首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular morphogenesis, including polarized outgrowth, promotes tissue shape and function. Polarized vesicle trafficking has emerged as a fundamental mechanism by which protein and membrane can be targeted to discrete subcellular domains to promote localized protrusions. Frizzled (Fz)/planar cell polarity (PCP) signaling orchestrates cytoskeletal polarization and drives morphogenetic changes in such contexts as the vertebrate body axis and external Drosophila melanogaster tissues. Although regulation of Fz/PCP signaling via vesicle trafficking has been identified, the interplay between the vesicle trafficking machinery and downstream terminal PCP-directed processes is less established. In this paper, we show that Drosophila CK1-γ/gilgamesh (gish) regulates the PCP-associated process of trichome formation through effects on Rab11-mediated vesicle recycling. Although the core Fz/PCP proteins dictate prehair formation broadly, CK1-γ/gish restricts nucleation to a single site. Moreover, CK1-γ/gish works in parallel with the Fz/PCP effector multiple wing hairs, which restricts prehair formation along the perpendicular axis to Gish. Our findings suggest that polarized Rab11-mediated vesicle trafficking regulated by CK1-γ is required for PCP-directed processes.  相似文献   

2.
Planar cell polarity (PCP) occurs when the cells of an epithelium are polarized along a common axis lying in the epithelial plane. During the development of PCP, cells respond to long-range directional signals that specify the axis of polarization. In previous work on the Drosophila eye, we proposed that a crucial step in this process is the establishment of graded expression of the cadherin Dachsous (Ds) and the Golgi-associated protein Four-jointed (Fj). These gradients were proposed to specify the direction of polarization by producing an activity gradient of the cadherin Fat within each ommatidium. In this report, I test and confirm the key predictions of this model by altering the patterns of Fj, Ds and Fat expression. It is shown that the gradients of Fj and Ds expression provide partially redundant positional information essential for specifying the polarization axis. I further demonstrate that reversing the Fj and Ds gradients can lead to reversal of the axis of polarization. Finally, it is shown that an ectopic gradient of Fat expression can re-orient PCP in the eye. In contrast to the eye, the endogenous gradients of Fj and Ds expression do not play a major role in directing PCP in the wing. Thus, this study reveals that the two tissues use different strategies to orient their PCP.  相似文献   

3.
《Organogenesis》2013,9(3):180-190
Planar cell polarity (PCP) describes the coordinated polarization of tissue cells in a direction that is orthogonal to their apical/basal axis. In the last several years, studies in flies and vertebrates have defined evolutionarily conserved pathways that establish and maintain PCP in various cellular contexts. Defective responses to the polarizing signal(s) have deleterious effects on the development and repair of a wide variety of organs/tissues. In this review, we cover the known and hypothesized roles for PCP in the metanephric kidney. We highlight the similarities and differences in PCP establishment in this organ compared with flies, especially the role of Wnt signaling in this process. Finally, we present a model whereby the signal(s) that organizes PCP in the kidney epithelium, at least in part, comes from the adjacent stromal fibroblasts.  相似文献   

4.
Carroll TJ  Das A 《Organogenesis》2011,7(3):180-190
Planar cell polarity (PCP) describes the coordinated polarization of tissue cells in a direction that is orthogonal to their apical/basal axis. In the last several years, studies in flies and vertebrates have defined evolutionarily conserved pathways that establish and maintain PCP in various cellular contexts. Defective responses to the polarizing signal(s) have deleterious effects on the development and repair of a wide variety of organs/tissues. In this review, we cover the known and hypothesized roles for PCP in the metanephric kidney. We highlight the similarities and differences in PCP establishment in this organ compared with flies, especially the role of Wnt signaling in this process. Finally, we present a model whereby the signal(s) that organizes PCP in the kidney epithelium, at least in part, comes from the adjacent stromal fibroblasts.  相似文献   

5.
During vertebrate gastrulation, convergence and extension cell movements are coordinated with the anteroposterior and mediolateral embryonic axes. Wnt planar cell polarity (Wnt/PCP) signaling polarizes the motile behaviors of cells with respect to the anteroposterior embryonic axis. Understanding how Wnt/PCP signaling mediates convergence and extension (C&E) movements requires analysis of the mechanisms employed to alter cell morphology and behavior with respect to embryonic polarity. Here, we examine the interactions between the microtubule cytoskeleton and Wnt/PCP signaling during zebrafish gastrulation. First, we assessed the location of the centrosome/microtubule organizing center (MTOC) relative to the cell nucleus and the body axes, as a marker of cell polarity. The intracellular position of MTOCs was polarized, perpendicular to the plane of the germ layers, independently of Wnt/PCP signaling. In addition, this position became biased posteriorly and medially within the plane of the germ layers at the transition from mid- to late gastrulation and from slow to fast C&E movements. This depends on intact Wnt/PCP signaling through Knypek (Glypican4/6) and Dishevelled components. Second, we tested whether microtubules are required for planar cell polarization. Once the planar cell polarity is established, microtubules are not required for accumulation of Prickle at the anterior cell edge. However, microtubules are needed for cell-cell contacts and initiation of its anterior localization. Reciprocal interactions occur between Wnt/PCP signaling and microtubule cytoskeleton during C&E gastrulation movements. Wnt/PCP signaling influences the polarity of the microtubule cytoskeleton and, conversely, microtubules are required for the asymmetric distribution of Wnt/PCP pathway components.  相似文献   

6.
Maung SM  Jenny A 《Organogenesis》2011,7(3):165-179
In all multicellular organisms, epithelial cells are not only polarized along the apical-basal axis, but also within the epithelial plane, giving cells a sense of direction. Planar cell polarity (PCP) signaling regulates establishment of polarity within the plane of an epithelium. The outcomes of PCP signaling are diverse and include the determination of cell fates, the generation of asymmetric but highly aligned structures, such as the stereocilia in the human inner ear or the hairs on a fly wing, or the directional migration of cells during convergence and extension during vertebrate gastrulation. In humans, aberrant PCP signaling can result in severe developmental defects, such as open neural tubes (spina bifida), and can cause cystic kidneys. In this review, we discuss the basic mechanism and more recent findings of PCP signaling focusing on Drosophila melanogaster, the model organism in which most key PCP components were initially identified.  相似文献   

7.
《Organogenesis》2013,9(3):165-179
In all multicellular organisms, epithelial cells are not only polarized along the apical-basal axis, but also within the epithelial plane, giving cells a sense of direction. Planar cell polarity (PCP) signaling regulates establishment of polarity within the plane of an epithelium. The outcomes of PCP signaling are diverse and include the determination of cell fates, the generation of asymmetric but highly aligned structures, such as the stereocilia in the human inner ear or the hairs on a fly wing, or the directional migration of cells during convergence and extension during vertebrate gastrulation. In humans, aberrant PCP signaling can result in severe developmental defects, such as open neural tubes (spina bifida), and can cause cystic kidneys. In this review, we discuss the basic mechanism and more recent findings of PCP signaling focusing on Drosophila melanogaster, the model organism in which most key PCP components were initially identified.  相似文献   

8.
Rspo1 (R-spondin 1)是分泌型Rspos (R-spondins)蛋白家族的成员,在雌性发育、血管生成和癌症等多个方面具有调控作用。为了研究Rspo1在早期胚胎发育中的功能,以斑马鱼(Danio rerio)作为模式生物,利用反转录PCR及原位杂交技术检测rspo1基因的时空表达模式;通过显微注射rspo1 mRNA或rspo1反义寡核苷酸(Morpholino, MO)对rspo1进行过表达或敲降;通过形态观察及原位杂交技术检测胚胎汇聚延伸(Convergence and extension, CE)运动是否正常;利用荧光素酶活性检测实验测定Wnt/PCP信号通路活性水平;通过蛋白印迹法检测表征Wnt/PCP信号通路活性的磷酸化JNK (Jun N-terminal kinase)蛋白的水平。结果显示:rspo1为母源基因,在12hpf前胚胎中呈全身性表达, rspo1的过表达或敲降均影响胚胎的CE运动;过表达rspo1降低Wnt/PCP信号通路报告质粒的活性,而敲降rspo1则增加其活性,与之相一致, rspo1敲降的胚胎中磷酸化JNK的水平显著升高;此外, rsp...  相似文献   

9.
The noncanonical Wnt/planar cell polarity (PCP) pathway controls a variety of cell behaviors such as polarized protrusive cell activity, directional cell movement, and oriented cell division and is crucial for the normal development of many tissues. Mutations in the PCP genes cause malformation in multiple organs. Recently, the PCP pathway was shown to control endocytosis of PCP and non-PCP proteins necessary for cell shape remodeling and formation of specific junctional protein complexes. During formation of the renal glomerulus, the glomerular capillary becomes enveloped by highly specialized epithelial cells, podocytes, that display unique architecture and are connected via specialized cell-cell junctions (slit diaphragms) that restrict passage of protein into the urine; podocyte differentiation requires active remodeling of cytoskeleton and junctional protein complexes. We report here that in cultured human podocytes, activation of the PCP pathway significantly stimulates endocytosis of the core slit diaphragm protein, nephrin, via a clathrin/β-arrestin-dependent endocytic route. In contrast, depletion of the PCP protein Vangl2 leads to an increase of nephrin at the cell surface; loss of Vangl2 functions in Looptail mice results in disturbed glomerular maturation. We propose that the PCP pathway contributes to podocyte development by regulating nephrin turnover during junctional remodeling as the cells differentiate.  相似文献   

10.
The planar cell polarity (PCP) pathway is conserved throughout evolution, but it mediates distinct developmental processes. In Drosophila, members of the PCP pathway localize in a polarized fashion to specify the cellular polarity within the plane of the epithelium, perpendicular to the apicobasal axis of the cell. In Xenopus and zebrafish, several homologs of the components of the fly PCP pathway control convergent extension. We have shown previously that mammalian PCP homologs regulate both cell polarity and polarized extension in the cochlea in the mouse. Here we show, using mice with null mutations in two mammalian Dishevelled homologs, Dvl1 and Dvl2, that during neurulation a homologous mammalian PCP pathway regulates concomitant lengthening and narrowing of the neural plate, a morphogenetic process defined as convergent extension. Dvl2 genetically interacts with Loop-tail, a point mutation in the mammalian PCP gene Vangl2, during neurulation. By generating Dvl2 BAC (bacterial artificial chromosome) transgenes and introducing different domain deletions and a point mutation identical to the dsh1 allele in fly, we further demonstrated a high degree of conservation between Dvl function in mammalian convergent extension and the PCP pathway in fly. In the neuroepithelium of neurulating embryos, Dvl2 shows DEP domain-dependent membrane localization, a pre-requisite for its involvement in convergent extension. Intriguing, the Loop-tail mutation that disrupts both convergent extension in the neuroepithelium and PCP in the cochlea does not disrupt Dvl2 membrane distribution in the neuroepithelium, in contrast to its drastic effect on Dvl2 localization in the cochlea. These results are discussed in light of recent models on PCP and convergent extension.  相似文献   

11.
Polarization of the cellular cytoskeleton underlies many cellular processes including axon growth cone guidance, chemotaxis and yeast mating. Planar cell polarity (PCP) is a similar phenomenon in which cells in an epithelium become uniformly polarized to generate a field of aligned structures such as the hair cells of the cochlea. In Drosophila PCP is under the hierarchical control of Frizzled (Fz) - a serpentine receptor (that also functions in the Wnt signaling pathway). Serpentine receptors are routinely transduced by trimeric G-proteins, but until recently the general consensus was that Fzs were not G-protein linked. In Drosphila a G-protein (Gαo ) has now been identified that functions in both the Wnt and PCP pathways. Here we review the cell polarity phenotypes of Gαo mutants and discuss the evidence that it plays multifarious roles in PCP and the organization of the cytoskeleton.  相似文献   

12.
《Organogenesis》2013,9(4):260-266
The limb is one of the premier models for studying how a simple embryonic anlage develops into complex three-dimensional form. One of the key issues in the limb field has been to determine how the limb becomes patterned along its proximal (shoulder/hip) to distal (digits) axis. For decades it has been known that the apical ectodermal ridge (AER) plays a crucial role in distal outgrowth and patterning of the vertebrate embryonic limb. Most studies have explored the relationship between the AER and the progressive assignment of cell fates to mesenchyme along the proximal to distal (PD) axis. Comparatively few, however, have examined the additional role of the AER to regulate distal outgrowth of the limb and how this growth may also influence pattern along the PD axis. Here, I will review key studies that explore the role of growth in limb development. In particular, I will focus on a recent flurry of papers that examine the role of the Wnt/planar cell polarity (PCP) pathway in regulating directed growth of the limb mesenchyme. Finally, I will discuss a potential mechanism that relates the AER to the Wnt/PCP pathway and how directed growth can play a role in shaping the limb along the PD axis.  相似文献   

13.
Barrow J 《Organogenesis》2011,7(4):260-266
The limb is one of the premier models for studying how a simple embryonic anlage develops into complex three-dimensional form. One of the key issues in the limb field has been to determine how the limb becomes patterned along its proximal (shoulder/hip) to distal (digits) axis. For decades it has been known that the apical ectodermal ridge (AER) plays a crucial role in distal outgrowth and patterning of the vertebrate embryonic limb. Most studies have explored the relationship between the AER and the progressive assignment of cell fates to mesenchyme along the proximal to distal (PD) axis. Comparatively few, however, have examined the additional role of the AER to regulate distal outgrowth of the limb and how this growth may also influence pattern along the PD axis. Here, I will review key studies that explore the role of growth in limb development. In particular, I will focus on a recent flurry of papers that examine the role of the Wnt/planar cell polarity (PCP) pathway in regulating directed growth of the limb mesenchyme. Finally, I will discuss a potential mechanism that relates the AER to the Wnt/PCP pathway and how directed growth can play a role in shaping the limb along the PD axis.  相似文献   

14.
Neural tube defects (NTDs) are the second most common birth defect in humans. Despite many advances in the understanding of NTDs and the identification of many genes related to NTDs, the fundamental etiology for the majority of cases of NTDs remains unclear. Planar cell polarity (PCP) signaling pathway, which is important for polarized cell movement (such as cell migration) and organ morphogenesis through the activation of cytoskeletal pathways, has been shown to play multiple roles during neural tube closure. The disrupted function of PCP pathway is connected with some NTDs. Here, we summarize our current understanding of how PCP factors affect the pathogenesis of NTDs.  相似文献   

15.
Since the first implication of the core planar cell polarity (PCP) pathway in stereocilia orientation of sensory hair cells in the mammalian cochlea, much has been written about this subject, in terms of understanding how this pathway can shape the mammalian hair cells and using the inner ear as a model system to understand mammalian PCP signaling. However, many conflicting results have arisen, leading to puzzling questions regarding the actual mechanism and roles of core PCP signaling in mammals and invertebrates. In this review, we summarize our current knowledge on the establishment of PCP during inner ear development and revisit the contrast between wing epithelial cells in Drosophila melanogaster and sensory epithelia in the mammalian cochlea. Notably, we focus on similarities and differences in the asymmetric distribution of core PCP proteins in the context of cell autonomous versus non-autonomous role of PCP signaling in the two systems. Additionally, we address the relationship between the kinocilium position and PCP in cochlear hair cells and increasing results suggest an alternate cell autonomous pathway in regulating PCP in sensory hair cells.  相似文献   

16.
Vertebrate gastrulation involves the coordinated movements of populations of cells. These movements include cellular rearrangements in which cells polarize along their medio-lateral axes leading to cell intercalations that result in elongation of the body axis. Molecular analysis of this process has implicated the non-canonical Wnt/Frizzled signaling pathway that is similar to the planar cell polarity pathway (PCP) in Drosophila. Here we describe a zebrafish mutant, colgate (col), which displays defects in the extension of the body axis and the migration of branchiomotor neurons. Activation of the non-canonical Wnt/PCP pathway in these mutant embryos by overexpressing DeltaNdishevelled, rho kinase2 and van gogh-like protein 2 (vangl2) rescues the extension defects suggesting that col acts as a positive regulator of the non-canonical Wnt/PCP pathway. Further, we show that col normally regulates the caudal migration of nVII facial hindbrain branchiomotor neurons and that the mutant phenotype can be rescued by misexpression of vangl2 independent of the Wnt/PCP pathway. We cloned the col locus and found that it encodes histone deacetylase1 (hdac1). Our previous results and studies by others have implicated hdac1 in repressing the canonical Wnt pathway. Here, we demonstrate novel roles for zebrafish hdac1 in activating non-canonical Wnt/PCP signaling underlying axial extension and in promoting Wnt-independent caudal migration of a subset of hindbrain branchiomotor neurons.  相似文献   

17.
Signalling through Frizzled (Fz)/planar cell polarity (PCP) is a conserved mechanism that polarizes cells along specific axes in a tissue. Genetic screens in Drosophila melanogaster pioneered the discovery of core PCP factors, which regulate the orientation of hairs on wings and facets in eyes. Recent genetic evidence shows that the Fz/PCP pathway is conserved in vertebrates and is crucial for disparate processes as gastrulation and sensory cell orientation. Fz/PCP signalling depends on complex interactions between core components, leading to their asymmetric distribution and ultimately polarized activity in a cell. Whereas several mechanistic aspects of PCP have been uncovered, the global coordination of this polarization remains debated.  相似文献   

18.
Some epithelial cells are polarized along an axis orthogonal to their apical-basal axes. Recent studies in Drosophila lead to the view that three classes of signaling molecules govern the planar cell polarity (PCP) pathway. The first class, or module, functions across whole tissues, providing directional information to individual cells. The second module, apparently shared by all planar polarized tissues, and related to the canonical Wnt signaling pathway, interprets the directional signal to produce subcellular asymmetries. The third modules are tissue specific, acting to translate subcellular asymmetry into the appropriate morphological manifestations in the different cell types.  相似文献   

19.
The noncanonical wnt/planar cell polarity (PCP) pathway [1] regulates the mediolaterally (planarly) polarized cell protrusive activity and intercalation that drives the convergent extension movements of vertebrate gastrulation [2], yet the underlying mechanism is unknown. We report that perturbing expression of Xenopus PCP genes, Strabismus (Xstbm), Frizzled (Xfz7), and Prickle (Xpk), disrupts radially polarized fibronectin fibril assembly on mesodermal tissue surfaces, mediolaterally polarized motility, and intercalation. Polarized motility is restored in Xpk-perturbed explants but not in Xstbm- or Xfz7-perturbed explants cultured on fibronectin surfaces. The PCP complex, including Xpk, first regulates polarized surface assembly of the fibronectin matrix, which is necessary for mediolaterally polarized motility, and then, without Xpk, has an additional and necessary function in polarizing motility. These results show that the PCP complex regulates several cell polarities (radial, planar) and several processes (matrix deposition, motility), by indirect and direct mechanisms, and acts in several modes, either with all or a subset of its components, during vertebrate morphogenesis.  相似文献   

20.
In many organs, epithelial cells are polarized not only along the apicobasal axis, but also along a second axis within a plane. Acquisition of the latter polarity, known as planar cell polarity (PCP) or tissue polarity, is crucial for specialized cellular functions. Genetic programming of PCP has been most thoroughly studied in Drosophila, which has allowed identification of a number of regulatory molecules that are evolutionally conserved. One group of the regulators is responsible for interpreting a hypothetical polarity cue and directing local cytoskeletal reorganization. This group includes a seven-pass transmembrane cadherin known as Flamingo (also known as Starry night), other receptors, and downstream components; and many of those molecules are redistributed to restricted subcellular compartments. Recent studies on a trio of cell-surface molecules challenge a previous hypothesis about the identity of the polarity cue and prompt a novel hypothesis about a global input. Studies on vertebrate systems support the notion that the molecular mechanisms demonstrated in Drosophila are applicable to at least two classes of polarized behaviors of vertebrate cells: sensory hair morphogenesis in the inner ear epithelium, and convergent extension movements during gastrulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号