secondly, the three possible modes of enzyme activation by cyclic AMP were mathematically considered and could be described by a unique formula: r=APt + BQt (A + B=1) in which the parameters A, B, P, and Q are equivalent to rate constants in the sense that the rate constants are simply expressed by these parameters. Thirdly, the values of the parameters and subsequently the values of rate constants involved in the possible mechanisms were evaluated using a curve-fitting technique and compared with experimental observation. It was then found that the following mechanism was the only one which fitted the experimental observations. Namely, RC + L k3 equilibrium k-3 LRC k4 equilibrium k-4 RL + C where R, C, and L represent the regulatory and catalytic subunits and cyclic AMP as a ligand. Thus, our results indicate that in the presence of cyclic AMP the active enzyme (C) is released from a ternary intermediate which is the primary product of the cyclic AMP-holoenzyme interaction. The estimated values of the rate constants are: k3=3.5 X 10(6)M-1s-1;k-3=7.3 X 10(-1)s-1;and k4=3.8 X 10(-2)s. These estimates indicate that the reaction LRC leads to RL + C is relatively slow and limits the rate of the overall reaction. By comparing k-3 and k4, it is apparent that a large part of newly formed ternary intermediate reverts to the holoenzyme.  相似文献   

6.
The kinetics of the reduction of oxidized Fe-protein of nitrogenase from Azotobacter chroococcum by sodium dithionite were studied by stopped-flow and rapid-freezing e.p.r. (electron-paramagnetic-resonance) spectroscopy. The appearance of the gav. = 1.94 e.p.r. signal (0.24 electron integrated intensity/mol) was associated with a one-electron reduction by SO2--with k greater than 10(8)M-1-S-1 at 23 degrees C. A value of k = 1.75s-1 was obtained for the rate of dissociation of S2O42- into 2SO2-- at 23 degrees C. Further reductions by SO2-- occurred in three slower phases with rate constants in the range 10(4) -10(6)M-1-S-1. These latter phases have no corresponding e.p.r. signal changes and are probably associated with enzymically inactive protein. The high rate of reduction by SO2-- of the Fe-protein alone (k greater than 10(8)M-1-S-1) relative to the rate of oxidation of the Fe-protein in the catalytically active Fe:Mo-Fe protein complex (k = 2.2 X 1O(2)s-1) and the observation that in the steady state the Fe-protein is substantially oxidized means that at normal assay concentrations another reaction must limit the rate of reduction of Fe-protein during turnover.  相似文献   

7.
Iron release from ovotransferrin in acidic media (3 < pH < 6) occurs in at least six kinetic steps. The first is a very fast (相似文献   

8.
Incubation of the MoFe protein (Kp1) and Fe protein (Kp2), the component proteins of Klebsiella pneumoniae nitrogenase, with BeF(3)(-) and MgADP resulted in a progressive inhibition of nitrogenase activity. We have shown that at high Kp2 to Kp1 molar ratios this inhibition is due to the formation of an inactive complex with a stoichiometry corresponding to Kp1.{Kp2.(MgADP.BeFx)2}2. At lower Kp2:Kp1 ratios, an equilibrium between this 2:1 complex, the partially active 1:1 Kp1.Kp2.(MgADP. BeFx)2 complex, and active nitrogenase components was demonstrated. The inhibition was reversible since incubation of the 1:1 complex in the absence of MgADP and beryllium resulted in complete restoration of activity over 30 h. Under pseudo-first-order conditions with regard to nitrogenase components and MgADP, the kinetics of the rate of inhibition with increasing concentrations of BeF(3)(-) showed a square dependence on [BeF(3)(-)], consistent with the binding of two Be atoms by Kp2 in the complex. Analytical fplc gel filtration profiles of Kp1.Kp2 incubation mixtures at equilibrium resolved the 2:1 complex and the 1:1 complex from free Kp1. Deconvolution of the equilibrium profiles gave concentrations of the components allowing constants for their formation of 2.1 x 10(6) and 5.6 x 10(5) M(-1) to be calculated for the 1:1 and 2:1 complexes, respectively. When the active site concentration of the different species was taken into account, values for the two constants were the same, indicating the two binding sites for Kp2 are the same for Kp1 with one or both sites unoccupied. The value for K(1) we obtain from this study is comparable with the value derived from pre-steady-state studies of nitrogenase. Analysis of the elution profile obtained on gel filtration of a 1:1 ratio incubation mixture containing 20 microM nitrogenase components showed 97% of the Kp2 present initially to be complexed. These data provide the first unequivocal demonstration that Fe protein preparations which may contain up to 50% of a species of Fe protein defective in electron transfer is nevertheless fully competent in complex formation with MoFe protein.  相似文献   

9.
Kinetic data for Klebsiella pneumoniae nitrogenase were used to determine the values of nine of the 17 rate constants that define the scheme for nitrogenase action described by Lowe & Thorneley [(1984) Biochem. J. 224, 877-886]. Stopped-flow spectrophotometric monitoring of the MgATP-induced oxidation of the Fe protein (Kp2) by the MoFe protein (Kp1) was used to determine the rates of association (k+1) and dissociation (k-1) of reduced Kp2(MgATP)2 with Kp1. The dependences of the apparent KNm2 on Fe protein/MoFe protein ratio and H2 partial pressure were used to determine the mutual displacement rates of N2 and H2 (k+10, k-10, k+11 and k-11). These data also allowed the rate constants for H2 evolution from progressively more reduced forms of Kp1 to be determined (k+7, k+8 and k+9). A mechanism for N2-dependent catalysis of 1H2H formation from 2H2 that requires H2 to be a competitive inhibitor of N2 reduction is also presented.  相似文献   

10.
alpha 2-Macroglobulin and the complement components C3 and C4 each contain a metastable binding site that is essential for covalent attachment. Two cyclic peptides are useful models of these unusual protein sites. Five-membered lactam 1 (CH3CO-Gly-Cys-Gly-Glu-Glp-Asn-NH2) contains an internal residue of pyroglutamic acid (Glp). Fifteen-membered thiolactone 2 (CH3CO-Gly-Cys-Gly-Glu-Glu-Asn-NH2 15-thiolactone) contains a thiol ester bond between Cys-2 and Glu-5. These isomeric hexapeptides are spontaneously interconverted in water. Competing with the two isomerization reactions are three reactions involving hydrolysis of 1 and 2. These five processes were found to occur simultaneously under physiologic conditions (phosphate-buffered saline, pH 7.3, 37 degrees C). Best estimates of the five rate constants for these apparent first-order reactions were obtained by comparing the observed molar percentages of peptides 1-4 with those calculated from a set of exponential equations. Both isomerization reactions (ring expansion of 1 to 2, k1 = 6.4 X 10(-5) s-1; ring contraction of 2 to 1, k-1 = 69 X 10(-5) s-1) proceeded faster than any of the hydrolysis reactions: alpha-cleavage of 1 with fragmentation to form dipeptide 3 (k2 = 3.3 X 10(-5) s-1), gamma-cleavage of 1 with ring opening to yield mercapto acid 4 (k3 = 0.35 X 10(-5) s-1), and hydrolysis of 2 with ring opening to give 4 (k4 = 1.9 X 10(-5) s-1). The isomerization rate ratio (k1/k-1 = 10.9) agreed with the isomer ratio at equilibrium (1:2 = 11 starting from 1 and 10 starting from 2). The alpha/gamma regioselectivity ratio (k2/k3 = 9.7) for hydrolysis of the internal Glp residue of 1 was consistent with results for model tripeptides. Part of the chemistry of the protein metastable binding sites can be explained by similar isomerization and hydrolysis reactions.  相似文献   

11.
Activated bovine plasma protein C (APC) was not reactive with the substrate p-nitrophenyl p-guanidinobenzoate (NPGB) in the absence of cations. In the presence of increasing concentrations of Na+, the acylation rate constant, k2,app, at 7 degrees C, progressively increased from 0.32 +/- 0.03 s-1 at 12.5 mM Na+ to 1.15 +/- 0.10 s-1 at 62.5 mM Na+. A linear dependence of the reciprocal of k2,app with [Na+]-2 was observed, indicating that at least two monovalent cation sites, or classes of sites, are necessary for the catalytic event to occur. From this latter plot, the k2,max for APC catalysis of NPGB hydrolysis, at saturating [Na+] and [NPGB], was calculated to be 1.21 +/- 0.10 s-1, and the Km for Na+ was found to be 21 +/- 3 mM. The dissociation constant, Ks, for NPGB to APC, at 7 degrees C, was not altered as [Na+] was increased, yielding a range of values of 18.5 X 10(-5) to 19.9 X 10(-5) M as [Na+] was varied from 12.5 to 62.5 mM. The deacylation rate constant, k3, for p-guanidinobenzoyl-APC hydrolysis was also independent of [Na+], with a value of (3.8 +/- 1.0) X 10(-3) s-1 in the absence of Na+ or in the presence of concentrations of Na+ up to 200 mM. Identical kinetic behavior was observed when Cs+ was substituted for Na+ in the above enzymic reaction. The pre-steady-state kinetic parameters were calculated according to the same methodology as described above.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The displacement of NADH from cytoplasmic aldehyde dehydrogenase (EC 1.2.1.3) from sheep liver was studied by using NAD+, 1,10-phenanthroline, ADP-ribose, deamino-NAD+ and pyridine-3-aldehyde-adenine dinucleotide as displacing agents, by following the decrease in fluorescence as a function of time. The data obtained could be fitted by assuming two first-order processes were occurring, a faster process with an apparent rate constant of 0.85 +/- 0.20 s-1 and a relative amplitude of 60 +/- 10% and a slower process with an apparent rate constant of 0.20 +/- 0.05 s-1 and a relative amplitude of 40 +/- 10% (except for pyridine-3-aldehyde-adenine dinucleotide, where the apparent rate constant for the slow process was 0.05 s-1). The displacement rates did not change significantly when the pH was varied from 6.0 to 9.0. Kinetic data are also reported for the dependence of the rate of binding of NADH to the enzyme on the total concentration of NADH. Detailed arguments are presented based on the isolation and purification procedures, the equilibrium coenzyme-binding studies and the kinetic data, which lead to the following model for the release of NADH from the enzyme: (formula: see article). The parameters that best fit the data are: k + 1 = 0.2 s-1; k - 1 = 0.05 s-1; k + 2 = 0.8 s-1 and k - 2 = 5 X 10(5)litre-mol-1-s-1. The slow phase of the NADH release is similar to the steady-state turnover number for substrates such as acetaldehyde and propionaldehyde and appears to contribute significantly to the limitation of the steady-state rate.  相似文献   

13.
The kinetics of MgATP-induced electron transfer from the Fe protein (Ac2V) to the VFe protein (AclV) of the vanadium-containing nitrogenase from Azotobacter chroococcum were studied by stopped-flow spectrophotometry at 23 degrees C at pH 7.2. They are very similar to those of the molybdenum nitrogenase of Klebsiella pneumoniae [Thorneley (1975) Biochem. J. 145, 391-396]. Extrapolation of the dependence of kobs. on [MgATP] to infinite MgATP concentration gave k = 46 s-1 for the first-order electron-transfer reaction that occurs with the Ac2V MgATPAclV complex. MgATP binds with an apparent KD = 230 +/- 10 microM and MgADP acts as a competitive inhibitor with Ki = 30 +/- 5 microM. The Fe protein and VFe protein associate with k greater than or equal to 3 x 10(7) M-1.s-1. A comparison of the dependences of kobs. for electron transfer on protein concentrations for the vanadium nitrogenase from A. chroococcum with those for the molybdenum nitrogenase from K. pneumoniae [Lowe & Thorneley (1984) Biochem. J. 224, 895-901] indicates that the proteins of the vanadium nitrogenase system form a weaker electron-transfer complex.  相似文献   

14.
Adenosine 5-phosphosulfate (APS) kinase from Penicillium chrysogenum is irreversibly inactivated by trinitrobenzene sulfonate in a pseudo-first order process. Under standard assay conditions kapp was 1.9 X 10(-3) s-1. Saturating MgATP or MgADP decreased Kapp to a limit of 4.1 X 10(-4) s-1. There are several explanations for the partial protection, including the presence of two essential lysyl side chains, only one of which is at the active site. Analysis of the inactivation kinetics by means of linear plots derived for partial protection yielded dissociation constants for E X MgATP (Kia) and E X MgADP (Kiq) of 2.9 mM and 1.8 mM, respectively. Low concentrations of APS alone provided no protection against trinitrobenzene sulfonate inactivation, but in the presence of 1 mM MgADP, as little as 2 microM APS provided additional protection while 100 microM APS reduced kapp to the limit of 4.1 X 10(-4) s-1. The results confirm the formation of a dead end E X MgADP X APS proposed earlier as the cause of the potent substrate inhibition by APS. Linear plots of 1/delta k versus 1/[MgADP] at different fixed [APS] and of 1/delta k versus 1/[APS] at different fixed [MgADP] were characteristic of the ordered binding of MgADP before APS (or the highly synergistic random binding of the two ligands). The true APS dissociation constant of the dead end E X MgADP X APS complex (K'ib) was determined to be 1.9 microM. From the value of K'ib and the previously reported value of KIB (apparent inhibition constant of APS as a substrate inhibitor of the catalytic reaction at saturating MgATP), the ratio of the MgADP and PAPS release rate constants (k4/k3) was calculated to be 11. Inactivation kinetics was used to study the effects of Mg2+ and high salt on ADP and APS binding. The results indicated that free ADP binds to the enzyme more tightly than does MgADP at low ionic strength. High salt decreased free ADP binding, but had little effect on MgADP binding. APS binds more tightly to E X MgADP in the absence or presence of salt than to E X ADP.  相似文献   

15.
The kinetics of the reaction of Golfingia gouldii hemerythrin with O2 have been studied by stopped flow spectrophotometry. For the second order oxygenation process, k1 = 7.4 X 10(6) M-1 s-1, deltaH1++ = 8.2 kcal-mol-1 and deltaS1++ = +1 e.u. at 25 degrees, pH 8.2, and I = 0.015 M. The rate constant is unchanged when protein concentration is varied from 3 to 25 muM, the ionic strength is increased to 0.07 M, and the pH moved to 6.8. The deoxygenation of oxyhemerythrin is studied with stopped flow by scavenging liberated O2 with S2O4(2-). For the first order dissociation, k-1 = 51 s-1, deltaH-1++ = 20.6 kcal-mol-1 and deltaS-1++ = +19 e.u. at 25 degrees, pH 8.2, and I = 0.015 M. The value of k-1 is independent of [protein] = 50 to 200 muM, [S2O4(2-)] = 5 to 100 mM I = 0.015 to 0.30 M and pH 6.8 to 9.0. Using myoglobin instead of S2O4(2-) as scavenger gives similar results. Combination of activation parameters for the oxygenation and deoxygenation processes gives K1 = 1.5 X 10(5) M-1, deltaH = -12.4 kcal-mol-1, and deltaS = -18 e.u., values in good agreement with independent thermodynamic data. Perchlorate ion (0.05 M) enhances k-1 about 3-fold and hardly effects k1. There is no sign of other than a single reaction in either direction, and octameric hemerythrin apparently behaves kinetically as eight single units.  相似文献   

16.
Interactions between the iron protein, Kp2, of nitrogenase manganese ions, magnesium ions, and the nucleotides ATP or ADP, have been studied in aqueous solution by monitoring the water proton NMR relaxation rate enhancement caused by Mn2+. Binding of Mn2+ to a molecule of Kp2 occurs at four sites, indistinguishable within experimental error, having a Kd = 350 +/- 50 micron. The Mn2+ - Kp2 complex has a low characteristic enhancement (epsilonb = 6 +/- 0.5). All four sites can alternatively bind Mg2+, not necessarily with the same dissociation constant, but with a mean Kd = 1.7 +/- 0.3 mM. Ternary complexes with the configuration EMS or (formula: see text) are formed between Kp2, Mn2+ and nucleotide (ATP or ADP). The ternary complexes with Mg2+ in place of Mn2+ probably have the latter configuration. A novel treatment of enhancement data (a 'high metal' approximation) is given.  相似文献   

17.
The kinetics of oxidation of the Fe proteins of nitrogenases from Klebsiella pneumoniae (Kp2) and Azotobacter chroococcum (Ac2) by O2 and H2O2 have been studied by stopped-flow spectrophotometry at 23 degrees C, pH 7.4. With excess O2, one-electron oxidation of Kp2 and Ac2 and their 2 MgATP or 2 MgADP bound forms occurs with rate constants (k) in the range 5.3 x 10(3) M-1.S-1 to 1.6 x 10(5) M-1.S-1. A linear correlation between log k and the mid-point potentials (Em) of these protein species indicates that the higher rates of electron transfer from the Ac2 species are due to the differences in Em of the 4Fe-4S cluster. The reaction of Ac2(MgADP)2 with O2 is sufficiently rapid for it to contribute significantly to the high respiration rate of Azotobacter under N2-fixing conditions and may represent a new respiratory pathway. Excess O2 rapidly inactivates Ac2(MgADP)2 and Kp2(MgADP)2; however, when these protein species are in greater than 4-fold molar excess over the concentration of O2, 4 equivalents of protein are oxidized with no loss of activity. The kinetics of this reaction suggest that H2O2 is an intermediate in the reduction of O2 to 2 H2O by nitrogenase Fe proteins and imply a role for catalase or peroxidase in the mechanism of protection of nitrogenase from O2-induced inactivation.  相似文献   

18.
Stable inactive 2 : 1 complexes of the Klebsiella pneumoniae nitrogenase components (Kp2/Kp1) were prepared with ADP or the fluorescent ADP analogue, 2'(3')-O-[N-methylanthraniloyl] ADP and AlF(4)(-) or BeF(3)(-) ions. By analogy with published crystallographic data [Schindelin et al. (1997) Nature 387, 370-376)], we suggest that the metal fluoride ions replaced phosphate at the two ATP-binding sites of the iron protein, Kp2. The beryllium (BeF(x)) and aluminium (AlF(4)(-)) containing complexes are proposed to correspond to the ATP-bound state and the hydrolytic transition states, respectively, by analogy with the equivalent complexes of myosin [Fisher et al. (1995) Biochemistry 34, 8960-8972]. (31)P NMR spectroscopy showed that during the initial stages of complex formation, MgADP bound to the complexed Kp2 in a manner similar to that reported for isolated Kp2. This process was followed by a second step that caused broadening of the (31)P NMR signals and, in the case of the AlF4- complex, slow hydrolysis of some of the excess ADP to AMP and inorganic phosphate. The purified BeFx complex contained 3.8 +/- 0.1 MgADP per mol Kp1. With the AlF(4)(-) complex, MgAMP and adenosine (from MgAMP hydrolysis) replaced part of the bound MgADP although four AlF(4)(-) ions were retained, demonstrating that full occupancy by MgADP is not required for the stability of the complex. The fluorescence emission maximum of 2'(3')-O-[N-methylanthraniloyl] ADP was blue-shifted by 6-8 nm in both metal fluoride complexes and polarization was 6-9 times that of the free analogue. The fluorescence yield of bound 2'(3')-O-[N-methylanthraniloyl] ADP was enhanced by 40% in the AlF(4)(-) complex relative to the solvent but no increase in fluorescence was observed in the BeFx complex. Resonance energy transfer from conserved tyrosine residues located in proximity to the Kp2 nucleotide-binding pocket was marked in the AlF(4)(-) complex but minimal in the BeFx fluoride complex, illustrating a clear conformational difference in the Fe protein of the two complexes. Our data indicate that complex formation during the nitrogenase catalytic cycle is a multistep process involving at least four conformational states of Kp2: similar to the free Fe protein; as initially complexed with detectable (31)P NMR; as detected in mature complexes with no detectable (31)P NMR; in the AlF(4)(-) complex in which an altered tyrosine interaction permits resonance energy transfer with 2'(3')-O-[N-methylanthraniloyl] ADP.  相似文献   

19.
Pre-steady-state and steady-state kinetics of the papain (EC 3.4.22.2)-catalyzed hydrolysis of N-alpha-carbobenzoxyglycine p-nitrophenyl ester (ZGlyONp) have been determined between pH 3.0 and 9.5 (I = 0.1 M) at 21 +/- 0.5 degrees C. The results are consistent with the minimum three-step mechanism involving the acyl X enzyme intermediate E X P: (Formula: see text). The formation of the E X S complex may be regarded as a rapid pseudoequilibrium process; the minimum values for k+1 are 8.0 microM-1 s-1 (pH less than or equal to 3.5) and 0.40 microM-1 s-1 (pH greater than 6.0), and that for k-1 is 600 s-1 (pH independent). The pH profile of k+2/Ks (= kcat/Km; Ks = k-1/k+1) reflects the ionization of two groups with pK' values of 4.5 +/- 0.1 and 8.80 +/- 0.15 in the free enzyme. The pH dependence of k+2 and k+3 (measured only at pH values below neutrality) implicates one ionizing group in the acylation and deacylation step with pK' values of 5.80 +/- 0.15 and 3.10 +/- 0.15, respectively. As expected from the pH dependences of k+2/Ks (= kcat/Km) and k+2, the value of Ks changes with pH from 7.5 X 10(1) microM (pH less than or equal to 3.5) to 1.5 X 10(3) microM (pH greater than 6.0). Values of k-2 and k-3 are close to zero over the whole pH range explored (3.0 to 9.5). The pH dependence of kinetic parameters indicates that at acid pH values (less than or equal to 3.5), the k+2 step is rate limiting in catalysis, whereas for pH values higher than 3.5, k+3 becomes rate limiting. The observed ionizations probably reflect the acid-base equilibria of residues involved in the catalytic diad of papain, His159-Cys25. Comparison with catalytic properties of ficins and bromelains suggests that the results reported here may be of general significance for cysteine proteinase catalyzed reactions.  相似文献   

20.
Temperature jump relaxation kinetics of the P-450cam spin equilibrium   总被引:1,自引:0,他引:1  
M T Fisher  S G Sligar 《Biochemistry》1987,26(15):4797-4803
The ferric spin-state equilibrium and relaxation rate of cytochrome P-450 has been examined with temperature jump spectroscopy using a number of camphor analogues known to induce different mixed spin states in the substrate-bound complexes [Gould, P., Gelb, M., & Sligar, S. G. (1981) J. Biol. Chem. 256, 6686]. All temperature-induced spectral changes were monophasic, and the spin-state relaxation rate reached a limiting value at high substrate concentrations. The ferric spin equilibrium constant, Kspin, is defined in terms of the rate constants k1 and k-1 via Kspin = k1/k-1 = [P-450(HS)]/[P-450(LS)] where HS and LS represent high-spin (S = 5/2) and low-spin (S = 1/2) ferric iron, respectively, and the spectrally observed spin-state relaxation rate by kobsd = k1 + k-1. A strong correlation between the fraction of high-spin species and the rate constant, k-1, is observed. For a 3 degrees C temperature jump (from 10 to 13 degrees C), the 23% high-spin tetramethylcyclohexanone complex (Kd = 45 +/- 20 microM) is characterized by a ferric spin relaxation rate of kobsd = 1990 s-1, while the rates for the d-fenchone (41% high spin, Kd = 42 +/- 10 microM) and kobsd = 1990 s-1, while the rates for the d-fenchone (41% high spin, Kd = 42 +/- 10 microM) and camphoroquinone (75% high spin, Kd = 15 +/- 5 microM) complexes are 1430 and 346 s-1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号