首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The effect of phosphorus and molybdenum alone and combined, on the uptake and utilization of Mo, Mn, Zn, Cu and P by rice (Var. IR-579) was studied in the greenhouse at varying levels of Mo (0, 2.5 and 5.0 ppm) and (0,100 and 200 ppm). Application of P increased the dry matter yield of shoot and root. Combined application of P and Mo increased the dry matter yield of shoot. Application of Mo increased the concentration of Mo and P in shoot. Applied P caused an increase in the concentration of Mo, Zn and P in shoot. Combined application of P and Mo resulted in an increase in concentration and uptake of Mo in shoot.  相似文献   

2.
3.
Summary The responses of white clover (cv NZ Grasslands Huia grown in four UK hill soil types) to additions of lime and P, to inoculation with Rhizobium and mycorrhizal fungi, and to differences in soil water status were assessed in pot and field experiments. With a deep peat soil in pots, shoot production, nodulation and N fixation by clover were increased by 160, 130 and 85% respectively following inoculation with mycorrhiza, but in the field, despite a doubling of root infection, there was no response in growth. On a brown earth soil in the field inoculation with one endophyte (Glomus mosseae L1) out of four tested depressed production of white clover shoots by 42% but enhanced that of leeks (Allium porrum) by 50%; the others were without effect. With dry peaty podzol and brown earth soils in pots, clover shoot production was highest with added P when a water holding capacity of 80% was maintained, but roots from the latter had only 2.6 compared to 68 nodules per plant from the former. Further work is required to explain poor nodulation in the brown earth soils.  相似文献   

4.
Summary Effect of amendments, gypsum (12.5 tonnes/ha), farmyard manure (30 tonnes/ha), rice husk (30 tonnes/ha) and also no amendment (control) on the availability of native Fe, Mn and P and applied Zn in a highly sodic soil during the growth period of rice crop under submerged conditions was studied in a field experiment. Soil samples were collected at 0, 30, 60 and 90 days of crop growth. Results showed that extractable Fe (1N NH4OAC pH 3) and Mn (1N NH4OAC pH 7) increased with submergence upto 60 days of crop growth but thereafter remained either constant or declined slightly. Application of farmyard manure and rice husk resulted in marked improvement of these elements over gypsum and control. Increases in extractable Mn (water soluble plus exchangeable) as a result of submergence and crop growth under different amendments were accompanied by corresponding decreases in easily reducible Mn content of the soil. Application of 40 kg zinc sulphate per hectare to rice crop could substantially raise the available Zn status (DTPA extractable) of the soil in gypsum and farmyard manure treated plots while the increase was only marginal in rice husk and control plots indicating greater fixation of applied Zn. Available P (0.5M NaHCO3 pH 8.5) behaved quite differently and decreased in the following order with crop growth: gypsum>rice husk>farmyard manure>control.  相似文献   

5.
Summary The influence of heavy applications of P (100, 200 and 400 ppm P) and Zn (12.5 and 25 ppm) fertilizers on their extractabilities, availabilities and uptake by corn grown in highly calcareous soil was investigated.A significant increase was found in the levels of (NH4)2CO3-EDTA-extractable Zn either by Zn-applications alone or together with P. The amounts of NaHCO3-extractable P were also increased with P additions and the influence of Zn applications was not clear.Phosphorus application generally increased the plant dry weight. In the soils treated with P and Zn fertilizers, that increase was mostly related to P rather to Zn.In the soils not treated with Zn, P additions increased Zn uptake by the plants. On the other side, in the soils treated with Zn, P additions decreased Zn uptake.Phosphorus concentration in the whole plant and/or in the different plant parts was increased by P application without being significantly affected by Zn addition. The plants showed greater response to 12.5 ppm Zn application than to 25 ppm.Plants grown for 4 weeks contained lower amounts of Zn relative to those grown for 8 weeks. The influence of plant age on P content was not as clear as occurred with Zn.  相似文献   

6.
根表铁氧化物胶膜对水稻吸收Zn的影响   总被引:17,自引:1,他引:17  
采用营养液培养方法研究了水稻根表形成的铁氧化物胶膜对水稻吸收Zn的影响.结果表明,在有Fe2+的嫌气环境中,由于根际氧化作用水稻根表会形成红色的铁氧化物胶膜,根表的铁氧化物胶膜影响水稻对Zn的吸收.铁膜数量较少时,由于对Zn的富集作用有限,其对水稻Zn的吸收虽有促进作用,但不明显.随着根表铁膜数量的增加,这种促进作用也相应增加,并且在铁膜数量增加到一定值时,对水稻吸收Zn的促进作用达到最大.而后,随着铁膜数量的进一步增加,铁膜反而阻碍水稻对Zn的吸收,成为水稻吸收Zn的障碍层.在此过程中,水稻的根分泌物,特别是其中的植物铁载体对覆有铁膜水稻根系吸收Zn有促进作用.这种促进作用随铁膜数量的增加而逐渐减弱.因此,根表铁氧化物胶膜对水稻吸收Zn并不总是起促进作用,其作用的方向和程度取决于铁膜的数量.  相似文献   

7.
磷氮在水田湿地中的迁移转化及径流流失过程   总被引:49,自引:8,他引:49  
水稻田湿地系统是我国东南部高产农业区的主要土地利用类型,是我国特有的景观结构.在巢湖六叉河小流域进行的野外实验结果表明,这一湿地系统的水塘、水沟和水稻田都能有效地截留来自村庄、森林地和旱地的磷氮非点源污染物.实验同时研究了磷氮物质从水稻田中的径流流失方式和机理,结果发现磷氮物质从水稻田中的径流流失量与水稻田持水量、施肥量、降雨量、水稻生长过程和水稻田排水堰高度等因素有关,并提出了一个模型计算磷氮径流流失量,表明在施肥情况下的磷氮流失量分别高达0.69和11.2kg·hm-2,是最大的潜在非点源污染.  相似文献   

8.
Summary In a pot culture study, copper addition to soil increased the crop yield only in presence of nitrogen. The latter increased the utilization of both native as well as applied copper but more that of applied. It also minimised the adverse effect of applied phosphorus on copper utilization. Phosphorus at the rate 45 ppm had the tendency of decreasing copper uptake by wheat if applied without nitrogen or with its low level.  相似文献   

9.
Summary Under semi-arid conditions, three field experiments were conducted at Gezira Research Station to determine response of irrigated dry-seeded rice (Oryza sativa L. var IR 2053-206-1-3-6) to addition of nitrogen and phosphorus fertilizers. The experimental treatments included the factorial combinations of seven levels of nitrogen applied as urea and four levels of phosphorus applied as super phosphate. Plant growth and grain yield were significantly and progressively increased with the rise in the levels of added nitrogen and phosphorus. However, response to added phosphorus was restricted by the applied level of nitrogen. The responses of grain yield to nitrogen and phosphorus levels are given by quadratic regression equations. Without addition of nitrogen or phosphorus grain yield averaged 1.52 t/ha compared to 6.07 t/ha with addition of the optimal levels (160 kg N plus 35 kg P/ha). The high potential for rice production in semi-arid environment is evidently restricted by addition of relatively high rates of nitrogen and phosphorus.  相似文献   

10.
11.
Summary The effects of four Zn levels on the electrochemical and chemical properties of the soil solution, and on the growth and mineral nutrition of two rice varieties (IR26 and IR34) differing in tolerance to Zn deficiency were studied in the greenhouse using Zn-deficient soils from two locations. A similar experiment was conducted in culture solution to check how Zn addition affects translocation of other nutrients.In both soil and culture solution, plant Zn concentrations alone was not enough to account for varietal tolerance to Zn deficiency. Comparison of nutrient to Zn and shoot to root ratios of nutrients was more useful in determining the possible mechanism of varietal tolerance. IR 34 appeared to tolerate the disorder due to its lower Zn requirement, more efficient Zn translocation and ability to maintain lower Fe/Zn, Cu/Zn, Mg/Zn and P/Zn ratios in the shoot than the more susceptible variety, IR26. This was shown to be due to decreased translocation of Fe, Mg and P to shoots and decreased absorption of Cu by the root in IR34 in culture solution studies. Adding Zn further reduces translocation or absorption of these nutrients and depending on the nutrient supply of the soil, could cause deficiencies or mineral imbalances, especially of Fe, Cu, and P.These observed varietal differences regarding Zn requirement and the interaction of Zn with absorption and translocation of plant nutrients necessitates revision of recommendations for Zn fertilization. There is an inevitable need for Zn application in severely Zn-deficient soils regardless of rice variety. But on marginally Zn-deficient soils especially those low in Fe, Cu, or P, Zn fertilization is not advisable when resistant rice varieties are used.  相似文献   

12.
E. L. Simms 《Oecologia》1987,71(4):541-547
Summary Aboveground growth, reproduction, and foliar nitrogen and phosphorus contents of two ericaceous shrub species were compared over two seasons in (a) an undisturbed shrub bog (pocosin), and (b) a factorial fertilization design in which three levels each of nitrogen and phosphorus were added in all possible combinations. One species, Zenobia pulverulenta, is deciduous whereas the other species, Lyonia lucida, is evergreen. In the nutrient-poor undisturbed pocosin the two species exhibited similar foliar nitrogen and phosphorus concentrations and aboveground growth rates. Neither species flowered. In response to nutrient-addition Zenobia increased growth rates more than Lyonia. Foliar phosphorus concentrations of both species increased in response to enhanced phosphorus availability. in the first season neither species flowered in any treatment. In the second season Zenobia flowered only in the fertilized plots, with the most flowering in the high phosphorus treatments. I conclude that, by virtue of high growth rates and efficient use of nutrients and despite differences in leaf phenology and morphology, both Lyonia and Zenobia are successful in a competitive community under conditions of extremely low phosphorus availability. However, unlike Lyonia, Zenobia can take advantage of temporarily increased nutrient availability, which occurs following fire in the pocosin, to increase growth and reproduction.  相似文献   

13.
Dietary protein and zinc deficiencies known to be detrimental to the developing fetus are common in pregnant women in developing countries. Everyone in modern society is at risk of exposure to carbon monoxide (CO). This study was conducted to observe the effect of dietary protein, zinc, and exposure to CO on the fetal zinc concentrations by factorial experimentation. Pregnant mice of CD-1 strain were maintained on 17% (control) or 9% (deficient) protein diets mixed with deficient, normal (control), or supplemental zinc throughout gestation. The dams in each dietary group were exposed to air (control) or 500 ppm CO in air in environmental chambers from gestation day 8 to gestational day 18. The dams were sacrificed on d 18 and fetal zinc levels were measured by atomic absorption spectrophotometry. Carbon monoxide levels used in this study had no significant effect on fetal zinc concentration in any treatment group. When both dietary protein and zinc levels were normal, the mean fetal zinc concentrations were higher than all other dietary protein/zinc combinations (15.2±6.0 and 14.2±4.1 μg Zn/g of tissue for 0 and 500 ppm CO levels). However, when dietary protein levels were deficient, supplemental zinc increased the fetal zinc concentrations significantly (12.7±3.8 and 13.1±0.3.6 μg Zn/g of tissue, in 0 and 500 ppm CO groups) as compared to zinc-deficient groups (8.7±3.0 and 10.0±3.3 μg Zn/g of tissue in 0 and 500 ppm CO groups). The results of this study may be relevant to populations that experience both marginal zinc and protein diets during gestation.  相似文献   

14.
M. Saeed 《Plant and Soil》1979,52(3):447-450
Summary Five acid soils of Hawaii, having histories of heavy P applications were equilibrated with graded quantities of Zn. Amounts of adsorbed Zn were extracted with a single extraction of 0.005M DTPA. The data indicated that most of the added Zn was in available form. Prior P applications either had no effect on recovery or slightly increased it. The results substantiated the earlier findings that P-induced Zn deficiency could not be due to precipitation of Zn as insoluble Zn–P compounds in the soils.  相似文献   

15.
氮磷限制对锥状斯氏藻孢囊形成的作用   总被引:5,自引:0,他引:5  
曹宇  张玉娟  王朝晖 《生态科学》2006,25(1):17-20,24
在实验室研究了锥状斯氏藻(Scrippsiellatrochoidea)在N、P单因子营养限制(N:500μg.L-1,P:74~0.74μg.L-1和P:74μg.L-1,N:500~5μg.L-1)条件下的生长和孢囊形成。结果显示N、P限制不利于锥状斯氏藻的快速生长,其中低P对细胞生长的限制作用更显著。其孢囊形成率在15~99%之间,中度N限制能促进孢囊的形成,形成率几乎可达100%。孢囊一般在对数生长期结束、细胞数量达到最大值时开始形成。但由于接种后营养盐浓度的急剧降低,营养极度限制组孢囊可在接种后第1d就开始形成。结果显示稳定生长期孢囊的大量形成大大降低了锥状斯氏藻营养细胞数量,能在一定程度上促进其赤潮的消亡。  相似文献   

16.
Despite the extensive literature on the effect on soil properties of afforestation of former arable land, we still lack full understanding of whether the changes proceed in the same direction and at the same rate, and of how long is required to achieve a state of soil equilibrium typical of a natural forest ecosystem. Therefore, as part of a study comparing post-arable sandy soils (Dystric Arenosols) afforested with Scots pine (Pinus silvestris L.) with arable soils and soils of continuous coniferous forests, the range and direction of changes in pH, organic carbon (Corg), total nitrogen (Ntot), ammonium (N-NH4) and nitrates (N-NO3) in soil solution, total (Ptot) and available (Pav) phosphorus were determined. The studies were carried out in south-east Poland (51°30′-51°37′N, 22°20′-22°35′E). Ten paired sites of afforested soils (five with 14- to 17-year-old stands and five with 32- to 36-year-old stands) with adjacent cultivated fields, and five sites of continuous forest with present stands of ca. 130–150 years old were selected. Soil samples were taken from the whole thickness of master horizons and, in the case of the A horizon of the afforested soils, from three layers: 0–5 (A0–5), 5–10 (A5–10) and 10–20 cm (A10–20). The cultivated soils in the Ap horizon showed higher pH (by ca. 1.0 unit), lower Corg and C:N, similar Ntot, lower N-NH4, higher N-NO3, higher Ptot and Pav contents compared with the Ah horizon of continuous forest soils. The results indicated decreased soil pH in the former plough layer of the afforested soils, with the greatest decrease observed in the 0–5 cm layer. In these soils, the Corg content was considerably higher in the A0–5 layer, but lower in the two deeper layers and in the whole A horizon (0–20 cm) compared with the Ap horizon of the arable soils. The results indicate that the Corg content, after an initial phase of decline, again achieved a level characteristic of arable soils. The Ntot content in all layers of the A horizon of the afforested soils was lower than in the Ap horizon of the arable soils, and showed a reduction with stand age, especially in deeper layers. The C:N ratios in the mineral topsoil increased with stand age. N-NH4 content increased and N-NO3 decreased after afforestation. The Ptot and Pav contents in all layers and in the whole A horizon of the afforested soils, on stands of both ages, was lower than in the Ap of the cultivated soils. From the results, it could be concluded that, after more than 30 years of tree growth, the soils of the A horizon were still more similar to arable than to continuous forest soils with respect to Corg, Ptot and Pav. With respect to pH, N-NH4 and N-NO3, especially in the 0–5 cm layer, they were more similar to continuous forest soils than to cultivated soils, but with respect to Ntot and C:N ratio they were somewhere in between.  相似文献   

17.
Summary Excised roots of rice (Oryzae sativa L.) cv IR26 absorbed both Zn2+ and Cu2+ from 0.01 mM to 0.50 mM external solutions at rates twice those of cv M101 over a 30-min period. However, the latter have a two-fold greater affinity (1/Km) for Zn2+ and Cu2+ than do those of the former. Zinc2+ and Cu2+ mutually and competitively inhibited uptake of each other, indicating that both micronutrient cations are absorbed through the same uptake mechanism or carrier sites. Further, these differences in uptake rates are restricted to roots but they cannot be explained by variations in root surface areas. Excised roots of tomato (Lycopersicon esculentum L.) cv Kewalo absorbed Zn2+ and Cu2+ much more rapidly than did cv Sel 7625-2. Uptake of each cation was competitively and reciprocally inhibited by the other, so Zn2+ and Cu2+ are seemingly accumulated through the same uptake system in tomato also. Tomato cultivars Kewalo and Sel 7625-2 did not differ with regard to affinities of the root apices for Zn2+ and Cu2+; however. Vmax values for Zn2+ and Cu2+ uptake by roots of cv Kewalo were three-fold greater than those for cv Sel 7625-2. Journal Series 2991 of the Hawaii Institute of Tropical Agriculture and Human Resources. Supported by USDA/CSRS Grants Program in Tropical and Subtropical Agriculture (83-CSRS-2-2245).  相似文献   

18.
开放式空气CO2浓度增高对水稻N素吸收利用的影响   总被引:14,自引:5,他引:14  
在大田栽培条件下 ,研究空气中CO2 浓度增高 (FACE) 2 0 0 μmol·mol-1对水稻N素吸收及其利用效率的影响 .结果表明 ,FACE处理使水稻不同生育时期的植株含N率显著下降 ;由于干物质生产量显著增大 ,FACE处理使水稻不同生育时期的N素累积量有所提高 ,但无显著影响 ;FACE处理能够显著提高移栽后 2 8d、抽穗期以及成熟期单位N素的干物质生产效率、单位N素的籽粒生产效率和显著提高水稻的N素收获指数 .高N处理的植株含N率、N素累积量均有所增加 ,但使N素生产效率呈现下降趋势 .  相似文献   

19.
The present work compared chemical and biological treatment methods to achieve the most efficient treatment for the reduction or elimination of phosphorus and nitrogen from mixed industrial–domestic wastewaters. Batch chemical precipitation by ferric chloride and aluminum sulfate (alum) and a continuous biological suspended growth system were investigated as well as the optimum operating conditions. Concerning chemical treatment, Alum generally achieved a higher removal efficiency percentage for the investigated pollutants compared with FeCl3 at their optimum pH and dose, especially with chemical oxygen demand (COD). FeCl3 treatment achieved success only with phosphorus removal, while none of the COD, 5-day biochemical oxygen demand (BOD5), total nitrogen (TN) and N–NH3 achieved acceptable treatment and remained above the maximum permissible limits (MPL). Thus, for such wastewaters, alum is more efficient than FeCl3. Biological treatment exhibited higher efficiencies, particularly towards nitrogen. TN removal increased by increasing the flow rate to 30–60 l/day. N–NH3 removal was effective at the slowest flow rate and decreased with increasing flow rate, while an opposite trend was recorded for N–NO3. At all flow rates, phosphorus levels were below the accepted MPL for discharging into natural systems. Moreover, there was a general trend for the proposed biological treatment to achieve a high removal efficiency for BOD5 and COD, bringing them to acceptable levels to be released into watercourses safely, especially at the slowest flow rates. Thus, integration between the proposed chemical and biological treatment is highly recommended, producing high-quality effluents acceptable by the environmental law.  相似文献   

20.
Lake Taihu suffers from eutrophication caused by riverine nutrient inputs and air deposition. To characterize wet deposition of phosphorus (P) and nitrogen (N) to the lake, precipitation collection and measurements of total phosphorus (TP) and total nitrogen (TN) and other components at five cities around Lake Taihu were made from July 2002 to June 2003. TP and TN concentrations and deposition rates exhibited strong spatial variation in the whole catchment. An inverse correlation between station-averaged TP and TN concentrations and precipitation amount was found. Maximal TP concentration in rainfall was found in Suzhou, and maximal TN in Wuxi. However, highest wet deposition rates of TP and TN were found in Suzhou, which suggests that atmospheric nutrients are mostly from the east and northwest area of Lake Taihu. Mean TP and TN deposition rates were 0.03 and 2.0 t km−2 year−1 respectively in Lake Taihu, which are greater than reported values in other areas by comparision. Total N and P contributed to the lake by wet deposition were 75 and 4720 t per year, respectively, which represent about 7.3% and 16.5% of total annual N and P inputs via inflow rivers. Wet deposition, especially N, could have significant effects on eutrophication in the lake, which shows that air deposition should be taken into account while reducing the external nutrients in the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号