首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is an autocrine relationship between eicosanoid and cytokine synthesis, with the ratio of prostaglandin E2 (PGE2)/thromboxane A2 (TXA2) being one of the determinants of the level of cytokine synthesis. In monocytes, cyclooxygenase type 1 (COX-1) activity appears to favor TXA2 production and COX-2 activity appears to favor PGE2 production. This has led to speculation regarding possible linkage of COX isozymes with PGE and TXA synthase. We have studied the kinetics of PGE2 and TXA2 synthesis under conditions that rely on COX-1 or -2 activity. With small amounts of endogenously generated prostaglandin H2 (PGH2), TXA2 synthesis was greater than PGE2. With greater amounts of endogenously generated PGH2, PGE2 synthesis was greater than TXA2. Also, TXA synthase was saturated at lower substrate concentrations than PGE synthase. This pattern was observed irrespective of whether PGH2 was produced by COX-1 or COX-2 or whether it was added directly. Furthermore, the inhibition of eicosanoid production by the action of nonsteroidal anti-inflammatory drugs or by the prevention of COX-2 induction with the p38 mitogen-activated protein kinase inhibitor SKF86002 was greater for PGE2 than for TXA2. It is proposed that different kinetics of PGE synthase and TXA synthase account for the patterns of production of these eicosanoids in monocytes under a variety of experimental conditions. These properties provide an alternative explanation to notional linkage or compartmentalization of COX-1 or -2 with the respective terminal synthases and that therapeutically induced changes in eicosanoid ratios toward predominance of TXA2 may have unwanted effects in long-term anti-inflammatory and anti-arthritic therapy.  相似文献   

2.
3.
Platelet-vascular endothelial cell interactions are central to the maintenance of vascular homeostasis. Thromboxane A2 (TXA2) and prostacyclin (prostaglandin (PG)I2) are the major products of cyclooxygenase (COX) metabolism by platelets and the vascular endothelium, respectively. Here we report the effects of platelet-endothelial interactions on human umbilical vein endothelial cells (HUVECs) COX-2 expression and prostanoid synthesis. Co-incubation of platelets with HUVECs resulted in a dose-dependent induction in COX-2 expression. This was accompanied by a relatively small increase in thromboxane B2 synthesis (2 ng) by comparison to the production of 6-keto-PGF1alpha and PGE2, which increased by approximately 14 and 12 ng, respectively. Abrogation of platelet-HUVEC interactions excluded direct cell-cell contact as a required event. Preincubation of HUVECs with SQ29548, a TXA2 receptor antagonist, dose-dependently inhibited platelet-induced COX-2 expression and prostanoid synthesis. Similarly, if platelet TXA2 synthesis was inhibited no induction of COX-2 was observed. Furthermore, a TXA2 analog, carbocyclic TXA2, induced HUVEC COX-2 expression and the synthesis of 6-keto-PGF1alpha and PGE2. This was also associated with an increase in the expression and activity of PGI synthase and PGE synthase but not TX synthase. Platelet co-incubation (or TXA2) also selectively activated the p44/42 mitogen-activated protein kinase pathway to regulate HUVEC COX-2 expression. Thus it seems that platelet-derived TXA2 can act in a paracrine manner to up-regulate endothelial COX-2 expression and PGI2 synthesis. These observations are of particular importance given the recent observations regarding selective COX-2 inhibitors and the suppression of PGI2 synthesis.  相似文献   

4.
The two cyclooxygenase (COX) isoforms, COX-1 and COX-2, both metabolize arachidonic acid to PGH(2), the common substrate for thromboxane A(2) (TXA(2)), prostacyclin (PGI(2)), and PGE(2) synthesis. We characterized the synthesis of these prostanoids in HUVECs in relation to COX-1 and COX-2 activity. Untreated HUVEC expressed only COX-1, whereas addition of IL-1beta caused induction of COX-2. TXA(2) was the predominant COX-1-derived product, and TXA(2) synthesis changed little with up-regulation of COX-2 by IL-1beta (2-fold increase). By contrast, COX-2 up-regulation was associated with large increases in the synthesis of PGI(2) and PGE(2) (54- and 84-fold increases, respectively). Addition of the selective COX-2 inhibitor, NS-398, almost completely abolished PGI(2) and PGE(2) synthesis, but had little effect on TXA(2) synthesis. The up-regulation of COX-2 by IL-1beta was accompanied by specific up-regulation of PGI synthase and PGE synthase, but not TX synthase. An examination of the substrate concentration dependencies showed that the pathway of TXA(2) synthesis was saturated at a 20-fold lower arachidonic acid concentration than that for PGI(2) and PGE(2) synthesis. In conclusion, endothelial prostanoid synthesis appears to be differentially regulated by the induction of COX-2. The apparent PGI(2) and PGE(2) linkage with COX-2 activity may be explained by a temporal increase in total COX activity, together with selective up-regulation of PGI synthase and PGE synthase, and different kinetic characteristics of the terminal synthases. These findings have particular importance with regard to the potential for cardiovascular consequences of COX-2 inhibition.  相似文献   

5.
Metabolic conversion of vitamin A (retinol) into retinoic acid (RA) controls numerous physiological processes. 9-cis-retinoic acid (9cRA), an active metabolite of vitamin A, is a high affinity ligand for retinoid X receptor (RXR) and also activates retinoic acid receptor (RAR). Despite the identification of candidate enzymes that produce 9cRA and the importance of RXRs as established by knockout experiments, in vivo detection of 9cRA in tissue was elusive until recently when 9cRA was identified as an endogenous pancreas retinoid by validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) methodology. This review will discuss the current status of the analysis, occurrence, and function of 9cRA. Understanding both the nuclear receptor-mediated and non-genomic mechanisms of 9cRA will aid in the elucidation of disease physiology and possibly lead to the development of new retinoid-based therapeutics. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.  相似文献   

6.
At nanomolar range, 9-cis-retinoic acid (9cRA) was able to interfere in the normal differentiation process from human monocyte to immature dendritic cell (DC) and produced a switch in mature DCs to a less stimulatory mode than untreated cells. 9cRA-treated mature DCs secreted high levels of IL-10 with an IL-12 reduced production. The phenotypic alterations unleashed by 9cRA were similar but not identical to other specific retinoid X receptor (RXR) agonists and to those already reported for rosiglitazone, a PPARgamma activator, on DCs. The simultaneous addition of 9cRA and rosiglitazone on DCs displayed additive effects. Moreover, addition to cultures of GW9662, a specific inhibitor of PPARgamma, or the RXR pan-antagonist HX603, blocked these changes. All these results suggest an activation of PPARgamma-RXR and other RXR containing dimers by 9cRA in DCs. Finally, both GW9662 and HX603 by themselves altered the maturation process unleashed by TNFalpha, poly(I:C) or LPS on human DCs further suggesting that the heterodimer PPARgamma-RXR must fulfill a significant role in the physiological maturation process of these cells in addition to the repressing effects reported till now for this nuclear receptor.  相似文献   

7.
Fructose-1,6-bisphosphatase (FBPase) is a key gluconeogenic enzyme. The data herein show that both the enzyme activity and mRNA level of the human FBPase gene are enhanced by 9-cis retinoic acid (9cRA) and all-trans retinoic acid (atRA) as well as by 1,25-dihydroxyvitamin D3 (VD3) in human promyelocytic HL60 cells and normal monocytes in peripheral blood, which were used as an alternative source to liver for the DNA diagnosis of FBPase deficiency. To understand the molecular mechanism of this enhancing action, the 2.4 kb 5'-regulatory region of the human FBPase gene was isolated and sequenced. Using luciferase reporter gene assays, a 0.5 kb FBPase basal promoter fragment was found to confer induction by VD3, 9cRA, and atRA that was mediated by the vitamin D3 receptor (VDR), retinoid X receptor (RXR), and retinoic acid receptor (RAR). Within this region, a direct repeat sequence, 5'-TAACCTttcTGAACT-3' (-340 to -326), which functions as a common response element for VD3, 9cRA, and atRA, was identified. The results of electrophoretic mobility shift assays indicated that VDR-RXR and RAR-RXR heterodimers bind this response element. Collectively, these observations indicate that VD3 and RA are important modulators of the expression of the human FBPase gene in monocytic cells.  相似文献   

8.
9.
The retinoid-X receptor (RXR) is a ligand activated nuclear receptor that is the heterodimer partner for many class II nuclear receptors. Previously identified natural ligands for this receptor include 9-cis retinoic acid (9cRA), docosahexaenoic acid, and phytanic acid. Our studies were performed to determine if there are any unidentified, physiologically important RXR ligands. Agonists for RXR were purified from rat heart and testes lipid extracts with the use of a cell-based reporter assay to monitor RXR activation. Purified active fractions contained a variety of unsaturated fatty acids and components were quantified by gas-liquid chromatography of derivatized samples. The corresponding fatty acid standards elicited a similar response in the reporter cell assay. Competition binding analysis revealed that the active fatty acids compete with [3H]9cRA for binding to RXR. Non-esterified fatty acids were analyzed from lipid extracts of isolated heart and testes nuclei and endogenous concentrations were found to be within the range of their determined binding affinities. Our studies reveal tissue dependent profiles of RXR agonists and support the idea of unsaturated fatty acids as physiological ligands of RXR.  相似文献   

10.
The human COX-2 promoter contains a direct repeat 1 (DR1) which was shown to confer responsiveness to PPARs. We found that in AN3CA and F9 cells, this hCOX-2 DR1 mediates responsiveness to all-trans-retinoic acid (tRA) or 9-cis-retinoic acid (9cRA), but this effect was suppressed by PPARδ. Truncated PPARδ lacking the activation domain AF2 cannot suppress RA-induced activation of the hCOX-2 gene via DR1, suggesting that cofactor recruitment by AF2 is required for the suppression by PPARδ. Gel shift assay showed that PPAR/RXR, RARβ/RXR, and RXR/RXR, bind to hCOX-2 DR1, revealing the promiscuity of this DR1. Particularly, RXR homodimer was able to bind to this DR1 only in the presence of 9cRA. Our results established that tRA and 9cRA are potent inducers of hCOX-2 and that the hCOX-2 DR1 could either serve as RARE or RXRE depending on cellular contexts.  相似文献   

11.
12.
We investigated the effect of lipopolysaccharide (LPS) on the induction of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in muscularis resident macrophages of rat intestine in situ. When the tissue was incubated with LPS for 4 h, mRNA levels of iNOS and COX-2 were increased. The majority of iNOS and COX-2 proteins appeared to be localized to the dense network of muscularis resident macrophages immunoreactive to ED2. LPS treatment also increased the production of nitric oxide (NO), PGE(2), and PGI(2). The increased expression of iNOS mRNA by LPS was suppressed by indomethacin but not by N(G)-monomethyl-L-arginine (L-NMMA). The increased expression of COX-2 mRNA by LPS was affected neither by indomethacin nor by L-NMMA. Muscle contractility stimulated by 3 microM carbachol was significantly inhibited in the LPS-treated muscle, which was restored by treatment of the tissue with L-NMMA, aminoguanidine, indomethacin, or NS-398. Together, these findings show that LPS increases iNOS expression and stimulates NO production in muscularis resident macrophages to inhibit smooth muscle contraction. LPS-induced iNOS gene expression may be mediated by autocrine regulation of PGs through the induction of COX-2 gene expression.  相似文献   

13.
14.
alpha-Lipoic acid (LA) has been intensely investigated as a therapeutic agent for several pathological conditions, including diabetic polyneuropathy. In the present study, we examined the effects of LA on osteoclastic bone loss associated with inflammation. LA significantly inhibited IL-1-induced osteoclast formation in cocultures of mouse osteoblasts and bone marrow cells, but LA had only a marginal effect on osteoclastogenesis from bone marrow macrophages induced by receptor activator of NF-kappaB ligand (RANKL). LA inhibited both the sustained up-regulation of RANKL expression and the production of PGE2 induced by IL-1 in osteoblasts. In addition, treatment with either prostaglandin E2 (PGE2) or RANKL rescued IL-1-induced osteoclast formation inhibited by LA or NS398, a specific cyclooxygenase-2 (COX-2) inhibitor, in cocultures. LA blocked IL-1-induced PGE2 production even in the presence of arachidonic acid, without affecting the expression of COX-2 and membrane-bound PGE2 synthase. Dihydrolipoic acid (the reduced form of LA), but not LA, attenuated recombinant COX-2 activity in vitro. LA also inhibited osteoclast formation and bone loss induced by IL-1 and LPS in mice. Our results suggest that the reduced form of LA inhibits COX-2 activity, PGE2 production, and sustained RANKL expression, thereby inhibiting osteoclast formation and bone loss in inflammatory conditions.  相似文献   

15.
Pathological conditions and pro-inflammatory stimuli in the brain induce cyclooxygenase-2 (COX-2), a key enzyme in arachidonic acid metabolism mediating the production of prostanoids that, among other actions, have strong vasoactive properties. Although low basal cerebral COX-2 expression has been reported, COX-2 is strongly induced by pro-inflammatory challenges, whereas COX-1 is constitutively expressed. However, the contribution of these enzymes in prostanoid formation varies depending on the stimuli and cell type. Astrocyte feet surround cerebral microvessels and release molecules that can trigger vascular responses. Here, we investigate the regulation of COX-2 induction and its role in prostanoid generation after a pro-inflammatory challenge with the bacterial lipopolysaccharide (LPS) in astroglia. Intracerebral administration of LPS in rodents induced strong COX-2 expression mainly in astroglia and microglia, whereas COX-1 expression was predominant in microglia and did not increase. In cultured astrocytes, LPS strongly induced COX-2 and microsomal prostaglandin-E(2) (PGE(2)) synthase-1, mediated by the MyD88-dependent NFκB pathway and influenced by mitogen-activated protein kinase pathways. Studies in COX-deficient cells and using COX inhibitors demonstrated that COX-2 mediated the high production of PGE(2) and, to a lesser extent, other prostanoids after LPS. In contrast, LPS down-regulated COX-1 in an MyD88-dependent fashion, and COX-1 deficiency increased PGE(2) production after LPS. The results show that astrocytes respond to LPS by a COX-2-dependent production of prostanoids, mainly vasoactive PGE(2), and suggest that the coordinated down-regulation of COX-1 facilitates PGE(2) production after TLR-4 activation. These effects might induce cerebral blood flow responses to brain inflammation.  相似文献   

16.
Previous studies have indicated that lipopolysaccharide(LPS)from Gram-negative bacteria inplaque induces the release of prostaglandin E_2(PGE_2),which promotes alveolar bone resorption in periodontitis,and that tobacco smoking might be an important risk factor for the development and severity of periodontitis.We determined the effect of nicotine and LPS on alkaline phosphatase(ALPase)activity,PGE_2 production,and the expression of cyclooxygenase(COX-1,COX-2),PGE_2 receptors Ep1-4,and macrophage colonystimulating factor(M-CSF)in human osteoblastic Saos-2 cells.The cells were cultured with 10~(-3)M nicotinein the presence of 0,1,or 10μg/ml LPS,or with LPS alone.ALPase activity decreased in cells cultured withnicotine or LPS alone,and decreased further in those cultured with both nicotine and LPS,whereas PGE_2production significantly increased in the former and increased further in the latter.By itself,nicotine did notaffect expression of COX-1,COX-2,any of the PGE_2 receptors,or M-CSF,but when both nicotine and LPSwere present,expression of COX-2,Ep3,Ep4,and M-CSF increased significantly.Simultaneous addition of10~(-4)M indomethacin eliminated the effects of nicotine and LPS on ALPase activity,PGE_2 production,and M-CSF expression.Phosphorylation of protein kinase A was high in cells cultured with nicotine and LPS.Theseresults suggest that LPS enhances the production of nicotine-induced PGE_2 by an increase in COX-2 expres-sion in osteoblasts,that nicotine-LPS-induced PGE_2 interacts with the osteoblast Ep4 receptor primarily inautocrine or paracrine mode,and that the nicotine-LPS-induced PGE_2 then decreases ALPase activity andincreases M-CSF expression.  相似文献   

17.
Delta(9)-Tetrahydrocannabinol (Delta(9)-THC) is the major psychoactive component of marijuana and elicits pharmacological actions via cannabinoid receptors. Anandamide (AEA) and 2-arachidonoyl-glycerol (2-AG) are endogenous ligands for cannabinoid receptors, which because of their structural similarities to arachidonic acid (AA), AEA, and 2-AG could serve as substrates for lipoxygenases and cyclooxygenases (COXs) that metabolize polyunsaturated fatty acids to potent bioactive molecules. In this study, we have compared the effects of Delta(9)-THC, AEA, 2-AG, and another cannabinoid agonist, indomethacin morpholinylamide (IMMA), on lipopolysaccharide (LPS)-induced NO, IL-6, and PGE(2) release from J774 macrophages. Delta(9)-THC, IMMA, and AEA diminish LPS-induced NO and IL-6 production in a concentration-dependent manner. 2-AG inhibits the production of IL-6 but slightly increases iNOS-dependent NO production. Delta(9)-THC and IMMA also inhibit LPS-induced PGE(2) production and COX-2 induction, while AEA and 2-AG have no effects. These discrepant results of 2-AG on iNOS and COX-2 induction might be due to its bioactive metabolites, AA and PGE(2), whose incubation cause the potentiation of both iNOS and COX-2 induction. On the contrary, the AEA metabolite, PGE(2)-ethanolamide, influences neither the LPS-induced NO nor IL-6 production. Taken together, direct cannabinoid receptor activation leads to anti-inflammatory action via inhibition of macrophage function. The endogenous cannabinoid, 2-AG, also serves as a substrate for COX-catalyzing PGE(2) production, which in turn modulates the action of CB2.  相似文献   

18.
19.
20.
Murine macrophages (RAW 264.7) when stimulated with LPS show 90% distribution of cyclooxygenase-2 (COX-2) in the nuclear fraction and approximately 10% in the cytosolic fraction. Further analysis of this cytosolic fraction at 100,000 x g indicates that the COX-2 is distributed both in the 100,000 x g soluble fraction and membrane fraction. Stimulation of RAW 264.7 cells with LPS in the presence of inducible nitric oxide synthase inhibitor L-NMMA at concentrations that inhibit nitrite accumulation by /=85% with higher concentrations of L-NMMA shows 1) up-regulation of PGE2 production, 2) accumulation of COX-2 protein in the 100,000 x g soluble and membrane fractions of the cytosolic fraction, and 3) with no significant effects on the accumulation of COX-2 mRNA. These experiments suggest that low concentrations of nitric oxide (10-15% of the total) attenuate PGE2 production in response to LPS in RAW 264.7 cells. This inhibition is, in part, due to decreased expression of cytosolic COX-2 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号