首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rfb gene cluster which determines the biosynthesis of the Shigella flexneri serotype 6 O-antigen specificity has been cloned in pHC79, generating plasmids pPM3115 and pPM3116. These plasmids mediate expression, in Escherichia coli K-12, of lipopolysaccharides (LPS) immunologically similar to the S. flexneri type 6 LPS as judged by SDS-PAGE and Western-immunoblot analysis using S. flexneri type 6 specific antisera. Thus, unlike other S. flexneri serotypes, no additional loci are required for serotype specificity. This expression is independent of E. coli K-12 rfb genes. Southern-hybridization analysis using the 16.2-kb BglII probe from S. flexneri type 6 rfb region detected very little sequence homology in S. flexneri serotypes 1-5, however, some homology was detected with E. coli O2 and O18, but not in E. coli 0101 strains, Salmonella and Vibrio cholerae.  相似文献   

2.
The gene cluster (rfb region) which determines the biosynthesis of the Shigella flexneri O-antigen of the Y serotype specificity was cloned from a S. flexneri serotype 2a strain. Two plasmids, pPM2212 and pPM2213, which conferred O-antigen biosynthesis were generated from separate cosmid clones by deletion with Clal. These plasmids expressed O-antigen in Escherichia coli K12 like that of the parental strain, as assessed by reactions to antisera in colony and Western immunoblots, sensitivity to bacteriophage Sf6, and by silver staining of lipopolysaccharides separated by sodium dodecyl sulphate/polyacrylamide gel electrophoresis. These plasmids also mediated O-antigen expression in an E. coli K12 rfb-delete background, indicating that all the necessary genes have been cloned. A detailed restriction map of the region has been constructed and analysis of various subclones has allowed the limits of the coding region for O-antigen biosynthesis to be defined to a maximum of 11 kb. Expression of these plasmids demonstrates a novel phenotype associated with control of lipopolysaccharide chain length. The gene(s) responsible maps adjacent to, but separate from, those associated with the biosynthesis of the O-antigen unit. Analysis of plasmid-encoded proteins in minicells and maxicells has facilitated the construction of a physical map. Finally, plasmid pPM-2212 was used to probe a collection of S. flexneri serotypes by Southern hybridization. With the exception of serotype 6, which appears to be unrelated, a similar pattern was found in all serotypes.  相似文献   

3.
P M Morrissey  G Dougan 《Gene》1986,43(1-2):79-84
The properties of three independent enterotoxigenic Escherichia coli isolates known to express 987P adhesion fimbriae in a manner subject to phase variation were examined. Phase variation could not be correlated with any major changes in the plasmid DNA content of these strains or with readily detectable changes in any other tested phenotypic markers. The 987P genetic determinant from one of these strains, E. coli 987, was cloned into the non-fimbriated E. coli K-12 strains HB101, and expressed, using the cosmid vector system. 987P fimbriae produced by cells harbouring these recombinant plasmids (987P+ phenotype) could not be distinguished from 987P fimbriae produced by strain 987. Expression of 987P fimbriae from some recombinant plasmids was unstable but none of the recombinants exhibited the phase variation phenotype displayed by the parental strain. One recombinant plasmid, pPM200, contained an insert of strain 987 DNA of ca. 33 kb. The HB101[pPM200] displayed a rather stable 987P+ phenotype, but this was not true for several hosts, since pPM200 acquired approx. 20-kb deletions following transformations of E. coli K-12 strains other than HB101. The deletions mapped to the same region of pPM200 irrespective of the host strain transformed. Cells harbouring the deleted plasmids did not express 987P fimbriae (987P- phenotype).  相似文献   

4.
Cloning of the rfb genes of Shigella flexneri 2a into Escherichia coli K-12 strain DH1 results in the synthesis of lipopolysaccharides (LPS) with an O-antigen chain having type antigen IV and group antigens 3,4. During genetic studies of these rfb genes in E. coli K-12, we observed that strains harbouring plasmids with certain mutations (inversion and transposon insertions) which should have blocked O-antigen synthesis nevertheless still produced LPS with O-antigen chains. These LPS migrated differently on silver-stained SDS—polyacrylamide gels, compared with the LPS produced by wild-type rfb genes, and the group 3,4 antigens were barely detectable, suggesting that the O-antigen was altered. Investigation of the genetic determinants for production of the altered O-antigen/LPS indicated that: (i) these LPS are produced as a result of mutations which are either polar on rfbF or inactivate rfbF; (ii) the rfbX gene product (or a similar protein in the E. coli K-12 rfb region) is needed for production of the altered O-antigen in the form of LPS; (iii) the rfbG gene product is required for the production of both the parental and altered LPS; (iv) the dTDP-rhamnose biosynthesis genes are required. Additionally, an E. coli K-12 gene product(s) encoded outside the rfb region also contributes to production of the O-antigen of the altered LPS. An antiserum raised to the altered LPS from strain DH1(pPM2217 (rfbX::Tn1725)) was found to cross-react with nearly all S. flexneri serotypes, and with the altered LPS produced by other DH1 strains harbouring plasmids with different rfb mutations, as described above. The reactivity of the altered LPS with a panel of monoclonal antibodies specific for various S. flexneri O-antigen type and group antigens demonstrated that their O-antigen components were closely related to that of S. flexneri serotype 4. The RfbF and RfbG proteins were shown to have similarity to rhamnose transferases, and we identified a motif common to the N-termini of 6-deoxy-hexose nucleotide sugar transferases. We propose that the E. coli K-12 strains harbouring the mutated S. flexneri rfb genes produce LPS with a hybrid O-antigen as a consequence of inactivation of RfbF and complementation by an E. coli K-12 gene product. Analysis of the genetic and immunochemical data suggested a possible structure for the O-antigen component of the altered LPS.  相似文献   

5.
The O antigen of Escherichia coli O111 is identical in structure to that of Salmonella enterica serovar adelaide. Another O-antigen structure, similar to that of E. coli O111 and S. enterica serovar adelaide is found in both E. coli O55 and S. enterica serovar greenside. Both O-antigen structures contain colitose, a 3,6 dideoxyhexose found only rarely in the Enterobacteriaceae. The O-antigen structure is determined by genes generally located in the rfb gene cluster. We cloned the rfb gene cluster from an E. coli O111 strain (M92), and the clone expressed O antigen in both E. coli K-12 and a K-12 strain deleted for rfb. Lipopolysaccharide analysis showed that the O antigen produced by strains containing the cloned DNA is polymerized. The chain length of O antigen was affected by a region outside of rfb but linked to it and present on some of the plasmids containing rfb. The rfb region of M92 was analysed and compared, by DNA hybridization, with that of strains with related O antigens. The possible evolution of the rfb genes in these O antigen groups is discussed.  相似文献   

6.
During O antigen lipopolysaccharide (LPS) synthesis in bacteria, transmembrane migration of undecaprenylpyrophosphate (Und-P-P)-bound O antigen subunits occurs before their polymerization and ligation to the rest of the LPS molecule. Despite the general nature of the translocation process, putative O-antigen translocases display a low level of amino acid sequence similarity. In this work, we investigated whether complete O antigen subunits are required for translocation. We demonstrate that a single sugar, GlcNAc, can be incorporated to LPS of Escherichia coli K-12. This incorporation required the functions of two O antigen synthesis genes, wecA (UDP-GlcNAc:Und-P GlcNAc-1-P transferase) and wzx (O-antigen translocase). Complementation experiments with putative O-antigen translocases from E. coli O7 and Salmonella enterica indicated that translocation of O antigen subunits is independent of the chemical structure of the saccharide moiety. Furthermore, complementation with putative translocases involved in synthesis of exopolysaccharides demonstrated that these proteins could not participate in O antigen assembly. Our data indicate that recognition of a complete Und-P-P-bound O antigen subunit is not required for translocation and suggest a model for O antigen synthesis involving recognition of Und-P-P-linked sugars by a putative complex made of Wzx translocase and other proteins involved in the processing of O antigen.  相似文献   

7.
Escherichia coli K-12 WcaJ and the Caulobacter crescentus HfsE, PssY, and PssZ enzymes are predicted to initiate the synthesis of colanic acid (CA) capsule and holdfast polysaccharide, respectively. These proteins belong to a prokaryotic family of membrane enzymes that catalyze the formation of a phosphoanhydride bond joining a hexose-1-phosphate with undecaprenyl phosphate (Und-P). In this study, in vivo complementation assays of an E. coli K-12 wcaJ mutant demonstrated that WcaJ and PssY can complement CA synthesis. Furthermore, WcaJ can restore holdfast production in C. crescentus. In vitro transferase assays demonstrated that both WcaJ and PssY utilize UDP-glucose but not UDP-galactose. However, in a strain of Salmonella enterica serovar Typhimurium deficient in the WbaP O antigen initiating galactosyltransferase, complementation with WcaJ or PssY resulted in O-antigen production. Gas chromatography-mass spectrometry (GC-MS) analysis of the lipopolysaccharide (LPS) revealed the attachment of both CA and O-antigen molecules to lipid A-core oligosaccharide (OS). Therefore, while UDP-glucose is the preferred substrate of WcaJ and PssY, these enzymes can also utilize UDP-galactose. This unexpected feature of WcaJ and PssY may help to map specific residues responsible for the nucleotide diphosphate specificity of these or similar enzymes. Also, the reconstitution of O-antigen synthesis in Salmonella, CA capsule synthesis in E. coli, and holdfast synthesis provide biological assays of high sensitivity to examine the sugar-1-phosphate transferase specificity of heterologous proteins.  相似文献   

8.
The rfp gene of Shigella dysenteriae 1 and the rfa genes of Escherichia coli K-12 and Salmonella typhimurium LT2 have been studied to determine their relationship to lipopolysaccharide (LPS) core heterogeneity and their role in the attachment of O antigen to LPS. It has been inferred from the nucleotide sequence that the rfp gene encodes a protein of 41,864 Da which has a structure similar to that of RfaG protein. Expression of this gene in E. coli K-12 results in the loss of one of the three bands seen in gel analysis of the LPS and in the appearance of a new, more slowly migrating band. This is consistent with the hypothesis that Rfp is a sugar transferase which modifies a subset of core molecules so that they become substrates for attachment of S. dysenteriae O antigen. A shift in gel migration of the bands carrying S. dysenteriae O antigen and disappearance of the Rfp-modified band in strains producing O antigen suggest that the core may be trimmed or modified further before attachment of O antigen. Mutation of rfaL results in a loss of the rough LPS band which appears to be modified by Rfp and prevents the appearance of the Rfp-modified band. Thus, RfaL protein is involved in core modification and is more than just a component of the O-antigen ligase. The products of rfaK and rfaQ also appear to be involved in modification of the core prior to attachment of O antigen, and the sites of rfaK modification are different in E. coli K-12 and S. typhimurium. In contrast, mutations in rfaS and rfaZ result in changes in the LPS core but do not affect the attachment of O antigen. We propose that these genes are involved in an alternative pathway for the synthesis of rough LPS species which are similar to lipooligosaccharides of other species and which are not substrates for O-antigen attachment. All of these studies indicate that the apparent heterogeneity of E. coli K-12 LPS observed on gels is not an artifact but instead a reflection of functional differences among LPS species.  相似文献   

9.
The rfb gene, involved in the synthesis of the O-specific polysaccharide (a mannose homopolymer) of Escherichia coli O9 lipopolysaccharide (LPS), was cloned in E. coli K-12 strains. The O9-specific polysaccharide covalently linked to the R core of K-12 was extracted from the K-12 strains harboring the O9 rfb gene. All the other genes required for the synthesis of rfe-dependent LPS are therefore considered to be present in the K-12 strains. It was found that bacteria harboring some clones with deletions of the ca. 20-kilobase-pair (kbp) BglII-StuI fragment no longer synthesized the O9-specific polysaccharide. However, bacteria harboring clones del 21, del 22, and del 25, which carry deletions of the 10-kbp PstI-StuI fragment, synthesized an O-specific polysaccharide antigenically distinct from E. coli O9 LPS. Although this new O-specific polysaccharide consisted solely of mannose and the mannose residues were combined only through alpha-1,2 linkage, it was still composed of a repeating oligosaccharide unit, possibly a trisaccharide unit,----2)alpha Man-(1----2)alpha Man-(1----2)alpha Man-(1----. It is therefore likely that this new O-specific polysaccharide was derived from a part of the O9-specific polysaccharide----3)alpha Man-(1----3)alpha Man-(1----2)alpha Man-(1----2)alpha Man-(1----2)alpha Man-(1----and that the deleted part of the clones was responsible for the synthesis of alpha-1,3 linkages of the O9-specific polysaccharide.  相似文献   

10.
Escherichia coli K-12 has long been known not to produce an O antigen. We recently identified two independent mutations in different lineages of K-12 which had led to loss of O antigen synthesis (D. Liu and P. R. Reeves, Microbiology 140:49-57, 1994) and constructed a strain with all rfb (O antigen) genes intact which synthesized a variant of O antigen O16, giving cross-reaction with anti-O17 antibody. We determined the structure of this O antigen to be -->2)-beta-D-Galf-(1-->6)-alpha-D-Glcp- (1-->3)-alpha-L-Rhap-(1-->3)-alpha-D-GlcpNAc-(1-->, with an O-acetyl group on C-2 of the rhamnose and a side chain alpha-D-Glcp on C-6 of GlcNAc. O antigen synthesis is rfe dependent, and D-GlcpNAc is the first sugar of the biological repeat unit. We sequenced the rfb (O antigen) gene cluster and found 11 open reading frames. Four rhamnose pathway genes are identified by similarity to those of other strains, the rhamnose transferase gene is identified by assay of its product, and the identities of other genes are predicted with various degrees of confidence. We interpret earlier observations on interaction between the rfb region of Escherichia coli K-12 and those of E. coli O4 and E. coli Flexneri. All K-12 rfb genes were of low G+C content for E. coli. The rhamnose pathway genes were similar in sequence to those of (Shigella) Dysenteriae 1 and Flexneri, but the other genes showed distant or no similarity. We suggest that the K-12 gene cluster is a member of a family of rfb gene clusters, including those of Dysenteriae 1 and Flexneri, which evolved outside E. coli and was acquired by lateral gene transfer.  相似文献   

11.
Previous chemical analyses identified two structurally distinct O polysaccharides in the lipopolysaccharide of Klebsiella pneumoniae serotype O1:K20 (C. Whitfield, J. C. Richards, M. B. Perry, B. R. Clarke, and L. L. MacLean, J. Bacteriol. 173:1420-1431, 1991). The polysaccharides were designated D-galactan I and D-galactan II; both are homopolymers of galactose. To begin investigation of the synthesis and expression of these O polysaccharides, we have cloned a 7.3-kb region of the chromosome of K. pneumoniae O1:K20, containing the his-linked rfbkpO1 (O-antigen biosynthesis) gene cluster. In Escherichia coli K-12 and Salmonella typhimurium, rfbkpO1 directed the synthesis of D-galactan I but not D-galactan II. The cloned rfbkpO1 genes did not complement a mutation affecting D-galactan II synthesis in K. pneumoniae CWK37, suggesting that another (unlinked) locus is also required for D-galactan II expression. However, plasmids carrying rfbkpO1 did complement a mutation in K. pneumoniae CWK43 which eliminated expression of both D-galactan I and D-galactan II, indicating that at least one function is common to synthesis of both polymers. Synthesis of D-galactan I was dependent on chromosomal galE and rfe genes. Hybridization experiments indicated that the rfbkpO1 sequences from different serotype O1 Klebsiella isolates showed some restriction fragment length polymorphism.  相似文献   

12.
Structural analysis of lipopolysaccharide (LPS) isolated from semirough, serum-sensitive Escherichia coli strain Nissle 1917 (DSM 6601, serotype O6:K5:H1) revealed that this strain's LPS contains a bisphosphorylated hexaacyl lipid A and a tetradecasaccharide consisting of one E. coli O6 antigen repeating unit attached to the R1-type core. Configuration of the GlcNAc glycosidic linkage between O-antigen oligosaccharide and core (beta) differs from that interlinking the repeating units in the E. coli O6 antigen polysaccharide (alpha). The wa(*) and wb(*) gene clusters of strain Nissle 1917, required for LPS core and O6 repeating unit biosyntheses, were subcloned and sequenced. The DNA sequence of the wa(*) determinant (11.8 kb) shows 97% identity to other R1 core type-specific wa(*) gene clusters. The DNA sequence of the wb(*) gene cluster (11 kb) exhibits no homology to known DNA sequences except manC and manB. Comparison of the genetic structures of the wb(*)(O6) (wb(*) from serotype O6) determinants of strain Nissle 1917 and of smooth and serum-resistant uropathogenic E. coli O6 strain 536 demonstrated that the putative open reading frame encoding the O-antigen polymerase Wzy of strain Nissle 1917 was truncated due to a point mutation. Complementation with a functional wzy copy of E. coli strain 536 confirmed that the semirough phenotype of strain Nissle 1917 is due to the nonfunctional wzy gene. Expression of a functional wzy gene in E. coli strain Nissle 1917 increased its ability to withstand antibacterial defense mechanisms of blood serum. These results underline the importance of LPS for serum resistance or sensitivity of E. coli.  相似文献   

13.
BamHI, SalI, PstI, and KpnI fragments of pPM1 (B. pseudomallei 12.95 kb plasmid) were cloned in E. coli. The recombinant clones carrying a 7.55 kb KpnI fragment of pPM1 were highly resistant to several aminoglycosides (streptomycin, kanamycin, and gentamycin) and fluoroguinolones (perfloxacin, ofloxacin). Two outer membrane proteins (23 and 27 kDa) absent in E. coli and capable to form 120 kDa oligomer complex were detected by the Western blot method in the strain carrying recombinant pS19 plasmid. The integration of a cloned 7.55 kb sequence in the chromosome was observed by the dot and Southern hybridization analysis in the clones carrying recombinant plasmids pS12 and pS14.  相似文献   

14.
To investigate the effect of chromosomal mutation on the synthesis of rfe-dependent Escherichia coli O9 lipopolysaccharide (LPS), the cloned E. coli O9 rfb gene was introduced into Salmonella typhimurium strains defective in various genes involved in the synthesis of LPS. When E. coli O9 rfb was introduced into S. typhimurium strains possessing defects in rfb or rfc, they synthesized E. coli O9 LPS on their cell surfaces. The rfe-defective mutant of S. typhimurium synthesized only very small amounts of E. coli O9 LPS after the introduction of E. coli O9 rfb. These results confirmed the widely accepted idea that the biosynthesis of E. coli O9-specific polysaccharide does not require rfc but requires rfe. By using an rfbT mutant of the E. coli O9 rfb gene, the mechanism of transfer of the synthesized E. coli O9-specific polysaccharide from antigen carrier lipid to the R-core of S. typhimurium was investigated. The rfbT mutant of the E. coli O9 rfb gene failed to direct the synthesis of E. coli O9 LPS in the rfc mutant strain of S. typhimurium, in which rfaL and rfbT functions are intact, but directed the synthesis of the precursor. Because the intact E. coli O9 rfb gene directed the synthesis of E. coli O9 LPS in the same strain, it was suggested that the rfaL product of S. typhimurium and rfbT product of E. coli O9 cooperate to synthesize E. coli O9 LPS in S. typhimurium.  相似文献   

15.
The O-antigen of the lipopolysaccharide (LPS) from the enteroaggregative Escherichia coli strain 87/D2 has been determined by component analysis together with NMR spectroscopy. The polysaccharide has pentasaccharide repeating units in which all the residues have the galacto-configuration. The repeating unit of the O-antigen, elucidated using the O-deacylated LPS, is branched with the following structure: Analysis of the 1H NMR spectrum of the LPS revealed O-acetyl groups (approximately 0.7 per repeating unit) distributed over two positions. Subsequent analysis showed that the galactose residue carries acetyl groups at either O-3 or O-4 in a ratio of approximately 2:1. The international reference strain from E. coli O128ab was investigated and the repeating unit of the O-antigens has the following structure: Analysis of the 1H NMR spectrum of the LPS revealed O-acetyl groups (approximately one per repeating unit) distributed over two positions. The integrals of the resonances for the O-acetyl groups indicated similarities between the O-antigen from E. coli O128ab and that of E. coli strain 87/D2, whereas the O-acetyl substitution pattern in the E. coli O128ac O-antigen differed slightly. Enzyme immunoassay using specific anti-E. coli O128ab and anti-E. coli O128ac rabbit sera confirmed the results.  相似文献   

16.
目的探讨LPS中的0抗原部分与其它部分在血小板反应中的作用。方法给BALB/c小鼠注人大肠埃希菌野生株E.coli O8、O9、K-12(不含有O抗原)及2株重组变异的K-12株(携带编码O8、O9的O抗原rfb基因)。结果K-12的LPS引起血小板反应及急性休克能力较弱,O8及O9引起一定的反应,而这2种重组的LPS,即在K-12的LPS上带有O8或O9的O抗原.显示出极强的活性。静脉注入补体C5的阻止剂后,重组株LPS的作用消失了。而且在缺乏补体C5小鼠DBA/2中,重组的LPS能引起血小板的聚集但不能降解,也不能引起休克症状。结论诱导血小板反应及急性休克的能力依赖于LPS结构;O抗原及R核心抗原是表现活性的必要结构;LPS诱导的血小板反应及急性休克依赖补体系统。  相似文献   

17.
Enterohemorrhagic Escherichia coli O145 strains are emerging as causes of hemorrhagic colitis and hemolytic uremic syndrome. In this study, we present the structure of the E. coli O145 O antigen and the sequence of its gene cluster. The O145 antigen has repeat units containing three monosaccharide residues: 2-acetamido-2-deoxy-D-glucose (GlcNAc), 2-acetamidoylamino-2,6-dideoxy-L-galactose, and N-acetylneuraminic acid. It is very closely related to Salmonella enterica serovar Touera and S. enterica subsp. arizonae O21 antigen. The E. coli O145 gene cluster is located between the JUMPStart sequence and the gnd gene and consists of 15 open reading frames. Putative genes for the synthesis of the O-antigen constituents, for sugar transferase, and for O-antigen processing were annotated based on sequence similarities and the presence of conserved regions. The putative genes located in the E. coli O145 O-antigen gene cluster accounted for all functions expected for synthesis of the structure. An E. coli O145 serogroup-specific PCR assay based on the genes wzx and wzy was also developed by screening E. coli and Shigella isolates of different serotypes.  相似文献   

18.
Monoclonal antibody (MAb) 12F5 reacted with 35 Escherichia coli O26 isolates and cross-reacted with 1 of 365 non-E. coli O26 isolates. MAb 15C4 reacted with 30 E. coli O111 strains and 8 Salmonella O35 strains (possessing identical O antigen) but not with 362 other bacterial strains. Lipopolysaccharide immunoblots confirmed MAb O-antigen specificity.  相似文献   

19.
孔庆科  郭宏杰  赵广  郭玺  程剑松  王磊 《遗传学报》2004,31(12):1448-1454
对大肠杆菌O141 O-抗原基因簇进行测序,序列全长15601bp,用生物信息学的方法进行序列分析,共发现12个基因:鼠李糖合成酶基因(rmlB,rmlD,rmlA,rmlC)、甘露糖合成酶基因(manB,manC),糖基转移酶基因(orf6,orf7,orf9,orf10)、O-抗原转运酶基因(wzx)和O-抗原聚合酶基因(wzy)。用PCR的方法筛选出了针对大肠杆菌O141的特异基因,可以用于基因芯片或PCR方法对大肠杆菌O141的快速检测。通过对大肠杆菌O141的O-抗原基因簇及甘露糖和鼠李糖合成酶基因的进化分析发现:大肠杆菌O141 O-抗原基因簇是低GC含量的片段,仅O-抗原特异的基因才出现在O-抗原基因簇;并且这些基因可能介导了O-抗原基因簇间的重组及以O141 O-抗原基因簇的形成。  相似文献   

20.
A V Franco  D Liu    P R Reeves 《Journal of bacteriology》1996,178(7):1903-1907
The modal distribution of O-antigen chain length is determined by the Wzz (Cld/Rol) protein in those cases in which it has been studied. The system of O-antigen synthesis in Escherichia coli serotypes O8 and O9 is different from that reported for most other bacteria, and chain length distribution is thought not to be determined by a Wzz protein. We report the existence in E. coli O8 and O9 strains of wzz genes which are very similar to and have sequences within the range of variation of those which determine the chain length of typical O antigens. We also find that wzz genes previously identified by their effect on O-antigen chain length, when cloned and transferred to O8 and O9 strains, affect the chain length of a capsule-related form of LPS, K(LPS). We conclude that in at least some O8 and O9 strains there is a wzz gene which controls the chain length of K(LPS) but has no effect on the O8 or O9 antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号