首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The calcium sensing receptor (CaR) is a G-protein-coupled receptor that is activated by extracellular calcium ([Ca2+]o). In MCF-7 human breast cancer cells, we previously reported that treatment with [Ca2+]o for 24 h leads to an over-expression of the Transient Receptor Potential Canonical 1 (TRPC1) cation channel and cell proliferation. Both involve the extracellular signal-regulated Kinases 1 & 2 (ERK1/2). MCF-7 also expressed epidermal growth factor receptor (EGFR) which is involved in cell proliferation through ERK1/2. Therefore, we investigated the cross-talk between CaR and EGFR in mediating ERK1/2 phosphorylation, TRPC1 over-expression and cell proliferation. Our data show that both high [Ca2+]o and EGF phosphorylate ERK1/2. Furthermore, inhibition of EGFR kinase and matrix metalloproteinases (MMPs) reduced the overall effects mediated by [Ca2+]o such as activation of ERK1/2, expression of TRPC1 and cell proliferation. They indicate the important role of the CaR-EGFR-ERK axis in transmitting mitogenic signals generated by high [Ca2+]o in MCF-7 cells.  相似文献   

2.
The sensing of extracellular Ca2+ concentration ([Ca2+]o) and modulation of cellular processes associated with acute or sustained changes in [Ca2+]o are cell-type specific and mediated by the calcium sensing receptor (CaR). [Ca2+]o signalling requires protein kinase C (PKC), but the identity and role of PKC isoforms in CaR-mediated responses remain unclear. Here we show that high [Ca2+]o activated PKC-α and PKC-ε in parathyroid cells and in human embryonic kidney (HEK293) cells overexpressing the CaR (HEK-CaR) and that this response correlated with the CaR-dependent activation of mitogen-activated protein kinases ERK1/2. Activation of ERK1/2 by acute high [Ca2+]o required influx of Ca2+through Ni2+-sensitive Ca2+channels and phosphatidylinositol-dependent phospholipase C-β activity. Inhibition of PKC by co-expression of dominant-negative (DN) mutants of PKC-α or -ε with the CaR attenuated sustained ERK1/2 activation. Overexpression of a PKC phosphorylation site (T888A) mutant CaR in HEK293 cells showed that this site was important for ERK1/2 activation at high [Ca2+]o. Activation of ERK1/2 by high [Ca2+]o was not necessary for the [Ca2+]o-regulated secretion of parathyroid hormone (PTH) in dispersed bovine parathyroid cells. These data suggest that the CaR-mediated [Ca2+]o signal leading to regulated PTH secretion that requires diacylglycerol-responsive PKC isoforms is not mediated via the ERK pathway.  相似文献   

3.
We used MCF-7 human breast cancer cells that endogenously express Cav3.1 and Cav3.2 T-type Ca2+ channels toward a mechanistic study on the effect of EGCG on [Ca2+]i. Confocal Ca2+ imaging showed that EGCG induces a [Ca2+]i spike which is due to extracellular Ca2+ entry and is sensitive to catalase and to low-specificity (mibefradil) and high-specificity (Z944) T-type Ca2+channel blockers. siRNA knockdown of T-type Ca2+ channels indicated the involvement of Cav3.2 but not Cav3.1. Application of EGCG to HEK cells expressing either Cav3.2 or Cav3.1 induced enhancement of Cav3.2 and inhibition of Cav3.1 channel activity. Measurements of K+ currents in MCF-7 cells showed a reversible, catalase-sensitive inhibitory effect of EGCG, while siRNA for the Kv1.1 K+ channel induced a reduction of the EGCG [Ca2+]i spike. siRNA for Cav3.2 reduced EGCG cytotoxicity to MCF-7 cells, as measured by calcein viability assay. Together, data suggest that EGCG promotes the activation of Cav3.2 channels through K+ current inhibition leading to membrane depolarization, and in addition increases Cav3.2 currents. Cav3.2 channels are in part responsible for EGCG inhibition of MCF-7 viability, suggesting that deregulation of [Ca2+]i by EGCG may be relevant in breast cancer treatment.  相似文献   

4.
The expression of the plasma membrane Ca2+ ATPase (PMCA) isoforms is altered in several types of cancer cells suggesting that they are involved in cancer progression. In this study we induced differentiation of MCF-7 breast cancer cells by histone deacetylase inhibitors (HDACis) such as short chain fatty acids (SCFAs) or suberoylanilide hydroxamic acid (SAHA), and by phorbol 12-myristate 13-acetate (PMA) and found strong upregulation of PMCA4b protein expression in response to these treatments. Furthermore, combination of HDACis with PMA augmented cell differentiation and further enhanced PMCA4b expression both at mRNA and protein levels. Immunocytochemical analysis revealed that the upregulated protein was located mostly in the plasma membrane. To examine the functional consequences of elevated PMCA4b expression, the characteristics of intracellular Ca2+ signals were investigated before and after differentiation inducing treatments, and also in cells overexpressing PMCA4b. The increased PMCA4b expression – either by treatment or overexpression – led to enhanced Ca2+ clearance from the stimulated cells. We found pronounced PMCA4 protein expression in normal breast tissue samples highlighting the importance of this pump for the maintenance of mammary epithelial Ca2+ homeostasis. These results suggest that modulation of Ca2+ signaling by enhanced PMCA4b expression may contribute to normal development of breast epithelium and may be lost in cancer.  相似文献   

5.
Breast cancer is the most frequent form of cancer in women, with the highest incidence of metastasis to the bone. The reason for the preferential destination to the bone is believed to be due to chemoattractant factors released during bone resorption, which act on the cancer cells facilitating their metastasis. One of the factors released during osteolysis that may mediate breast cancer bone localization is Ca2+. Here, we show that extracellular Ca2+ (Ca2+o) acting via the calcium-sensing receptor (CaSR), greatly promotes the migration of bone-preferring breast cancer cells. In Boyden Chamber and Scratch Wound migration assays, an increase in breast cancer cell migration was observed at 2.5 mM and 5 mM Ca2+o compared to basal levels for three of the four breast cancer cell lines tested. However, a significantly greater migratory response was observed for the highly bone metastatic MDA-MB-231 cells, compared to the MCF7 and T47D, which have a lower metastatic potential in vivo. The BT474 cells, which do not metastasize to the bone, did not respond to elevated concentrations of Ca2+o in the migration assays. Inhibition of either ERK1/2 MAPK or phospholipase Cβ (PLCβ) led to an abolition of the Ca2+o-induced migration, implicating these pathways in the migratory response. Knockdown of the CaSR by siRNA resulted in an inhibition of the Ca2+o-induced migration, demonstrating the involvement of this receptor in the effect. These results suggest that the activation of the CaSR by elevated Ca2+o concentrations, such as those found near resorbing bone, produces an especially strong chemoattractant effect on bone metastatic breast cancer cells toward the Ca2+-rich environment.  相似文献   

6.
Guanosine 3′,5′-monophosphate (cGMP) is an intracellular messenger in various kinds of cell. We investigated the regulation of cGMP production by nitric oxide (NO) in rabbit submandibular gland cells. Methacholine, a muscarinic cholinergic agonist, stimulated cGMP production in a dose- and time-dependent manner, but the α-agonist phenylephrine, substance P and the β-agonist isoproterenol failed to evoke cGMP production. In fura-2-loaded cells, methacholine induced an increase in intracellular Ca2+ ([Ca2+]i) in a concentration-dependent manner, which was similar to that for cGMP production. When the external Ca2+ was chelated with EGTA, methacholine failed to induce cGMP production. Ca2+ ionophore A23187 and thapsigargin, which induce the increase in [Ca2+]i without activation of Ca2+-mobilizing receptors, mimicked the effect of methacholine. cGMP production induced by methacholine, A23187 and thapsigargin was clearly inhibited by NG-nitro- -arginine methylester (L-NAME), a specific inhibitor of nitric oxide synthase (NOS). S-Nitroso-N-acetyl- -penicillamine (SNAP), a NO donor, induced cGMP formation. In the lysate of rabbit submandibular gland cells, Ca2+-regulated nitric oxide synthase activity was detected. These findings suggest that cGMP production induced by the activation of muscarinic cholinergic receptors is regulated by NO generation via the increase in [Ca2+]i.  相似文献   

7.
The epithelial Na+ channel (ENaC), composed of three subunits (α, β, and γ), is expressed in several epithelia and plays a critical role in salt and water balance and in the regulation of blood pressure. Little is known, however, about the electrophysiological properties of this cloned channel when expressed in epithelial cells. Using whole-cell and single channel current recording techniques, we have now characterized the rat αβγENaC (rENaC) stably transfected and expressed in Madin-Darby canine kidney (MDCK) cells. Under whole-cell patch-clamp configuration, the αβγrENaC-expressing MDCK cells exhibited greater whole cell Na+ current at −143 mV (−1,466.2 ± 297.5 pA) than did untransfected cells (−47.6 ± 10.7 pA). This conductance was completely and reversibly inhibited by 10 μM amiloride, with a Ki of 20 nM at a membrane potential of −103 mV; the amiloride inhibition was slightly voltage dependent. Amiloride-sensitive whole-cell current of MDCK cells expressing αβ or αγ subunits alone was −115.2 ± 41.4 pA and −52.1 ± 24.5 pA at −143 mV, respectively, similar to the whole-cell Na+ current of untransfected cells. Relaxation analysis of the amiloride-sensitive current after voltage steps suggested that the channels were activated by membrane hyperpolarization. Ion selectivity sequence of the Na+ conductance was Li+ > Na+ >> K+ = N-methyl-d-glucamine+ (NMDG+). Using excised outside-out patches, amiloride-sensitive single channel conductance, likely responsible for the macroscopic Na+ channel current, was found to be ∼5 and 8 pS when Na+ and Li+ were used as a charge carrier, respectively. K+ conductance through the channel was undetectable. The channel activity, defined as a product of the number of active channel (n) and open probability (P o), was increased by membrane hyperpolarization. Both whole-cell Na+ current and conductance were saturated with increased extracellular Na+ concentrations, which likely resulted from saturation of the single channel conductance. The channel activity (nP o) was significantly decreased when cytosolic Na+ concentration was increased from 0 to 50 mM in inside-out patches. Whole-cell Na+ conductance (with Li+ as a charge carrier) was inhibited by the addition of ionomycin (1 μM) and Ca2+ (1 mM) to the bath. Dialysis of the cells with a pipette solution containing 1 μM Ca2+ caused a biphasic inhibition, with time constants of 1.7 ± 0.3 min (n = 3) and 128.4 ± 33.4 min (n = 3). An increase in cytosolic Ca2+ concentration from <1 nM to 1 μM was accompanied by a decrease in channel activity. Increasing cytosolic Ca2+ to 10 μM exhibited a pronounced inhibitory effect. Single channel conductance, however, was unchanged by increasing free Ca2+ concentrations from <1 nM to 10 μM. Collectively, these results provide the first characterization of rENaC heterologously expressed in a mammalian epithelial cell line, and provide evidence for channel regulation by cytosolic Na+ and Ca2+.  相似文献   

8.
Combined patch-clamp and Fura-2 measurements were performed on chinese hamster ovary (CHO) cells co-expressing two channel proteins involved in skeletal muscle excitation-contraction (E-C) coupling, the ryanodine receptor (RyR)-Ca2+ release channel (in the membrane of internal Ca2+ stores) and the dihydropyridine receptor (DHPR)-Ca2+ channel (in the plasma membrane). To ensure expression of functional L-type Ca2+ channels, we expressed α2, β, and γ DHPR subunits and a chimeric DHPR α1 subunit in which the putative cytoplasmic loop between repeats II and III is of skeletal origin and the remainder is cardiac. There was no clear indication of skeletal-type coupling between the DHPR and the RyR; depolarization failed to induce a Ca2+ transient (CaT) in the absence of extracellular Ca2+ ([Ca2+]o). However, in the presence of [Ca2+]o, depolarization evoked CaTs with a bell-shaped voltage dependence. About 30% of the cells tested exhibited two kinetic components: a fast transient increase in intracellular Ca2+ concentration ([Ca2+]i) (the first component; reaching 95% of its peak <0.6 s after depolarization) followed by a second increase in [Ca2+]i which lasted for 5–10 s (the second component). Our results suggest that the first component primarily reflected Ca2+ influx through Ca2+ channels, whereas the second component resulted from Ca2+ release through the RyR expressed in the membrane of internal Ca2+ stores. However, the onset and the rate of Ca2+ release appeared to be much slower than in native cardiac myocytes, despite a similar activation rate of Ca2+ current. These results suggest that the skeletal muscle RyR isoform supports Ca2+-induced Ca2+ release but that the distance between the DHPRs and the RyRs is, on average, much larger in the cotransfected CHO cells than in cardiac myocytes. We conclude that morphological properties of T-tubules and/or proteins other than the DHPR and the RyR are required for functional “close coupling” like that observed in skeletal or cardiac muscle. Nevertheless, some of our results imply that these two channels are potentially able to directly interact with each other.  相似文献   

9.
Glucagon induces intracellular Ca2+ ([Ca2+]i) elevation by stimulating glucagon receptor (GCGR). Such [Ca2+]i signaling plays important physiological roles, including glycogenolysis and glycolysis in liver cells and the survival of β-cells. Previous studies indicated that phospholipase C (PLC) might be involved in glucagon-mediated [Ca2+]i response. Other studies also debated whether cAMP accumulation mediated by GCGR/Gαs coupling contributes to [Ca2+]i elevation. But the exact mechanisms remain uncertain. In the present study, we found that glucagon induces [Ca2+]i elevation in HEK293 cells expressing GCGR. Removing extracellular Ca2+ did not affect glucagon-stimulated [Ca2+]i response. But depleting the intracellular Ca2+ store by thapsigargin completely inhibited glucagon-induced [Ca2+]i response. Experiments with forskolin and adenylyl cyclase inhibtor revealed that cAMP is not the cause of [Ca2+]i response. Further studies with Gαq/11 RNAi and pertussis toxin (PTX) indicated that both Gαq/11 and Gαi/o are involved. Combination of Gαq/11 RNAi and Gαi/o inhibition almost completely abolished glucagon-induced [Ca2+]i signaling.  相似文献   

10.
Purinergic signaling may be involved in embryonic development of the heart. In the present study, the effects of purinergic receptor stimulation on cardiomyogenesis of mouse embryonic stem (ES) cells were investigated. ADP or ATP increased the number of cardiac clusters and cardiac cells, as well as beating frequency. Cardiac-specific genes showed enhanced expression of α-MHC, MLC2v, α-actinin, connexin 45 (Cx45), and HCN4, on both gene and protein levels upon ADP/ATP treatment, indicating increased cardiomyogenesis and pacemaker cell differentiation. Real-time RT-PCR analysis of purinergic receptor expression demonstrated presence of P2X1, P2X4, P2X6, P2X7, P2Y1, P2Y2, P2Y4, and P2Y6 on differentiating ES cells. ATP and ADP as well as the P2X agonists β,γ-methylenadenosine 5′-triphosphate (β,γ-MetATP) and 8-bromoadenosine 5′-triphosphate (8-Br-ATP) but not UTP or UDP transiently increased the intracellular calcium concentration ([Ca2+]i) as evaluated by the calcium indicator Fluo-4, whereas no changes in membrane potential were observed. [Ca2+]i transients induced by ADP/ATP were abolished by the phospholipase C-β (PLC-β) inhibitor U-73122, suggesting involvement of metabotropic P2Y receptors. Furthermore, partial inhibition of [Ca2+]i transients was achieved in presence of MRS2179, a selective P2Y1 receptor antagonist, whereas PPADS, a non-selective P2 receptor inhibitor, completely abolished the [Ca2+]i response. Consequently, cardiomyocyte differentiation was decreased upon long term co-incubation of cells with ADP and P2 receptor antagonists. In summary, activation of purinoceptors and the subsequent [Ca2+]i transients enhance the differentiation of ES cells toward cardiomyocytes. Purinergic receptor stimulation may be a promising strategy to drive the fate of pluripotent ES cells into a particular population of cardiomyocytes.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-015-9468-1) contains supplementary material, which is available to authorized users.  相似文献   

11.
The auxiliary CaVα2δ-1 subunit is an important component of voltage-gated Ca2+ (CaV) channel complexes in many tissues and of great interest as a drug target. Nevertheless, its exact role in specific cell functions is still unknown. This is particularly important in the case of the neuronal L-type CaV channels where these proteins play a key role in the secretion of neurotransmitters and hormones, gene expression, and the activation of other ion channels. Therefore, using a combined approach of patch-clamp recordings and molecular biology, we studied the role of the CaVα2δ-1 subunit on the functional expression and the pharmacology of recombinant L-type CaV1.3 channels in HEK-293 cells. Co-expression of CaVα2δ-1 significantly increased macroscopic currents and conferred the CaV1.3α1/CaVβ3 channels sensitivity to the antiepileptic/analgesic drugs gabapentin and AdGABA. In contrast, CaVα2δ-1 subunits harboring point mutations in N-glycosylation consensus sequences or the proteolytic site as well as in conserved cysteines in the transmembrane δ domain of the protein, reduced functionality in terms of enhancement of CaV1.3α1/CaVβ3 currents. In addition, co-expression of the δ domain drastically inhibited macroscopic currents through recombinant CaV1.3 channels possibly by affecting channel synthesis. Together these results provide several lines of evidence that the CaVα2δ-1 auxiliary subunit may interact with CaV1.3 channels and regulate their functional expression.  相似文献   

12.
This work shows that ATP activates JNK1, but not JNK2, in rat osteoblasts and ROS-A 17/2.8 osteoblast-like cells. In ROS-A 17/2.8 cells ATP induced JNK1 phosphorylation in a dose- and time-dependent manner. JNK1 phosphorylation also increased after osteoblast stimulation with ATPγS and UTP, but not with ADPβS. RT-PCR studies supported the expression of P2Y2 receptor subtype. ATP-induced JNK1 activation was reduced by PI-PLC, IP3 receptor, PKC and Src inhibitors and by gadolinium, nifedipine and verapamil or a Ca2+-free medium. ERK 1/2 or p38 MAPK inhibitors diminished JNK1 activation by ATP, suggesting a cross-talk between these pathways. ATP stimulated osteoblast-like cell proliferation consistent with the participation of P2Y2 receptors. These results show that P2Y2 receptor stimulation by ATP induces JNK1 phosphorylation in ROS-A 17/2.8 cells in a way dependent on PI-PLC/IP3/intracellular Ca2+ release and Ca2+ influx through stress activated and L-type voltage-dependent calcium channels and involves PKC and Src kinases.  相似文献   

13.
In cultured bovine adrenal chromaffin cells expressing Nav1.7 sodium channel isoform, veratridine increased Ser473-phosphorylation of Akt and Ser9-phosphorylation of glycogen synthase kinase-3β by 217 and 195%, while decreasing Ser396-phosphorylation of tau by 36% in a concentration (EC50 = 2.1 μM)- and time (t1/2 = 2.7 min)-dependent manner. These effects of veratridine were abolished by tetrodotoxin or extracellular Ca2+ removal. Veratridine (10 μM for 5 min) increased translocation of Ca2+-dependent conventional protein kinase C-α from cytoplasm to membranes by 47%; it was abolished by tetrodotoxin, extracellular Ca2+ removal, or Gö6976 (an inhibitor of protein kinase C-α), and partially attenuated by LY294002 (an inhibitor of phosphatidylinositol 3-kinase). LY294002 (but not Gö6976) abrogated veratridine-induced Akt phosphorylation. In contrast, either LY294002 or Gö6976 alone attenuated veratridine-induced glycogen synthase kinase-3β phosphorylation by 65 or 42%; however, LY294002 plus Gö6976 completely blocked it. Veratridine (10 μM for 5 min)-induced decrease of tau phosphorylation was partially attenuated by LY294002 or Gö6976, but completely blocked by LY294002 plus Gö6976; okadaic acid or cyclosporin A (inhibitors of protein phosphatases 1, 2A, and 2B) failed to alter tau phosphorylation. These results suggest that Na+ influx via Nav1.7 sodium channel and the subsequent Ca2+ influx via voltage-dependent calcium channel activated (1) Ca2+/protein kinase C-α pathway, as well as (2) Ca2+/phosphatidylinositol 3-kinase/Akt and (3) Ca2+/phosphatidylinositol 3-kinase/protein kinase C-α pathways; these parallel pathways converged on inhibitory phosphorylation of glycogen synthase kinase-3β, decreasing tau phosphorylation.  相似文献   

14.
The physiological role of the thromboxane A2 (TXA2) receptor expressed on glial cells remains unclear. We previously reported that 1321N1 human astrocytoma cells pretreated with dibutyryl cyclic AMP (dbcAMP) became swollen in response to U46619, a TXA2 analogue. In the present study, we examined the detailed mechanisms of TXA2 receptor-mediated cell swelling in 1321N1 cells. The cell swelling caused by U46619 was suppressed by expression of p115-RGS, an inhibitory peptide of Gα12/13 pathway and C3 toxin, an inhibitory protein for RhoA. The swelling was also inhibited by treatment with Y27632, a Rho kinase inhibitor and 5-(ethyl-N-isopropyl)amiloride (EIPA), a Na+/H+-exchanger inhibitor. Furthermore, cell swelling was suppressed by the pretreatment with aquaporin inhibitors mercury chloride or phloretin in a concentration-dependent manner, suggesting that aquaporins are involved in U46619-induced 1321N1 cell swelling. In fact, U46619 caused [3H]H2O influx into the cells, which was inhibited by p115-RGS, C3 toxin, EIPA, mercury chloride and phloretin. This is the first report that the TXA2 receptor mediates water influx through aquaporins in astrocytoma cells via TXA2 receptor-mediated activation of Gα12/13, Rho A, Rho kinase and Na+/H+-exchanger.  相似文献   

15.
Phosphatidylinositol biphosphate (PtdIns-4,5P2) plays a key role in the regulation of the mammalian heart Na+/Ca2+ exchanger (NCX1) by protecting the intracellular Ca2+ regulatory site against H+i and (H+i + Na+i) synergic inhibition. MgATP and MgATP-γ-S up-regulation of NCX1 takes place via the production of this phosphoinositide. In microsomes containing PtdIns-4,5P2 incubated in the absence of MgATP and at normal [Na+]i, alkalinization increases the affinity for Ca2+i to the values seen in the presence of the nucleotide at normal pH; under this condition, addition of MgATP does not increase the affinity for Ca2+i any further. On the other hand, prevention of Na+i inhibition by alkalinization in the absence of MgATP does not take place when the microsomes are depleted of PtdIns-4,5P2. Experiments on NCX1–PtdIns-4,5P2 cross-coimmunoprecipitation show that the relevant PtdIns-4,5P2 is not the overall membrane component but specifically that tightly attached to NCX1. Consequently, the highest affinity of the Ca2+i regulatory site is seen in the deprotonated and PtdIns-4,5P2-bound NCX1. Confirming these results, a PtdIns-5-kinase also cross-coimmunoprecipitates with NCX1 without losing its functional competence. These observations indicate, for the first time, the existence of a PtdIns-5-kinase in the NCX1 microdomain.  相似文献   

16.
17.
Contact of Jurkat T-lymphocytes with the extracellular matrix (ECM) protein laminin resulted in long-lasting α6β1-integrin-mediated Ca2+ signalling. Both Ca2+ release from thapsigargin-sensitive Ca2+ stores and capacitative Ca2+ entry via Ca2+ channels sensitive to SKF 96365 constitute important parts of this process. Inhibition of α6β1-integrin-mediated Ca2+ signalling by (1) the src kinase inhibitor PP2, (2) the PLC inhibitor U73122, and (3) the cyclic adenosine diphosphoribose (cADPR) antagonist 7-deaza-8-Br-cADPR indicate the involvement of src tyrosine kinases and the Ca2+-releasing second messengers d-myo-inositol 1,4,5-trisphosphate (InsP3) and cADPR.  相似文献   

18.
The assembly of high voltage-activated Ca2+ channels with different β subunits influences channel properties and possibly subcellular targeting. We studied β subunit expression in the somata and axon terminals of the magnocellular neurosecretory cells, which are located in the supraoptic nucleus (SON) and neurohypophysis, respectively. Antibodies directed against the 4 CaVβ subunits (CaVβ1-CaVβ4) were used for immunoblots and for immunostaining of slices of these two tissues. We found that all 4 β subunits are expressed in both locations, but that CaVβ2 had the highest relative expression in the neurohypophysis. These data suggest that the CaVβ2 subunit is selectively targeted to axon terminals and may play a role in targeting and/or regulating the properties of Ca2+ channels.  相似文献   

19.
Summary The whole-cell patch-clamp method has been used to measure Ca2+ influx through otherwise K+-selective channels in the plasma membrane surrounding protoplasts from guard cells of Vicia faba. These channels are activated by membrane hyperpolarization. The resulting K+ influx contributes to the increase in guard cell turgor which causes stomatal opening during the regulation of leaf-air gas exchange. We find that after opening the K+ channels by hyperpolarization, depolarization of the membrane results in tail current at voltages where there is no electrochemical force to drive K+ inward through the channels. Tail current remains when the reversal potential for permeant ions other than Ca2+ is more negative than or equal to the K+ equilibrium potential (–47 mV), indicating that the current is due to Ca2+ influx through the K+ channels prior to their closure. Decreasing internal [Ca2+] (Ca i ) from 200 to 2 nm or increasing the external [Ca2+] (Ca o ) from 1 to 10 mm increases the amplitude of tail current and shifts the observed reversal potential to more positive values. Such increases in the electrochemical force driving Ca2+ influx also decrease the amplitude of time-activated current, indicating that Ca2+ permeation is slower than K+ permeation, and so causes a partial block. Increasing Ca o also (i) causes a positive shift in the voltage dependence of current, presumably by decreasing the membrane surface potential, and (ii) results in a U-shaped current-voltage relationship with peak inward current ca. –160 mV, indicating that the Ca2– block is voltage dependent and suggesting that the cation binding site is within the electric field of the membrane. K+ channels in Zea mays guard cells also appear to have a Ca i -, and Ca o -dependent ability to mediate Ca2+ influx. We suggest that the inwardly rectiying K+ channels are part of a regulatory mechanism for Ca i . Changes in Ca o and (associated) changes in Ca i regulate a variety of intracellular processes and ion fluxes, including the K+ and anion fluxes associated with stomatal aperture change.This work was supported by grants to S.M.A. from NSF (DCB-8904041) and from the McKnight Foundation. K.F.-G. is a Charles Gilbert Heydon Travelling Fellow. The authors thank Dr. R. MacKinnon (Harvard Medical School) and two anonymous reviewers for helpful comments.  相似文献   

20.
The change in cytosolic free concentration of calcium ([Ca2+]cyt) plays a key role in regulating apoptosis in animal cells. In our experiment, we tried to investigate the function of Ca2+ in programmed cell death (PCD) in tobacco (Nicotiana tobacum, cultivar BY-2) protoplasts induced by salt stress. An obvious increase in [Ca2+]cyt was observed a few minutes after treatment and the onset of a decrease in mitochondrial membrane potential (ΔΨm) was also observed before the appearance of PCD, pre-treatment of protoplasts with EGTA or LaCl3 effectively retarded the increase in [Ca2+]cyt, which was concomitant with the decrease in the percentage of cell death and higher ΔΨm, pre-treatment with cyclosporine A (CsA) also effectively retarded the increase in [Ca2+]cyt, the decrease in ΔΨm and the onset of PCD. All these results suggest that Ca2+ is a necessary element in regulating PCD and the increase in [Ca2+]cyt and the opening of mitochondrial permeability transition pore (MPTP) could promote each other in regulating PCD in tobacco protoplasts induced by salt stress.Jiusheng Lin and Yuan Wang-These authors contributed equally for this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号