首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The few within-species studies on the effects of long-term captivity on avian physiological variables have small samples sizes and contradictory results. Nevertheless, many physiological studies make use of long-term captive birds, assuming the results will be applicable to wild populations. Here we investigated the effects of long-term captivity on a variety of physiological measurements in a relatively small (~12 g) southern African endemic bird, the Cape white-eye (Zosterops virens). Whole animal basal metabolic rate (BMR) and body mass (Mb) were influenced more by long-term captivity than by season, while mass-specific BMR, standard and basal whole animal and mass-specific evaporative water loss (EWL), and respiratory quotient (RQ), were all affected primarily by season, with long-term captivity having less of an effect. We therefore caution that whole animal BMR and Mb of long-term captive birds should not be used as representative of wild populations, and that the origin of study birds should be considered when comparing EWL and RQ of wild and long-term captive birds.  相似文献   

2.
Most studies on animal physiology and behaviour are conducted in captivity without verification that data are representative of free-ranging animals. We provide the first quantitative comparison of daily torpor, thermal biology and activity patterns, conducted on two groups of sugar gliders (Petaurus breviceps, Marsupialia) exposed to similar thermal conditions, one in captivity and the other in the field. Our study shows that activity in captive gliders in an outdoor aviary is restricted to the night and largely unaffected by weather, whereas free-ranging gliders omit foraging on cold/wet nights and may also forage in the afternoon. Torpor occurrence in gliders was significantly lower in captivity (8.4% after food deprivation; 1.1% for all observations) than in the field (25.9%), mean torpor bout duration was shorter in captivity (6.9 h) than in the field (13.1 h), and mean body temperatures during torpor were higher in captivity (25.3°C) than in the field (19.6°C). Moreover, normothermic body temperature as a function of air temperature differed between captive and free-ranging gliders, with a >3°C difference at low air temperatures. Our comparison shows that activity patterns, thermal physiology, use of torpor and patterns of torpor may differ substantially between the laboratory and field, and provides further evidence that functional and behavioural data on captive individuals may not necessarily be representative of those living in the wild.  相似文献   

3.
Seasonal variation in various thermoregulatory, metabolic and ventilatory parameters was examined for southern brown bandicoots (Isoodon obesulus fusciventer) from a Mediterranean climate near Perth, Western Australia. There was significant seasonal variation over the four annual seasons at thermoneutrality (Ta=30 degrees C) in body temperature, oxygen consumption, carbon dioxide production, respiratory exchange ratio, total evaporative water loss, wet and dry thermal conductance and tidal volume but not mass, ventilatory frequency, minute volume or oxygen extraction efficiency. Only carbon dioxide production and respiratory exchange ratio showed an annual pattern that was significantly related to season, with both being significantly higher in winter, presumably as a result of greater and higher quality food availability.  相似文献   

4.
高原地区动物面临一系列严峻的生存考验,随着海拔的变化,动物栖息地的食物资源等差异大,温度、氧分压等环境因子都将发生变化.环境差异可能会影响动物种群的生活史对策.在生理功能适应中,动物的能量代谢适应扮演着重要的角色.为探究高原鼠兔(Ochotona curzoniae)在不同海拔地区的能量代谢适应与热中性区范围,分别选取...  相似文献   

5.
Senescence, a decline in survival and reproductive prospects with age, is controlled by hormones. In insects, juvenile hormone (JH) is involved in senescence with captive individuals, but its effect under natural conditions is unknown. We have addressed this gap by increasing JH levels in young and old wild males of the damselfly Hetaerina americana. We assessed survival in males that were treated with a JH analogue (methoprene), which is known to promote sexual activity, and an immune challenge, which is known to promote terminal investment in reproduction in the studied species. We replicated the same procedure in captivity (to control for environmental variation), where males were deprived of any activity or food. We expected old males to show the lowest survival after being treated with JH and immune‐challenged, because the effect of terminal investment on senescence would be exacerbated by JH. However, this should be the case for wild animals, but not for captive animals, as the effects of JH and immune challenge should lead to an increase in high energetic‐demanding activities only occurring in the wild. Old animals died sooner compared with young animals in both the wild and captivity, confirming that males are subject to senescence. In wild but not captive animals, JH decreased survival in young males and increased it in old males, confirming that JH is sensitive to the environment when shaping animal senescence. Immune challenge had no effect on survival, suggesting no effect of terminal investment on senescence. Additionally, contrary to the expected effects of terminal investment, with an immune challenge, recapture rates increased in young males and decreased in old males. Our results show that male senescence in the wild is mediated by JH and that terminal investment does not cause senescence. One explanation is that animals undergoing senescence and terminal investment modify their feeding behaviour to compensate for their physiological state.  相似文献   

6.
Metabolic and ventilatory parameters were measured for the smallest and largest Isoodon bandicoots; the arid-adapted Barrow Island golden bandicoot (Isoodon auratus barrowensis) and the tropical northern brown bandicoot (Isoodon macrourus). I. a. barrowensis has a number of physiological characteristics that aid its tolerance of high Ta and survival in a hot and dry climate, including a low and labile body temperature, a very low basal metabolic rate, low total evaporative water loss, and an effective panting mechanism. I. macrourus generally has an “average” physiology for a bandicoot despite its size, although a number of its physiological characteristics aid survival in (sub)tropical conditions. These include a low body temperature, low total evaporative water loss and minute ventilation at high ambient temperatures, and an average thermal conductance. These data support the theory that phylogeny is a more important predictor of bandicoot physiology than habitat/distribution.  相似文献   

7.
Summary In captivity,Galago demidovii shows annual variations in oxygen consumption which are independent of daylength cycles. This rhythm is characterized by two periods during which metabolic and sexual activities are increased: a short period in November/December; and a longer period from March to June inclusive. These two periods alternate with periods of decreased metabolic rate, of which the most pronounced extends from July to September. Another point of interest is that the basal metabolism of captive Galagos is 17.5% above the value calculated from its body weight.The physiological cycle observed in captivity is synchronized with climatic variations in Makokou (Gaboon), from where the animals originated: higher metabolic and sexual activities are correlated with rainy seasons. This study suggests that an endogenous rhythm may exist inGalago demidovii.  相似文献   

8.
We examined the effect of temperature on resting metabolic rate in seven field-captured laughing kookaburras (Dacelo novaeguineae) during late winter and early spring. Basal metabolic rate averaged 201+/-3.4 ml O(2) h(-1) (0.603 ml O(2) g(-1) h(-1)). Overall thermal conductance (K(o)) declined with ambient temperature ( T(a)) and averaged 0.026 ml O(2) g(-1) h(-1) degrees C(-1) at T(a)s<10 degrees C. Day-night differences in body temperatures (2.6 degrees C) and in alpha-phase versus rho-phase minimum metabolic rates were much greater (33%) than predicted for 340-g nonpasserine birds and suggest that these animals operate as low-metabolic intensity animals in their rest phase, but normal-metabolic intensity animals during their active phase. Metabolic rate was measured in four of the same birds undergoing moult. Thermal conductance increased to 60% above pre-moult values about 6 weeks after moult began. Basal metabolic rate of moulting birds showing peak thermal conductance readings averaged 17 ml O(2) h(-1) higher than pre-moult measurements. Although this increase was not statistically significant, we believe the moult costs of kookaburras are too low to overcome the inherent variability of BMR determination. We suggest that moult costs of kookaburras are only somewhat higher than the measured costs of protein synthesis of other endotherms.  相似文献   

9.
The mean body weight of a species is often used as a summary measure of size in evolutionary and functional studies. Additionally, body weight is often used to assess the health of captive animals. Contrasts of the captive and wild body weights of a species can be used to examine the effects of captivity on the species. We provide an analysis of adult body weight in nine taxa of Malagasy lemurs. We compare weights of wild and captive lemurs and provide analyses of relationships between captive weight variation and management actions. Body weights are derived from a number of sources, the majority from the Duke University Primate Center (DUPC) capture and husbandry records. Captive animals are, on average, heavier than wild conspecifics. However, the difference is significant in only three taxa (Hapalemur griseus griseus, Eulemur coronatus, E. macaco flavifrons). Based on a retrospective analysis of DUPC records, we assess patterns of adult weight relative to caging conditions and evaluate changes in mean weight over a period of approximately 20 years. Cage type appears to have no effect on body weight. Mean weight has decreased for some taxa housed at the DUPC over time. We calculate a weight-based criterion for identifying obese animals and demonstrate that obesity is not currently a prevalent condition in DUPC lemurs. Examinations of the physiological correlates of excessive weight, and especially relationships between weight and reproductive success, await further analysis. These analyses need to be based, in part, on reliable measures of body weight. We suggest that systematic weighing of wild and captive animals is important for further examinations of the overall health of captive animals as well as for studies ranging in scope from evolutionary to clinical. Zoo Biol 16:17–30, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
We investigated intra- and interspecific differences in life history and reproductive parameters in bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). We compare the parameters of wild and captive females in order to shed light on the influence of habitat or specific differences or both on reproduction. We present new and additional information on reproductive parameters from captive bonobos and chimpanzees. Captive chimpanzees birth more live offspring and have a shorter interbirth interval, but experience higher infant mortality than captive bonobos. Although captive bonobo females tend to start reproduction at a younger age than chimpanzees, this is effectively only so for wild-born females of both species. Ultimately both species reach the same rate of production of offspring surviving to 5 yr. These results contrast with data from the wild. Wild bonobos tend to have higher reproductive success, a higher fertility rate and a shorter interbirth interval than wild chimpanzees. Reproduction is similar for wild and captive bonobos, which suggests that they are producing at their maximum under both conditions. Overall captive chimpanzees perform better than their wild conspecifics, probably because of lower feeding competition. Infant survival is the only specific difference not affected by captivity. Bonobo infants survive better, which suggests that chimpanzee infants are more at risk. We argue that the interspecific variation in reproductive parameters in captivity is related to the different influence of captivity on reproduction and different pressures of external sources of infant and juvenile mortality.  相似文献   

11.
Knots Calidris canutus live highly seasonal lives, breeding solitarily on high arctic tundra and spending the non-breeding season in large social flocks in temperate to tropical estuaries. Their reproductive activities and physiological preparations for long flights are reflected in pronounced plumage and body mass changes, even in long-term captives of the islandica subspecies (breeding in north Greenland and northeast Canada and wintering in western Europe) studied in outdoor aviaries. The three to four fattening episodes in April-July in connection with the flights to and from the high arctic breeding grounds by free-living birds, are represented by a single period of high body mass, peaking between late May and early July in a sample of ten captive islandica knots studied over four years. There are consistent and synchronized annual variations in basal metabolic rate and thermal conductance in three islandica knots. Basal metabolic rate was highest during the summer body mass peak. Within the examined individuals, basal metabolic rate scales on body mass with an exponent of about 1.4, probably reflecting a general hypertrophy of metabolically expensive muscles and organs. Any potential effect of moult on basal metabolic rate was obscured by the large seasonal mass-associated variations. In breeding plumage, insulation (the inverse of thermal conductance) was a factor of 1.35 lower than in winter plumage. This was paralleled by the dry mass of contour feathers being a factor of 1.17 lower. In this subspecies the breeding season is indeed the period during which the costs of thermoregulation are lowest. In captive knots seasonal changes in basal metabolic rate and thermal conductance likely reflect an anticipatory programme adaptive to the variable demands made by the environment at different times of the year.  相似文献   

12.
To investigate patterns of thermoregulation in free-ranging and captive southern brown bandicoots Isoodon obesulus, we measured abdominal body temperature (Tb) of five free-ranging bandicoots over 42 days using implanted data loggers and Tb of three captive bandicoots over 3 months using implanted temperature-sensitive radio transmitters. Bandicoots in the wild had a mean Tb of 36.5±1.0 °C (range 33.4–39.8 °C) and showed a pronounced nychthemeral pattern with two distinct temperature phases. Tb increased at 13:30±2.6 h each day and remained high for 10.65±2.07 h, suggesting a crepuscular and early evening activity pattern. Daily Tb variation of I. obesulus would save considerable energy by reducing daytime thermoregulatory costs in the wild. Captive bandicoots had a similar mean body temperature (36.9±0.2°C) and range (33.0–39.9°C) as free-ranging bandicoots. However, the nychthemeral Tb pattern of captive bandicoots was different from free-ranging bandicoots, with a less pronounced daily cycle and the nocturnal rise in Tb occurring mainly at sunset and the daily decline occurring mainly at dawn.  相似文献   

13.
Complete medical examinations were performed on 11 wild ruffed lemurs (Varecia variegata and V. rubra) from three sites in Madagascar. Each animal received a complete physical examination, several physiological parameters were analyzed (complete blood count, serum biochemical profile, and fecal bacterial culture), and the animals were examined for endo-, ecto-, and hemoparasites. Additional tests were performed as samples were available, including fat-soluble vitamin analysis, trace mineral analysis, toxoplasmosis serology, and viral serology. We found that the ruffed lemurs were in good health, harbored a low endoparasite load, and frequently had external parasites (e.g., ticks (Haemophysalis lemuris)). Statistically significant differences between captive and wild lemurs were found for the following serum biochemical and blood count parameters: alanine aminotransferase (ALT), total protein (TP), albumin, blood urea nitrogen, cholesterol, glucose, amylase, band neutrophil count, and eosinophil count. Low blood urea nitrogen (BUN) and serum cholesterol values in wild lemurs (compared to those of North American captive zoo ruffed lemurs) may suggest differences between diets in the wild and captivity.  相似文献   

14.
Many captive animals are fed diets that are drastically different in mechanical properties than their wild diet. Most captive pantherines are fed a nutritionally supplemented diet consisting almost entirely of ground meat. While many zoos supplement this diet with bones, the fact remains that large captive felids are fed diets that require substantially less masticatory effort than those of their wild counterparts. The osteological effects of this dietary difference have not been fully evaluated. To this end, we compared linear measurements and 3D geometric morphometric landmarks of captive and wild lions and tigers. Using Principal Component (PC) analysis of the linear measurements, not only were the sexes and species statistically distinct, but so too was the population clearly divisible in terms of captivity status. The 3D analysis supported these findings: although the most influential variable in the sample (PC1, 21.5% of the variation) separates the two species, the second most influential contributor (PC2) to the overall skull shape is driven not by the sex differences in these highly dimorphic species, but rather by their captivity status. In fact, captivity status drives nearly twice as much of the 3D variation as sexual dimorphism (14.8% vs. 8.0% for PC2 vs. PC3). Thus the shape is influenced nearly twice as much by whether the animal was captive or wild than by whether it was male or female. If a causal relationship can be demonstrated between dietary mechanical properties and morphology, people who oversee the diets of captive carnivores should consider modifying these diets to account for not only nutritional but also the mechanical properties of a carcass-based diet as well. In addition to the husbandry implications, our analyses show the ways in which captive specimens are different than their wild counterparts – findings that have implications for morphologists when considering anatomical samples.  相似文献   

15.
There are few intraspecific studies relating physiological parameters to body mass. This study relates scaling of ionic regulation and respiratory parameters with body mass in crayfish (Procambarus clarkii). These animals were chosen because of their direct development, spanning four orders of magnitude in body mass. Usually, these animals are hyperregulators and must maintain hemolymph electrolyte levels above those in the ambient freshwater. This is especially important in the postmolt, when ion imbalance can occur. Maintaining hemolymph ion levels above ambient involves active processes that are independently related to metabolic rate, ventilation, and circulation. Therefore, this study investigates relationships among size and ionic regulation, heart rate, and ventilation in crayfish, spanning a size range of 0.003-24 g. Postmolt net ion uptake of Ca, titratable base, Na, Cl, and NH4 increase with body mass (positive allometry) with slopes of 0.92, 0.79, 0.90, 0.84, and 0.87, respectively. Between 72% and 97% of variation in ionic regulation was related to body mass. The slopes differed from each other for Ca and titratable base but not for Na, Cl, and NH4. For heart rate and ventilation rate, different relationships were derived for animals smaller and larger than 0.01 g (between first and third instar). Animals larger than 0.01 g show a negative allometric relationship between heart rate and body size ([body mass](0.15)), while smaller animals show positive allometry with body size, but only 29% of variation in heart rate is explained by body size alone. For ventilation rates, the negative allometry with body size for animals larger than 0.01 g is present, but less than 15% of variation in ventilation rate is explained by size, while for smaller animals the size dependency disappears. Based on these results, predictions of physiological parameters such as ionic regulation based on body size are useful in crayfish, but estimates of respiratory parameters and body size should be used with caution.  相似文献   

16.
Abstract.— As a first examination of the additive genetic variance of thermoregulatory traits in a natural population of endotherms, we studied the quantitative genetics of key physiological ecology traits in the leaf-eared mouse, Phyllotis darwini. We measured basal metabolic rate (BMR), nonshivering thermogenesis (NST), maximum metabolic rate for thermoregulation (MMR), thermal conductance (CT), body temperature (Tb), and factorial aerobic scope (FAS) in individuals acclimated to cold and warm conditions. For comparability with previous studies, we included the following morphological traits: foot length (FL), total length (TL), body mass (mb, at birth, sexual maturity, 6 months, and 8 months). Variance components were obtained from two different procedures: the expected variance component in an ANOVA Type III sum of squares and an animal model approach using restricted maximum likelihood. Results suggest the presence of additive genetic variance in FL (h2= 0.47, P = 0.045), CT of cold-acclimated animals (h2= 0.66, P = 0.041), and night body temperature, measured in cold-acclimated animals (h2= 0.68, P = 0.080). Heritabilities of mb were near zero at all ages, but maternal effects and common environment effects were high and significant. We found no evidence of additive genetic variance in BMR, NST, MMR, or FAS (i.e., estimates were not significantly different from zero for all tests). Our results are in general agreement with previous studies of mammals that reported low heritability for: (1) BMR and MMR; (2) daytime body temperature; and (3) body mass for wild, but not laboratory or domestic, populations.  相似文献   

17.
Once widespread across western and southern Australia, wild populations of the western barred bandicoot (WBB) are now only found on Bernier and Dorre Islands, Western Australia. Conservation efforts to prevent the extinction of the WBB are presently hampered by a papillomatosis and carcinomatosis syndrome identified in captive and wild bandicoots, associated with infection with the bandicoot papillomatosis carcinomatosis virus type 1 (BPCV1). This study examined the prevalence and distribution of BPCV1 and the associated syndrome in two island and four mainland (reintroduced and captive) WBB populations in Western Australia, and factors that may be associated with susceptibility to this syndrome. BPCV1 and the syndrome were found in the wild WBB population at Red Cliff on Bernier Island, and in mainland populations established from all or a proportion of founder WBBs from Red Cliff. BPCV1 and the syndrome were not found in the wild population on Dorre Island or in the mainland population founded by animals exclusively from Dorre Island. Findings suggested that BPCV1 and the syndrome were disseminated into mainland WBB populations through the introduction of affected WBBs from Red Cliff. No difference in susceptibility to the syndrome was found between Dorre Island, Bernier Island, and island-cross individuals. Severity of lesions and the number of affected animals observed in captivity was greater than that observed in wild populations. This study provided epidemiological evidence to support the pathological and molecular association between BPCV1 infection and the papillomatosis and carcinomatosis syndrome and revealed increasing age as an additional risk factor for this disease.  相似文献   

18.
The body condition of an animal is an indicator of health status and is dependent upon many factors, some of which can vary between wild and captive settings. Despite this, there have not been many studies on how captivity affects body condition relative to wild animal populations. This study explores the body condition of captive and wild American alligators (Alligator mississippiensis) because reptiles are frequently overlooked in studies of captive animal health and because alligators are well-represented in captivity. We collected body condition data from 209 captive alligators and 935 wild alligators throughout Florida and southeastern Georgia and compared the relationships between body condition and body length for each group. We found that captive alligators exhibited significantly higher body condition values as they aged, and that this result was driven by the difference between captive and wild males. Body condition values for captive juveniles did not differ from wild juveniles, but they differed when comparing adults. Our results suggest that factors such as diet and movement rates play major roles in determining alligator body condition and that body condition may be an important metric for monitoring captive alligator health, especially for older adult males.  相似文献   

19.
Breathing rates are often collected both in the wild and in captivity to inform on cetaceans' internal state. However, few studies have investigated the effect of various factors on this breathing rate. We investigated the variations of individual and synchronous breathing rates depending on individual features (species, sex, age), displayed behavior, social parameters (social grouping), and environmental parameters (diurnal variation, presence of enrichment, unusual events, and presence of visitors in three groups of captive odontocetes (Yangtze finless porpoises, Neophocaena asiaeorentalis asiaeorientalis, East‐Asian finless porpoises, Neophocaena asiaeorentalis sunameri, bottlenose dolphins, Tursiops truncatus). Both individual and synchronous breathing rates were the highest when animals engaged in energetic or social behaviors. Individual breathing rate decreased but synchronous breathing rate increased with the presence of enrichment. Both rates increased during unusual events (e.g., pool cleaning, presence of a diver in the pool, noise, transport) and when public was present for Yangtze finless porpoises. Finally, synchronous breathing rate increased for Yangtze finless porpoises when experiencing social separation. We suggest that individual and synchronous breathing rates are useful parameters to measure, both in wild and captive animals, to obtain information on their arousal/stress state. However, these rates should be interpreted with caution and should be used together with other parameters to allow more accurate inferences.  相似文献   

20.
《遗传学报》2021,48(9):825-835
Pangolins are among the most critically endangered animals due to widespread poaching and worldwide trafficking. Captive breeding is considered to be one way to protect them and increase the sizes of their populations. However, comparative studies of captive and wild pangolins in the context of gut microbiota are rare. Here, the gut microbiome of captive and confiscated-rescued wild pangolins is compared, and the effects of different periods of captivity and captivity with and without antibiotic treatment are considered. We show that different diets and periods of captivity, as well as the application of antibiotic therapy, can alter gut community composition and abundance in pangolins. Compared to wild pangolins, captive pangolins have an increased capacity for chitin and cellulose/hemicellulose degradation, fatty acid metabolism, and short-chain fatty acid synthesis, but a reduced ability to metabolize exogenous substances. In addition to increasing the ability of the gut microbiota to metabolize nutrients in captivity, captive breeding imposes some risks for survival by resulting in a greater abundance of antibiotic resistance genes and virulence factors in captive pangolins than in wild pangolins. Our study is important for the development of guidelines for pangolin conservation, including health assessment, disease prevention, and rehabilitation of wild pangolin populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号