首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang XM  Xu YH 《Cell research》2002,12(5-6):363-372
IL-16 is a ligand and chemotactic factor for CD4+ T cells. IL-16 inhibits the CD3 mediated lymphocyte activation and proliferation. The effects of IL-16 on the target cells are dependent on the cell type, the presence of co-activators etc. To understand the regulation function and mechanism of IL-16 on target cells, we used a 130 a.a. recombinant IL-16 to study its effects on the growth of Jurkat T leukemia cells in vitro. We found that the rIL-16 stimulated the proliferation of Jurkat cells at low dose (10(-9)M), but inhibited the growth of the cells at higher concentration (10(-5)M). Results showed that 10(-5) M of rIL-16 treatment induced an enhanced apoptosis in Jurkat cells. The treatment blocked the expression of FasL, but up-regulated the c-myc and Bid expression in the cells. Pre-treatment of PKC inhibitor or MEK1 inhibitor markedly increased or decreased the rIL-16 induced growth-inhibiting effects on Jurkat cells, respectively. The results suggested that the rIL-16 might be a regulator for the growth or apoptosis of Jurkat cells at a dose-dependent manner. The growth-inhibiting effects of rIL-16 might be Fas/FasL independent, but, associated with the activation of PKC, up-regulated expression of c-Myc and Bid, and the participation of the ERK signal pathway in Jurkat cells.  相似文献   

2.
IL-16 is a ligand and chemotactic factor for CD4+ T cells. IL-16 inhibits the CDS mediated lymphocyte activation and proliferation. The effects of IL-16 on the target cells are dependent on the cell type, the presence of co-activators etc. To understand the regulation function and mechanism of IL-16 on target cells, we used a 130 a.a. recombinant IL-16 to study its effects on the growth of Jurkat T leukemia cells in vitro. We found that the rIL-16 stimulated the proliferation of Jurkat cells at low dose (10-9M), but inhibited the growth of the cells at higher concentration (10-5M). Results showed that 10-5 M of rIL-16 treatment induced an enhanced apoptosis in Jurkat cells. The treatment blocked the expression of FasL, but up-regulated the c-myc and Bid expression in the cells. Pre-treatment of PKC inhibitor or MEK1 inhibitor markedly increased or decreased the rIL-16 induced growth-inhibiting effects on Jurkat cells, respectively. The results suggested that the rIL-16 might be a regulator for the growth  相似文献   

3.
Systemic administration of rIL-18 protein to mice significantly suppresses the growth of murine tumor cell lines. The antitumor effect of IL-18 appears to be primarily mediated by asialo GM1+ cells. Since IL-18 enhances Fas ligand (FasL) expression on NK cell lines, the IL-18 antitumor effects could be mediated by FasL-induced cross-linking of Fas and subsequent tumor apoptosis. To address this question, rIL-18 or rIL-12 was administered to animals bearing the CL8-1 melanoma inoculated intradermally into wild type (wt), lymphoproliferation gene (lpr) (Fas deficient), or generalized lymphoproliferative disease gene (gld) (FasL deficient) mice. Although rIL-12 treatment retained significant antitumor effects in gld and lpr mice, those of rIL-18 administration were completely abrogated in gld but not lpr or wt mice. In vitro cytotoxicity was significantly enhanced against NK-sensitive YAC-1 cells and CL8-1 cells by rIL-18 administration to wt mice, but not to gld mice. Furthermore, rIL-18 administration augmented the cytotoxicity of liver lymphocytes harvested from perforin-deficient mice, whereas rIL-12 administration did not. Consistent with the role of this pathway, rIL-18 administration also up-regulates the expression of FasL mRNA in splenocytes. Lysis of CL8-1 cells induced by anti-Fas agonistic Ab was enhanced about 1.4-fold by IFN-gamma, a cytokine that is induced by IL-18 in vitro and in vivo. We conclude that the antitumor effect of IL-18 is exerted predominantly through a Fas-dependent pathway. The perforin pathway, however, appears to be the predominant cytolytic pathway mediating IL-12 antitumor effects.  相似文献   

4.
In contrast to caspase-8, controversy exists as to the ability of caspase-10 to mediate apoptosis in response to FasL. Herein, we have shown activation of caspase-10, -3, and -7 as well as B cell lymphoma-2-interacting domain (Bid) cleavage and cytochrome c release in caspase-8-deficient Jurkat (I9-2) cells treated with FasL. Apoptosis was clearly induced as illustrated by nuclear and DNA fragmentation. These events were inhibited by benzyloxycarbonyl-VAD-fluoromethyl ketone, a broad spectrum caspase inhibitor, indicating that caspases were functionally and actively involved. Benzyloxycarbonyl-AEVD-fluoromethyl ketone, a caspase-10 inhibitor, had a comparable effect. FasL-induced cell death was not completely abolished by caspase inhibitors in agreement with the existence of a cytotoxic caspase-independent pathway. In subpopulations of I9-2 cells displaying distinct caspase-10 expression levels, cell sensitivity to FasL correlated with caspase-10 expression. A robust caspase activation, Bid cleavage, and DNA fragmentation were observed in cells with high caspase-10 levels but not in those with low levels. In vitro, caspase-10, as well as caspase-8, could cleave Bid to generate active truncated Bid (p15). Altogether, our data strongly suggest that caspase-10 can serve as an initiator caspase in Fas signaling leading to Bid processing, caspase cascade activation, and apoptosis.  相似文献   

5.
Anisomycin is a pyrrolidine antibiotic isolated from Streptomyces griseolus. It has been found that a quite low dose of anisomycin is sufficient to block proliferation of primary T lymphocytes. The focus of this study is to explore the possibility of anisomycin to treat human acute leukemia Jurkat T cells in vitro. The results indicated that the low dose of anisomycin could significantly inhibit the colony formation of Jurkat T cells and elevate the inhibition rate of Jurkat T cell growth along with its increasing concentrations. Jurkat T cell cycle was blocked into S-phase by anisomycin. Consistent with the increased proportion of sub-G1 phase, anisomycin promoted Jurkat T cell apoptosis. The CD69 and CD25 expression on the surface of Jurkat T cells was also down-regulated prominently along with the enhancing concentrations of anisomycin, followed by the decreased production of IL-4, IL-10, IL-17, TGF-β and IFN-γ, and the down-regulated expression of phosphorylated-ERK1/2. The results suggest that the suppressive effect of anisomycin on Jurkat T cell growth may be related to inhibiting TGF-β production and ERK1/2 activation, arresting the cell cycle at S-phase and promoting the apoptosis of Jurkat T cells.  相似文献   

6.
7.
Lu  Hengxiao  Wang  Hao  Sun  Peidao  Wang  Jiang  Li  Shuhai  Xu  Tongzhen 《Cytotechnology》2021,73(3):483-496

We investigated the role of miR-522-3p in thymoma-associated myasthenia gravis (TAMG), and the mechanism of action in T cells. The miR-522-3p expression in normal serum, non-thymoma MG patient serum and TAMG patient serum and tissues was detected by quantitative real-time PCR (qRT-PCR), respectively. We assessed miR-522-3p expression in Jurkat cells and human CD4+ T cells after activation by anti-CD3 and anti-CD28 using qRT-PCR. The viability, proliferation, cycle distribution and the levels of CD25, CD69, interleukin-2 (IL-2) and IL-10 in transfected Jurkat cells were detected by Cell counting kit-8, 5-ethynyl-2′-deoxyuridine (EdU), flow cytometry, qRT-PCR, respectively. Targeting relationships of miR-522-3p and SLC31A1 were predicted and validated by bioinformatics analysis and dual-luciferase reporter. The viability, proliferation, cycle distribution and the levels of SLC31A1, CD25, CD69, IL-2 and IL-10 in transfected Jurkat cells were detected by above methods and western blot. The miR-522-3p expression was declined in TAMG and activated T cells. MiR-522-3p inhibitor promoted cell viability, EdU positive cells, cycle progression, and the level of CD25, CD69, IL-2 and IL-10 in Jurkat cells, while the effect of miR-522-3p mimic was the opposite. SLC31A1 was targeted by miR-522-3p, and miR-522-3p inhibited SLC31A1 expression. Overexpressed SLC31A1 reversed the inhibitory effects of miR-522-3p mimic on cell viability, EdU positive cell, cycle progression, and the levels of IL-2 and IL-10 in transfected Jurkat cells. MiR-522-3p expression was down-regulated in TAMG, and miR-522-3p inhibited proliferation and activation by regulating SLC31A1 expression in T cells.

  相似文献   

8.
Diosmetin (DGVL) extracted from the traditional Chinese herb Galium verum L. has been found to have anticancer activity. In this study, the effects of DGVL on the thymus of U14-bearing mice were investigated. Using flow cytometry, peripheral blood lymphocytes were characterized based on the expression of surface markers for T helper cells (CD4(+)) and T suppressor cells (CD8(+)). Serum levels of tumor necrosis factor α (TNF-α), interleukin-2 (IL-2), IL-10, and transforming growth factor β1 (TGF-β1) and a cell proliferation assay were determined with an enzyme-linked immunosorbent assay. The expression of Fas and Fas ligand (FasL) on the thymus was determined by Western blotting. Our results showed that DGVL inhibited tumor growth and significantly increased the thymus weight compared with the control. Also, DGVL elevated serum levels of IL-2 and significantly reduced levels of TNF-α, TGF-β1, and IL-10 in a dose-dependent manner. Histological study and terminal dUTP nick end labeling staining results showed that DGVL protected thymus tissue against the onslaught of tumor growth by inhibiting thymus lymphocyte apoptosis. The cell proliferation assay revealed that DGVL might promote more thymus lymphocytes towards proliferation. Furthermore, the ratio of CD4(+)/CD8(+) T lymphocytes was significantly increased from 0.69 to 2.29 by treatment with DGVL. Immunoblotting analyses revealed that the expression of Fas and FasL on the thymus was lower in mice in the DGVL treatment group than in the control mice. In conclusion, DGVL can inhibit tumor growth and protect tumor-induced apoptosis of the thymus, and the mechanism is closely associated with reduced cell death in the thymus and a Fas-FasL-dependent pathway.  相似文献   

9.
Apoptosis mediated by Fas/FasL interaction plays an important role during many inflammatory skin disorders. To estimate whether the expression of FasL, the ligand for Fas, might be regulated by cytokines we stimulated primary human keratinocytes with several pro- and anti-inflammatory cytokines. Keratinocytes cultured to subconfluence expressed FasL constitutively. Cells stimulated with the proinflammatory cytokines IL-1beta, TNF-alpha, IFN-gamma, and IL-15, respectively, increased significantly their intracellular as well as cell surface-bound FasL expression in a time- and dose-dependent manner. This cytokine-induced FasL expression was dependent on new protein synthesis. Despite enhanced expression of cell surface-bound FasL, no release of soluble FasL was measured in the cell supernatants determined by ELISA. Stimulation of the cells with IL-6, IL-10, IL-12, TGF-beta1, and GM-CSF did not modulate the constitutive FasL expression, but IFN-gamma-mediated FasL up-regulation was significantly diminished by IL-10 and TGF-beta1, respectively. Up-regulation of FasL on IFN-gamma-stimulated keratinocytes led to increased apoptosis within monolayers cultured for 48 h. Moreover, coculture experiments performed with Fas+ Jurkat T cells revealed that enhanced FasL expression on IFN-gamma-stimulated keratinocytes induced apoptosis in cocultured T cells, demonstrating that up-regulated FasL was functionally active. In summary, our data suggest the important regulatory role of cytokine-controlled Fas/FasL interaction in the cross-talk between keratinocytes and skin-infiltrating T cells for maintenance of homeostasis in inflammatory skin processes.  相似文献   

10.
Expression of CD5 regulates responsiveness to IL-1   总被引:1,自引:0,他引:1  
The role of the CD5 surface molecule in T cell responsiveness to IL-1 was examined. A CD5-mutant Jurkat cell line was generated from a CD5+ parent cell line. This CD5- mutant subclone was infected with a defective retrovirus containing the CD5 cDNA and/or the neo gene encoding G418 resistance. The CD5+ wild type Jurkat produced IL-2 in response to anti-CD3 mAb, OKT3, cross-linked to a solid surface. IL-2 production was enhanced by co-culture with IL-1 or anti-CD5 Mab. Neither the CD5- mutant nor the CD5- G418-resistant infectant responded to anti-CD5 mAb or to IL-1. Responsiveness to IL-1 was restored by cell surface expression of CD5 in the CD5+ infectant. Both the CD5+ wild type Jurkat and the CD5+ infectant responded equivalently to purified IL-1, IL-1 alpha and rIL-1 beta. Optimal concentrations of IL-1 and anti-CD5 mAb had an additive effect on the enhancement of IL-2 production stimulated with cross-linked anti-CD3 mAb suggesting that IL-1 and CD5 act through distinct, complementary pathways to augment T cell activation. The correlation of CD5 expression and specific binding of rIL-1 beta was examined in these cell lines. Both the specific binding (at 4 degrees C) and subsequent internalization (at 37 degrees C) of 125I labeled rIL-1 beta was equivalent in the CD5+ infectant and the CD5+ wild type Jurkat cell, whereas specific binding of 125I-labeled rIL-1 beta was markedly decreased in the CD5-G418-resistant infectant. These observations strongly suggest that cell surface expression of CD5 regulates binding of and responsiveness to IL-1.  相似文献   

11.
The purpose of this study was to examine the role of IL-1 on the activation of CD8+/CD4- class I-restricted helper cell-independent cytolytic T cell (HITc) clones known to produce IL-2 and proliferate in vitro after Ag stimulation with a Friend retrovirus-induced leukemia (FBL). The functional role of IL-1 in Ag-specific proliferation and IL-2 secretion was assessed by stimulating the T cell clones with FBL either in the presence or absence of macrophages (M phi), rIL-1, or rIL-2. Resting cloned HITc cells, purified from residual accessory cells, failed to proliferate in response to FBL alone, but proliferated in response to FBL plus M phi, rIL-1 or rIL-2. Stimulation with FBL alone in the absence of M phi or IL-1 was sufficient for induction of IL-2R expression, and rendered cells responsive to IL-2, but M phi or IL-1 were also required to induce production of IL-2. The activity of IL-1 was further examined by measuring the binding of [125I]rIL-1 alpha, which demonstrated that resting cloned HITc cells expressed IL-1R that increased in number after activation with Ag. This expression of IL-1R and requirement for IL-1 by CD8+ HITc was surprising because previous studies examining T cell populations after mitogen stimulation have not detected IL-1R on the CD8+ population. Therefore, the role of IL-1 in the activation of CD8+ CTL that do not secrete IL-2 after activation was assessed. By contrast to HITc, CD8+ CTL required exogenous IL-2 to proliferate in vitro and did not express IL-1R. These data demonstrate that the subset of CD8+ T cells responsible for IL-2 production express IL-1R and that triggering this receptor with IL-1 after Ag stimulation results in the production of IL-2 and subsequent proliferation.  相似文献   

12.
The influence of immunoregulatory cytokines IL-2, IL-7, and IL-15 on the activation, proliferation, and apoptosis of different subpopulations of an immune memory T-cell (CD45RO+) in healthy donors were investigated. It was demonstrated that rIL-2 equally affected both the activation and proliferation of CD4+ and CD8+ subpopulations of memory T-cells in vitro. High concentrations of rIL-2 increased the number of CD8+ memory cells expressing apoptotic marker CD95. Effect of rIL-7 and rIL-15 on the activation and proliferation of cytotoxic CD8+ memory cells in vitro was different. CD4+ memory lymphocytes exhibited relative resistance to activation and proliferation by rIL-7 and rIL-15 compared to rIL-2. This can provide them with relative resistance to apoptosis, as well as create the necessary conditions for accelerated implementation of their functional capacity in the development of a secondary immune response.  相似文献   

13.
14.
A functional immune system not only requires rapid expansion of antigenic specific T cells, but also requires efficient deletion of clonally expanded T cells to avoid accumulation of T cells. Fas/Fas ligand (FasL)-mediated apoptosis plays a critical role in the deletion of activated peripheral T cells, which is clearly demonstrated by superantigen-induced expansion and subsequent deletion of T cells. In this study, we show that in the absence of protein kinase C-theta (PKC-theta), superantigen (staphylococcal enterotoxin B)-induced deletion of Vbeta8(+) CD4(+) T cells was defective in PKC-theta(-/-) mice. In response to staphylococcal enterotoxin B challenge, up-regulation of FasL, but not Fas, was significantly reduced in PKC-theta(-/-) mice. PKC-theta is thus required for maximum up-regulation of FasL in vivo. We further show that stimulation of FasL expression depends on PKC-theta-mediated activation of NF-AT pathway. In addition, PKC-theta(-/-) T cells displayed resistance to Fas-mediated apoptosis as well as activation-induced cell death (AICD). In the absence of PKC-theta, Fas-induced activation of apoptotic molecules such as caspase-8, caspase-3, and Bid was not efficient. However, AICD as well as Fas-mediated apoptosis of PKC-theta(-/-) T cells were restored in the presence of high concentration of IL-2, a critical factor required for potentiating T cells for AICD. PKC-theta is thus required for promoting FasL expression and for potentiating Fas-mediated apoptosis.  相似文献   

15.
16.
INTRODUCTIONThaillll (TNF-related apoptosis inducing ligand)is a recently described member of the TNF family.Like other members of the TNF ligand family) availcould induce apoptosis of neoplastically transformedcells by priVating cell surface death receptors ThailRI and ThaiLR212].Trail has been demonstrated to play an important role in homeostasis of immune system includ.lug eradication of the old lymphocytel3], actiVationinduced T cell deathI41, regulation Of T cen eXPansion by…  相似文献   

17.
GuoBC XuYU 《Cell research》2001,11(2):101-106
Trail, a tumor necrosis factor-related apoptosis-inducing ligand, is a novel potent endogenous activator of the cell death pathway through the activation of cell surface death receptors Trail-R1 and Trail-R2. Its role, like FasL in activation-induced cell death (AICD), has been demonstrated in immune system. However the mechanism of Trail induced apoptosis remains unclear. In this report, the recombinant Trail protein was expressed and purified. The apoptosis-inducing activity and the regulation mechanism of recombinant Trail on Jurkat T cells were explored in vitro. Trypan blue exclusion assay demonstrated that the recombinant Trail protein actively killed Jurkat T cells in a dose-dependent manner. Trail-induced apoptosis in Jurkat T cells were remarkably reduced by Bcl-2 over expression in Bcl-2 gene transfected cells. Treatment with PMA (phorbol 12-myristate 13-acetate), a PKC activator, suppressed Trail-induced apoptosis in Jurkat T cells. The inhibition of apoptosis by PMA was abolished by pretreatment with Bis, a PKC inhibitor. Taken together, it was suggested that Bcl-2 over-expression and PMA activated PKC actively down-regulated the Trail-mediated apoptosis in Jurkat T cell.  相似文献   

18.
Tetracyclines have been used in the treatment of chronic inflammatory diseases associated with local infiltration of inflammatory cells and matrix destruction as observed in rheumatoid arthritis and periodontal disease. Fas/Fas ligand (FasL)-mediated apoptosis plays an important role in maintaining T lymphocyte homeostasis and modulating immune response. The present study demonstrates that doxycycline inhibits Jurkat T lymphocyte proliferation and induces apoptosis. The phytohemagglutinin (PHA)-activated Jurkat cells are more susceptible to doxycycline-induced apoptosis. Furthermore, doxycycline-induced apoptosis is associated with increased Fas/FasL expression in Jurkat cells. The increase of apoptosis in Jurkat cells treated with doxycycline is consistent with the increase of FasL expression. These results suggest that doxycycline may downregulate the inflammatory process in certain diseases by eliminating activated T lymphocytes through Fas/FasL-mediated apoptosis.  相似文献   

19.
Background Non-small cell lung carcinoma (NSCLC) patients have impaired cellular immune responses. It has been hypothesized that tumor cells expressing Fas Ligand (FasL) induce in T lymphocytes: (a) apoptosis (tumor counterattack) and (b) down-regulation of CD3ζ expression. However, the hypothesis of tumor counterattack is still controversial. Methods We analyzed FasL expression on NSCLC cell lines and on tumor cells from lung adenocarcinoma patients by flow cytometry and immunocytochemistry. FasL mRNA expression was detected in NSCLC cell lines using RT-PCR, and functional FasL was evaluated on Fas-expressing Jurkat T-cells by annexin-V-FITC staining and by SubG1 peak detection. Also, the proapoptotic effect of microvesicles released from NSCLC cell lines in Jurkat T-cells was studied. Alterations in the expression levels of CD3ζ, CD3ε, and CD28 [measured as mean fluorescence intensity (MFI)] were determined in Jurkat T-cells after co-culture with NSCLC cell lines or tumor-derived microvesicles. Furthermore, the expression levels of CD3ζ and CD3ε in CD4+T and CD8+T lymphocytes from lung adenocarcinoma patients was studied. Results Our results indicate that NSCLC cells neither FasL expressed nor induced apoptosis in Jurkat T-cells. Tumor-derived microvesicles did not induce apoptosis in Jurkat T-cells. In contrast, NSCLC cell lines down-regulated CD3ε but not CD3ζ chain expression in Jurkat T-cells; this effect was induced by soluble factors but not by microvesicles. In lung adenocarcinoma patients, significant decreases of MFI values for CD3ε, but not CD3ζ, were found in CD4+T and CD8+T cells from pleural effusion compared to peripheral blood and in peripheral blood of patients compared to healthy donors. Conclusions Our data do not support the tumor counterattack hypothesis for NSCLC. Nonetheless, down-regulation of CD3ε in T-cells induced by NSCLC cells might lead to T-cell dysfunction.  相似文献   

20.
Jurkat and HUT 78 T cell lines, as well as peripheral blood human T cells activated with PHA plus PMA were used to investigate the capacity of substance P (SP) neuropeptide to regulate IL-2 production. By using Northern blot analysis and dosage of the IL-2 release in cell supernatants, we show that SP can act as cosignal with PHA + PMA to enhance the expression of specific IL-2 mRNA and IL-2 secretion in T cells. By using the N-terminal SP(1-4) or the C-terminal SP(4-11) fragments of the entire molecule, we show that the cosignal activity is carried by the C-terminal portion of SP. The SP and SP(4-11) optimal effects were observed at 10(-12) M and 10(-10) M when a broad range of concentrations from 10(-6) M to 10(-13) M was tested. The increase of IL-2 mRNA obtained with 10(-12) M of SP in the activated Jurkat cells was reduced by adding 10(-10) or 10(-9) M of the SP antagonist (D-Pro2,-D-Phe7,-D-Trp9)SP to the culture, indicating the specificity of SP action. The up-regulation observed when 10(-12) M of SP was applied together with the mitogens on Jurkat cells, persisted after a 16-h culture period, time at which the IL-2 mRNA signal is normally back to a minimum level when the mitogens are used alone. Furthermore, an induction of IL-2 mRNA accumulation, in a 2-h pulse, was obtained with 10(-12) M of SP on Jurkat cells previously activated with mitogens for 16 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号