首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have determined the DNA sequence of the bacteriophage P2 tail genes G and H, which code for polypeptides of 175 and 669 residues, respectively. Gene H probably codes for the distal part of the P2 tail fiber, since the deduced sequence of its product contains regions similar to tail fiber proteins from phages Mu, P1, lambda, K3, and T2. The similarities of the carboxy-terminal portions of the P2, Mu, ann P1 tail fiber proteins may explain the observation that these phages in general have the same host range. The P2 H gene product is similar to the products of both lambda open reading frame (ORF) 401 (stf, side tail fiber) and its downstream ORF, ORF 314. If 1 bp is inserted near the end of ORF 401, this reading frame becomes fused with ORF 314, creating an ORF that may represent the complete stf gene that encodes a 774-amino-acid-long side tail fiber protein. Thus, a frameshift mutation seems to be present in the common laboratory strain of lambda. Gene G of P2 probably codes for a protein required for assembly of the tail fibers of the virion. The entire G gene product is very similar to the products of genes U and U' of phage Mu; a region of these proteins is also found in the tail fiber assembly proteins of phages TuIa, TuIb, T4, and lambda. The similarities in the tail fiber genes of phages of different families provide evidence that illegitimate recombination occurs at previously unappreciated levels and that phages are taking advantage of the gene pool available to them to alter their host ranges under selective pressures.  相似文献   

3.
Three Escherichia coli phages, TuIa, TuIb, and TuII, were isolated from local sewage. We present evidence that they use the major outer membrane proteins Ia, Ib, and II, respectively, as receptors. In all cases the proteins, under the experimental conditions used, required lipopolysaccharide to exhibit their receptor activity. For proteins Ia and II, an approximately two- to eightfold molar excess of lipopolysaccharide (based on one diglucosamine unit) was necessary to reach maximal receptor activity. Lipopolysaccharide did not appear to possess phage-binding sites. It seemed that the lipopolysaccharide requirement reflected a protein-lipopolysaccharide interaction in vivo, and lipopolysaccharide may thus cause the specific localization of these proteins. Inactivation of phage TuII by a protein II-lipopolysaccharide complex was reversible as long as the complex was in solution. Precipitation of the complex with Mg2+ led to irreversible phage inactivation with an inactivation constant (37 degrees C)K = 7 X 10-2 ml/min per microgram. With phages TuIa and TuIb and their respective protein-lipopolysaccharide complexes, only irreversible inactivation was found at 37 degrees C. The activity of the three proteins as phage receptors shows that part of them must be located at the cells surface. In addition, the association of proteins Ia and Ib with the murein layer of the cell envelope makes this pair trans-membrane proteins.  相似文献   

4.
Summary Genes (g) 36 and 37 code for the proteins of the distal half of the long tail fibers of phage T4, gene product (gp) 35 links the distal half to the proximal half of this fiber. The receptor, lipopolysaccharide, most likely is recognized by gp37. Using as probe a restriction fragment consisting of most of g36 and g37 of phage T4 the genes corresponding to g35, g36, and g37 of phages T2 and K3 (using the E. coli outer membrane proteins OmpF and OmpA, respectively, as receptors) have been cloned into plasmid pUC8. Partial DNA sequences of g37 of phage K3 have been determined. One area, corresponding to residues 157 to 210 of the 1026 residue gp37 of phage T4, codes for an identical sequence in phage K3. Another area corresponds to residues 767 to 832 of the phage T4 sequence. Amino acid residues 767 to 832 of the phage T4 sequence are almost identical in both phage proteins while the remainder is rather different. DNAs of T2, T4, T6, another T-even type phage using protein Tsx as a receptor, and 10 different T-even type phages using the OmpA protein as a receptor have been hybridized with restriction fragments covering various parts of the g37 area of phage K3. With probably only one exception all of the 13 phages tested possess unique genes 37 and within the majority of these, sequences highly homologous to parts of g37 of K3 are present in a mosaic type fashion. Other regions of these genes 37 did not show any homology with the K3 probes; in case of the OmpA specific phage M1 absence of homology was evident in most of its g37 even including the area that should serve for recognition of the cellular receptor. In sharp contrast to this situation it was found that a major part of the gene (g23) coding for the major capsid protein is rather highly conserved in all phages studied. The extreme variability in sequences existing in genes 37 might be a consequence of phages during evolution being able to more or less drastically change their receptor specifities.  相似文献   

5.
Summary Protein I, one of the major outer membrane proteins ofE. coli, in a number of strains exists as two electrophoretically separable species Ia and Ib. Two phages, TuIa and TuIb, have been found which use, as receptors, proteins Ia and Ib, respectively. Selection for resistance to phage TuIb yielded mutants still possessing protein Ia and missing protein Ib (Ia+ Ib-). Selection in this background, for resistance to phage TuIa yielded one class of mutants missing both species of protein I and another synthesizing a new species of protein I, polypeptide Ic.Tryptic fingerprints of Ia and Ic are very similar and the sequence of 8 N-terminal amino acids is identical for Ia and Ic. Yet, Ic showed an entirely different pattern of cyanogen bromide fragments than that of protein Ia. With another example (cyanogen bromide fragments of protein II*, with and without performic acid oxidation) it is shown that protein modification can lead to gross changes of the electrophoretic mobility of cyanogen bromide fragments. It is not unlikely that all protein I species observed so far represent in vivo modifications of one and the same polypeptide chain.A genetic analysis together with data from other laboratories revealed that at least 4 widely separated chromosomal loci are involved in the expression of the protein I species known to date.  相似文献   

6.
The distal part of the long tail fiber of Escherichia coli bacteriophage T4 consists of a dimer of protein 37. Dimerization requires the catalytic action of protein 38, which is encoded by T4 and is not present in the virion. It had previously been shown that gene tfa of the otherwise entirely unrelated phage lambda can functionally replace gene 38. Open reading frame (ORF) 314, which encodes a protein that exhibits homology to a COOH-terminal area of protein 37, is located immediately upstream of tfa. The gene was cloned and expressed in E. coli. An antiserum against the corresponding polypeptide showed that it was present in phage lambda. The serum also reacted with the long tail fibers of phage T4 near their free ends. An area of the gene encoding a COOH-terminal region of ORF 314 was recombined, together with tfa, into the genome of T4, thus replacing gene 38 and a part of gene 37 that codes for a COOH-terminal part of protein 37. Such T4-lambda hybrids, unlike T4, required the presence of outer membrane protein OmpC for infection of E. coli B. An ompC missense mutant of E. coli K-12, which was still sensitive to T4, was resistant to these hybrids. We conclude that the ORF 314 protein represents a subunit of the side tail fibers of phage lambda which probably recognize the OmpC protein. ORF 314 was designated stf (side tail fiber). The results also offer an explanation for the very unusual fact that, despite identical genomic organizations, T4 and T2 produce totally different proteins 38. An ancestor of T4 from the T2 lineage may have picked up tfa and stf from a lambdoid phase, thus possibly demonstrating horizontal gene transfer between unrelated phage species.  相似文献   

7.
The DNA sequences of genes 37 of bacteriophages T2 and K3 are presented and compared with that of phage T4. The corresponding proteins constitute, as dimers, the part of the long tail fibers that recognizes the bacterial receptor. The CO2H termini of the polypeptides are located at the free ends of the fibers. Morphologically, the three phages are essentially identical, but they use different receptors. The genes from phages T4, T2 and K3 encode proteins consisting of 1026, 1341 and 1243 amino acid residues, respectively. DNA-DNA hybridizations had shown earlier that genes 37, in contrast to the gene for the major capsid protein, of a number of T-even type phages are highly polymorphic. The deduced amino acid sequences now show that this polymorphism extends to the protein primary structures. About 50 NH2-terminal residues are conserved and are probably required for binding to the adjacent protein 36. This area is followed by more or less irregularly spaced regions of non-homology, partial homology or complete homology. The heterogeneity is most prominent in a region encompassing about 600 CO2H-terminal residues of the T2 or K3 proteins. Nevertheless, the amino acid compositions of the three proteins are very similar and all are rich in glycine. It has been found that the receptor specificities of phages K3 and T2 are determined by protein 38, a polypeptide required for the efficient dimerization of protein 37 of phage T4. Proteins 38 of phages K3 and T2 are functionally interchangeable, those of T4 and T2 or K3 are not. Proteins 37 of phages K3 and T2 possess a conserved sequence of 160 CO2H-terminal residues. This area is missing in the T4 protein. This region may serve as a binding site for polypeptides 38 of phages K3 and T2. The overall picture of the protein primary structures of the three phages strongly suggests that the evolution of genes 37, which was most likely driven by selection for variations in receptor recognition specificities, has not been a steady process but has involved loss and gain of segments of DNA.  相似文献   

8.
9.
Hypothetical lambda protein ORF314 shows significant homology with the carboxyl end of phage T4 tail-fiber protein gp37. Homology can also be demonstrated between hypothetical lambda protein ORF194 and a fragment of bacteriophage T4 protein gp38. This sequence homology is also reflected in the genomic sequences of these two phages.  相似文献   

10.
Assembly of the long tail fibers of the Escherichia coli bacteriophage T4 requires the catalytic action of two auxiliary proteins. It was found that a gene of the entirely unrelated phage lambda codes for a protein which can substitute for one of these T4 polypeptides, protein 38. The lambda gene was designated tfa (tail fiber assembly). Protein 38 consists of 183 residues, and the Tfa protein consists of 194 residues; the two polypeptides are about 40% homologous. Although the tfa gene is dispensable for the growth of phage lambda, these results indicate that it may have a function in lambda morphogenesis.  相似文献   

11.
I Riede  M Degen    U Henning 《The EMBO journal》1985,4(9):2343-2346
T-Even type bacteriophages recognize their cellular receptors with the distal ends of their long tail fibers. The distal part of these fibers consists of a dimer of gene product (gp) 37. The assembly of this gp to a functional dimer requires the action of two other proteins, gp57 and gp38. Genes (g) 38 have been cloned from five T-even type phages which use the Escherichia coli outer membrane protein OmpA as a receptor. The phages used differ in their ability to infect a series of ompA mutants producing altered OmpA proteins, i.e., each phage has a specific host range for these mutants. The cloned genes 38 complemented g38 amber mutants of phage T2, which uses the outer membrane protein OmpF as a receptor. The complemented phages had become phenotypically OmpA-dependent and, with one exception, OmpF-independent, but regained the host range of T2 upon growth in a host lacking the cloned g38. The host range of the complemented phages, as determined on the ompA mutants, was identical to, similar to, or different from that of the phage, from which the cloned g38 originated. The results presented show that gp38 from one phage can phenotypically 'imprint', in a finely-tuned manner, a host range onto gp37 of another phage with a different host specificity. In view of the extreme diversity of host ranges observed, it is suggested that gp38 of T2 and of the OmpA-specific phages may remain attached to gp37 in the phage particle and in cooperation with gp37 determine the host range.  相似文献   

12.
13.
14.
Gene 37 of phage T2 codes for a protein that, as a dimer, constitutes the most distal, receptor-recognizing part of its long tail fibers. It was found that, from a plasmid carrying a fragment of gene 37 that lacked a region of the gene encoding 87 CO2H-terminal amino acid residues, a protein was expressed that was slightly larger than that present in the phage. This size difference could not be accounted for. The missing region of gene 37 and also gene 38 (which codes for the auxiliary protein required for dimerization of protein 37) were cloned. Plasmids were constructed with gene 37, or gene 37 together with gene 38, under inducible control. Independent of the presence of the latter gene, a protein was produced that had the same size as protein 37 in the phage. A pulse-chase experiment revealed that a precursor of protein 37 is synthesized and processed such that approximately 120 amino acid residues, most likely CO2H-terminal, are removed. Therefore, the protein produced from the truncated gene was larger because it cannot be processed. This fact also solved an old puzzle: an amber fragment of protein 37 of phage T2 had been found to be larger than the mature protein. The amber codon could be located 24 codons away from the normal stop codon. Obviously, the fragment cannot be processed. The existence of this fragment demonstrates that processing occurs during phage maturation.  相似文献   

15.
Folding and assembly of endosialidases, the trimeric tail spike proteins of Escherichia coli K1-specific bacteriophages, crucially depend on their C-terminal domain (CTD). Homologous CTDs were identified in phage proteins belonging to three different protein families: neck appendage proteins of several Bacillus phages, L-shaped tail fibers of coliphage T5, and K5 lyases, the tail spike proteins of phages infecting E. coli K5. By analyzing a representative of each family, we show that in all cases, the CTD is cleaved off after a strictly conserved serine residue and alanine substitution prevented cleavage. Further structural and functional analyses revealed that (i) CTDs are autonomous domains with a high alpha-helical content; (ii) proteolytically released CTDs assemble into hexamers, which are most likely dimers of trimers; (iii) highly conserved amino acids within the CTD are indispensable for CTD-mediated folding and complex formation; (iv) CTDs can be exchanged between proteins of different families; and (v) proteolytic cleavage is essential to stabilize the native protein complex. Data obtained for full-length and proteolytically processed endosialidase variants suggest that release of the CTD increases the unfolding barrier, trapping the mature trimer in a kinetically stable conformation. In summary, we characterize the CTD as a novel C-terminal chaperone domain, which assists folding and assembly of unrelated phage proteins.  相似文献   

16.
The classical T-even bacteriophages recognize host cells with their long tail fibers. Gene products 35, 36, and 37 constitute the distal moiety of these fibers. The free ends of the tail fibers, which are formed by the CO2H terminus of gene product 37, possess the host range determinants. It was found that 4 out of 10 different strains of Escherichia coli K-12 contained regions of chromosomal DNA which hybridized with a probe consisting of genes 35, 36, and 37 of the T-even phage K3. From one strain this homologous DNA, which was associated with an EcoRI fragment of about 5 kilobases, was cloned into plasmid pUC8. Two independently recovered hybrid plasmids had undergone a peculiar rearrangement which resulted in the loss of about 3 kilobases of cloned DNA and a duplication of both the vector and the remaining chromosomal DNA. The mechanisms causing this duplication-deletion may be related to that of transposases. The cloned DNA was capable of recombination with phage T4 gene 36 and a phage T2 gene 37 amber mutant. DNA sequencing revealed the existence of regions of identity between the cloned DNA and genes 36 and 37 of phage T2. In addition, after growth of a derivative of phage K3 on a strain harboring T2 DNA, it was found that this phage contained the same parts of the T2 tail fiber genes which had been recovered from the bacterial chromosome. There appears to be little doubt that the phage had picked up this DNA from the host. The possibility is considered that a repertoire of parts of genes 36 and 37 of various T-even-type phages is present in their hosts, allowing the former to change their host ranges.  相似文献   

17.
We report the complete 36,717 bp genome sequence of bacteriophage Mu and provide an analysis of the sequence, both with regard to the new genes and other genetic features revealed by the sequence itself and by a comparison to eight complete or nearly complete Mu-like prophage genomes found in the genomes of a diverse group of bacteria. The comparative studies confirm that members of the Mu-related family of phage genomes are genetically mosaic with respect to each other, as seen in other groups of phages such as the phage lambda-related group of phages of enteric hosts and the phage L5-related group of mycobacteriophages. Mu also possesses segments of similarity, typically gene-sized, to genomes of otherwise non-Mu-like phages. The comparisons show that some well-known features of the Mu genome, including the invertible segment encoding tail fiber sequences, are not present in most members of the Mu genome sequence family examined here, suggesting that their presence may be relatively volatile over evolutionary time.The head and tail-encoding structural genes of Mu have only very weak similarity to the corresponding genes of other well-studied phage types. However, these weak similarities, and in some cases biochemical data, can be used to establish tentative functional assignments for 12 of the head and tail genes. These assignments are strongly supported by the fact that the order of gene functions assigned in this way conforms to the strongly conserved order of head and tail genes established in a wide variety of other phages. We show that the Mu head assembly scaffolding protein is encoded by a gene nested in-frame within the C-terminal half of another gene that encodes the putative head maturation protease. This is reminiscent of the arrangement established for phage lambda.  相似文献   

18.
19.
20.
C J Michel  B Jacq  D G Arquès  T A Bickle 《Gene》1986,44(1):147-150
We have found that the amino acid (aa) sequence of the tip of phage T4 tail fibre (gene 37) shows more than 50% homology with the aa sequence predicted from an open reading frame (ORF314) in the phage lambda genome. ORF314 is near the 3' end of the late morphogenetic operon, beyond gene J coding for the lambda tail fibre. The homologous sequences are for the most part composed of repeated aa, the most remarkable of which is a Gly-X-His-Y-His motif where X and Y are small, uncharged aa, found six times in the T4 protein and seven times in the lambda ORF314 sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号