首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Declining blood CD4+ T-cell counts mark the progress of simian immunodeficiency virus (SIV) disease in macaques and model the consequences of untreated human immunodeficiency virus infection in humans. However, blood lymphocytes are only a fraction of the recirculating lymphocyte pool, and their numbers are affected by cell synthesis, cell depletion, and distribution among blood and lymphoid tissue compartments. Asymptomatic, SIV-infected macaques maintained constant and nearly normal numbers of recirculating lymphocytes despite the decline in CD4+ T-cell counts. Substantial depletion was detected only when blood CD4+ T-cell counts fell below 300/μl. In asymptomatic animals, changes in CD4+ T-cell distribution were more important than lymphocyte depletion for controlling the blood cell levels.  相似文献   

2.
HIV and the related simian immunodeficiency virus (SIV), which causes AIDS in macaques, infect only a small percentage of CD4+ lymphocytes at any point during the disease. We have identified three distinct cellular phenotypes within the CD4+ subpopulation in macaques, based on cell surface expression of CD44 and CD45R, which putatively represent successive stages of postthymic proliferation and functional maturation. Two of these subsets, CD44hi CD45R+, which contained virtually all circulating cells in cycle, and CD44hi CD45R-, which was noncycling and has been linked to immunologic memory, were selectively depleted in SIV-infected animals at an asymptomatic stage of disease. To test whether SIV infection was restricted to cells with this phenotype in vivo, we used the polymerase chain reaction to sensitively detect SIV DNA in purified subpopulations of CD4+ lymphocytes. We found that SIV exclusively infected blood lymphocytes expressing high levels of CD44. Within this subset infection occurred not only in the fraction containing actively proliferating cells (CD45R+), but also in resting, putative memory cells (CD45R-). These data directly demonstrate that cellular maturation stages of normal postthymic T lymphocyte differentiation are important factors in permitting lentivirus infection in vivo, and that noncycling, memory T cells may be a reservoir for SIV.  相似文献   

3.
NKT cells are a specialized population of T lymphocytes that have an increasingly recognized role in immunoregulation, including controlling the response to viral infections. The characteristics of NKT cells in the peripheral blood of macaques during simian immunodeficiency virus (SIV) or chimeric simian/human immunodeficiency virus (HIV) (SHIV) infection were assessed. NKT cells comprised a mean of 0.19% of peripheral blood lymphocytes across the 64 uninfected macaques studied. Although the range in the percentages of NKT cells was large (0 to 2.2%), levels were stable over time within individual macaques without SIV/SHIV infection. The majority of NKT cells in macaques were CD4+ (on average 67%) with smaller populations being CD8+ (21%) and CD4/CD8 double positive (13%). A precipitous decline in CD4+ NKT cells occurred in all six macaques infected with CXCR4-tropic SHIVmn229 early after infection, with a concomitant rise in CD8+ NKT cells in some animals. The depletion of CD4+ NKT cells was tightly correlated with the depletion of total CD4+ T cells. R5-tropic SIVmac251 infection of macaques resulted in a slower and more variable decline in CD4+ NKT cells, with animals that were able to control SIV virus levels maintaining higher levels of CD4+ NKT cells. An inverse correlation between the depletion of total and CD4+ NKT cells and SIV viral load during chronic infection was observed. Our results demonstrate the infection-driven depletion of peripheral CD4+ NKT cells during both SHIV and SIV infection of macaques. Further studies of the implications of the loss of NKT cell subsets in the pathogenesis of HIV disease are needed.  相似文献   

4.
目的模拟HIV性传播感染特点进行中国恒河猴阴道黏膜小剂量多次感染研究,为我国艾滋病疫苗有效性评价提供新的模型构建思路。方法选用20-30TCID50剂量的SHIVSF162p3病毒阴道黏膜途径感染六只成年雌性中国恒河猴,共感染13次,每次攻毒间隔4~7 d。采取测定血浆病毒载量和外周血CD4+∶CD8+。结果 6只中国恒河猴经13次病毒攻击后,经检测均建立系统性感染,血浆病毒载量呈阳性;CD4+∶CD8+均有下降。结论成功建立了中国恒河猴阴道黏膜小剂量多次感染模型,为艾滋病研究提供了新的更接近于自然感染状态的模型建立模式。  相似文献   

5.
Human immunodeficiency virus (HIV) induces a profound disorganization of the lymphoid tissues with marked abnormalities of the immune system at the terminal stage of infection. Since the digestive mucosal immune system is by far the largest lymphoid organ of the body, we attempted to evaluate its functional activity in advanced stages of simian immunodeficiency virus (SIV) infection in the SIV-macaque model of HIV infection. Two chronically intravenously SIV-infected macaques, including one at the AIDS stage, were studied. Intestinal intraepithelial lymphocytes (IEL) were isolated, analyzed, and compared to lymphocytes obtained from blood, spleen, and different lymph nodes: IEL were predominantly CD8+ T lymphocytes expressing the alphaE beta7 integrin and lacking the CD28 coactivatory molecule. A direct ex vivo SIV-specific cytotoxic activity was prominently found in the IEL of both macaques and was weaker or absent in the other sites. To our knowledge, this is the first report of SIV-specific cytotoxic activity from small intestine IEL in SIV-infected macaques. Considering the high similitude of the SIV-macaque model with the HIV infection in humans, these results may be highly important for the pathogenesis of HIV infection and more generally important for the characterization and function of digestive CD8+ IEL population.  相似文献   

6.
Given the mucosal transmission of HIV-1, we compared whether a mucosal vaccine could induce mucosal cytotoxic T lymphocytes (CTLs) and protect rhesus macaques against mucosal infection with simian/human immunodeficiency virus (SHIV) more effectively than the same vaccine given subcutaneously. Here we show that mucosal CTLs specific for simian immunodeficiency virus can be induced by intrarectal immunization of macaques with a synthetic-peptide vaccine incorporating the LT(R192G) adjuvant. This response correlated with the level of T-helper response. After intrarectal challenge with pathogenic SHIV-Ku2, viral titers were eliminated more completely (to undetectable levels) both in blood and intestine, a major reservoir for virus replication, in intrarectally immunized animals than in subcutaneously immunized or control macaques. Moreover, CD4+ T cells were better preserved. Thus, induction of CTLs in the intestinal mucosa, a key site of virus replication, with a mucosal AIDS vaccine ameliorates infection by SHIV in non-human primates.  相似文献   

7.
8.
Human immunodeficiency virus (HIV) infection leads to a decline of CD4+ T-cells in blood. Because blood represents only a small proportion of the total lymphocyte pool, it is important to investigate other lymphoid organs. So far, only relative proportions of lymphocyte subsets in single peripheral lymph node (LN) regions of HIV-infected patients and simian immunodeficiency virus (SIV)-infected macaques have been documented. We have therefore quantified the absolute numbers of lymphocyte subsets in blood and six different LN regions of 10 uninfected and 26 SIV-infected macaques. In addition, we have determined the expression of markers of activation and differentiation. Already, in uninfected monkeys, there were significant differences in the cellular composition of different LN regions. Infection with SIV resulted in drastic changes in the proportion as well as absolute numbers of different lymphocyte subsets. Moreover, the relative contribution of the single LN regions to the total lymphocyte pool was also altered.  相似文献   

9.
Human immunodeficiency virus (HIV) infection leads to a decline of CD4+ T-cells in blood. Because blood represents only a small proportion of the total lymphocyte pool, it is important to investigate other lymphoid organs. So far, only relative proportions of lymphocyte subsets in single peripheral lymph node (LN) regions of HIV-infected patients and simian immunodeficiency virus (SIV)-infected macaques have been documented. We have therefore quantified the absolute numbers of lymphocyte subsets in blood and six different LN regions of 10 uninfected and 26 SIV-infected macaques. In addition, we have determined the expression of markers of activation and differentiation. Already, in uninfected monkeys, there were significant differences in the cellular composition of different LN regions. Infection with SIV resulted in drastic changes in the proportion as well as absolute numbers of different lymphocyte subsets. Moreover, the relative contribution of the single LN regions to the total lymphocyte pool was also altered.  相似文献   

10.
The pigtail macaque (Macaca nemestrina) is a common model for the study of AIDS. The pigtail major histocompatibility complex class I allele Mane-A*10 restricts an immunodominant simian immunodeficiency virus (SIV) Gag epitope (KP9) which rapidly mutates to escape T cell recognition following acute simian/human immunodeficiency virus infection. Two technologies for the detection of Mane-A*10 in outbred pigtail macaques were developed: reference strand-mediated conformational analysis and sequence-specific primer polymerase chain reaction. A Mane-A*10/KP9 tetramer was then developed to quantify CD8(+) T lymphocytes primed by multigenic DNA vaccination, which have previously been difficult to detect using standard interferon-gamma-based T cell assays. We also demonstrate mutational escape at KP9 following acute SIV infection. Mane-A*10(+) animals have lower set point SIV levels than Mane-A*10(-) animals, suggesting a significant fitness cost of escape. These studies pave the way for a more robust understanding of HIV vaccines in pigtail macaques.  相似文献   

11.
The association of the microsporidia Enterocytozoon bieneusi with chronic diarrhea and wasting in individuals with acquired immunodeficiency syndrome (AIDS) has been demonstrated. The disease caused by E. bieneusi has been linked to decreased levels of circulating CD4+ T lymphocytes. In this study, we investigated the relationship between the extent of excretion of E. bieneusi in feces of simian immunodeficiency virus (SIV)-infected juvenile macaques and the CD4+ T lymphocyte counts in the peripheral blood. Twelve juvenile rhesus monkeys (Macaca mulatta) were intravenously inoculated with the pathogenic molecular clone SIVmac239. Numbers of CD4+ T lymphocytes were assessed by three-color flow cytometry. The presence of E. bieneusi DNA in feces was assessed by nested PCR. In addition, selected samples of feces were examined by competitive quantitative PCR to assess the level of E. bieneusi infection. Low (n = 5) to undetectable (n = 7) quantities of E. bieneusi were present in feces of the twelve animals in prior to inoculation with SIV. After SIV inoculation the number of animals shedding E. bieneusi increased (n = 10) as did the quantity of E. bieneusi shedding in the feces. Of the twelve juvenile animals, five animals died within 8 months post-SIV inoculation with symptoms of AIDS. Four of the five deceased animals showed shedding of E. bieneusi DNA in feces (> or =100 spores/g) for at least three consecutive months. Increased number of E. bieneusi in feces was accompanied by decreased counts of circulating CD4+ T lymphocytes and increased SIV plasma viral load.  相似文献   

12.
To assess the possible role of cytotoxic T lymphocytes (CTLs) in containing the spread of human immunodeficiency virus in acutely infected individuals, the temporal evolution of the virus-specific CD8+ lymphocyte response was defined in simian immunodeficiency virus of macaques (SIVmac)-infected rhesus monkeys. A brief period of SIVmac plasma antigenemia was seen 9 to 16 days following intravenous infection with SIVmac, ending as the absolute number of CD8+ peripheral blood lymphocytes (PBLs) increased. In a prospective assessment of the ability of CD8+ lymphocytes of these monkeys to suppress SIVmac replication in autologous PBLs, inhibitory activity was detected as early as 4 days, with a more pronounced effect 12 to 16 days following infection. SIVmac Gag- and Nef-specific CD8+ effector cell activities were demonstrable in PBLs of animals by 2 weeks following virus inoculation. In fact, SIVmac-specific CTL precursors were documented in the PBLs of rhesus monkeys 4 to 6 days after SIVmac infection. These studies indicate that AIDS virus-specific CD8+ CTLs are present in PBLs within days of infection and may play an important role in containing the early spread of virus.  相似文献   

13.
Here we show that simian immunodeficiency virus (SIV) infection of rhesus macaques results in rapid upregulation of tetherin (BST-2 or CD317) on peripheral blood lymphocytes, including the CD4+ CCR5+ T cell targets of virus infection, with a peak of induction that coincides with peak alpha interferon (IFN-α) levels in plasma, and that tetherin remains above baseline levels throughout chronic infection. These observations are consistent with a role for tetherin in innate immunity to immunodeficiency virus infection.  相似文献   

14.
It has recently been shown that rapid and profound CD4(+) T-cell depletion occurs almost exclusively within the intestinal tract of simian immunodeficiency virus (SIV)-infected macaques within days of infection. Here we demonstrate (by three- and four-color flow cytometry) that this depletion is specific to a definable subset of CD4(+) T cells, namely, those having both a highly and/or acutely activated (CD69(+) CD38(+) HLA-DR(+)) and memory (CD45RA(-) Leu8(-)) phenotype. Moreover, we demonstrate that this subset of helper T cells is found primarily within the intestinal lamina propria. Viral tropism for this particular cell type (which has been previously suggested by various studies in vitro) could explain why profound CD4(+) T-cell depletion occurs in the intestine and not in peripheral lymphoid tissues in early SIV infection. Furthermore, we demonstrate that an acute loss of this specific subset of activated memory CD4(+) T cells may also be detected in peripheral blood and lymph nodes in early SIV infection. However, since this particular cell type is present in such small numbers in circulation, its loss does not significantly affect total CD4(+) T cell counts. This finding suggests that SIV and, presumably, human immunodeficiency virus specifically infect, replicate in, and eliminate definable subsets of CD4(+) T cells in vivo.  相似文献   

15.
We have previously described two isogenic molecularly cloned simian immunodeficiency virus/human immunodeficiency virus chimeric viruses (SHIVs) that differ from one another by 9 amino acids and direct distinct clinical outcomes in inoculated rhesus monkeys. SHIV(DH12R-Clone 7), like other highly pathogenic CXCR4-tropic SHIVs, induces rapid and complete depletions of CD4+ T lymphocytes and immunodeficiency in infected animals. In contrast, macaques inoculated with SHIV(DH12R-Clone 8) experience only partial and transient losses of CD4+ T cells, show prompt control of their viremia, and remain healthy for periods of time extending for up to 4 years. The contributions of CD8+ and CD20+ lymphocytes in suppressing the replication of the attenuated SHIV(DH12R-Clone 8) and maintaining a prolonged asymptomatic clinical course was assessed by treating animals with monoclonal antibodies that deplete each lymphocyte subset at the time of virus inoculation. The absence of either CD8+ or CD20+ cells during the SHIV(DH12R-Clone 8) acute infection resulted in the rapid, complete, and irreversible loss of CD4+ T cells; sustained high levels of postpeak plasma viremia; and symptomatic disease in Mamu-A*01-negative Indian rhesus monkeys. In Mamu-A*01-positive animals, however, the aggressive, highly pathogenic phenotype was observed only in macaques depleted of CD8+ cells; SHIV(DH12R-Clone 8) was effectively controlled in Mamu-A*01-positive monkeys in the absence of B lymphocytes. Taken together, these results indicate that both CD8+ and CD20+ B cells contribute to the control of primate lentiviral infection in Mamu-A*01-negative macaques. Furthermore, the major histocompatibility complex genotype of an infected animal, as exemplified by the Mamu-A*01 allele in this study, has the additional capacity to shift the balance of the composite immune response.  相似文献   

16.
The repertoire of functional CD4(+) T lymphocytes in human immunodeficiency virus type 1-infected individuals remains poorly understood. To explore this issue, we have examined the clonality of CD4(+) T cells in simian immunodeficiency virus (SIV)-infected macaques by assessing T-cell receptor complementarity-determining region 3 (CDR3) profiles and sequences. A dominance of CD4(+) T cells expressing particular CDR3 sequences was identified within certain Vbeta-expressing peripheral blood lymphocyte subpopulations in the infected monkeys. Studies were then done to explore whether these dominant CD4(+) T cells represented expanded antigen-specific cell subpopulations or residual cells remaining in the course of virus-induced CD4(+) T-cell depletion. Sequence analysis revealed that these selected CDR3-bearing CD4(+) T-cell clones emerged soon after infection and dominated the CD4(+) T-cell repertoire for up to 14 months. Moreover, inoculation of chronically infected macaques with autologous SIV-infected cell lines to transiently increase plasma viral loads in the monkeys resulted in the dominance of these selected CDR3-bearing CD4(+) T cells. Both the temporal association of the detection of these clonal cell populations with infection and the dominance of these cell populations following superinfection with SIV suggest that these cells may be SIV specific. Finally, the inoculation of staphylococcal enterotoxin B superantigen into SIV-infected macaques uncovered a polyclonal background underlying the few dominant CDR3-bearing CD4(+) T cells, demonstrating that expandable polyclonal CD4(+) T-cell subpopulations persist in these animals. These results support the notions that a chronic AIDS virus infection can induce clonal expansion, in addition to depletion of CD4(+) T cells, and that some of these clones may be SIV specific.  相似文献   

17.
There is an urgent need to develop new pathogenic R5 simian/human immunodeficiency viruses (SHIVs) for the evaluation of candidate anti-HIV vaccines in nonhuman primates. Here, we characterize swarm SHIVAD8 stocks, prepared from three infected rhesus macaques with documented immunodeficiency at the time of euthanasia, for their capacity to establish durable infections in macaques following inoculation by the intravenous (i.v.) or intrarectal (i.r.) route. All three viral stocks (SHIVAD8-CE8J, SHIVAD8-CK15, and SHIVAD8-CL98) exhibited robust replication in vivo and caused marked depletion of CD4+ T cells affecting both memory and naïve CD4+ T lymphocyte subsets following administration by either route. Eleven of 22 macaques inoculated with the new SHIVAD8 stocks were euthanized with clinical symptoms of immunodeficiency and evidence of opportunistic infections (Pneumocystis, Candida, and Mycobacterium). A single but unique founder virus, also present in the SHIVAD8-CE8J swarm stock, was transmitted to two animals following a single i.r. inoculation of approximately 3 50% animal infectious doses, which is close to the threshold required to establish infection in all exposed animals. Because the three new SHIVAD8 viruses are mucosally transmissible, exhibited tier 2 sensitivity to anti-HIV-1 neutralizing antibodies, deplete CD4+ T lymphocytes in vivo, and induce AIDS in macaques, they are eminently suitable as challenge viruses in vaccine experiments.  相似文献   

18.
The appearance of virus-specific CD4(+) and/or CD8(+) T lymphocytes in peripheral blood of captive juvenile rhesus macaques (Macaca mulatta) was observed following rotavirus infection. These cell-mediated immune responses were measured following experimental or natural infection after rotavirus was isolated from stool specimens of asymptomatic animals. The virus isolated was a new strain of simian rotavirus that we named TUCH (for Tulane University and Cincinnati Children's Hospital). Restimulation of peripheral T lymphocytes by inactivated double- or triple-layered TUCH rotavirus particles containing either VP6 or VP4 and VP7 on their respective surfaces resulted in increased quantities of interleukin-6 (IL-6) and IL-12 in cell culture supernatants. Recall responses to rotavirus by CD4(+) and CD8(+) T lymphocytes were associated with accumulation of intracellular IL-6 and gamma interferon. Antigen presentation of TUCH rotavirus to lymphocytes was mediated via differentiated cultures of monocyte-derived dendritic (HLA-DR(+)) cells. This is the first report demonstrating cell-mediated immune responses to rotavirus in nonhuman primates. Further exploration of rhesus macaques in vaccine trials with human rotavirus vaccine candidates is the major objective of future studies.  相似文献   

19.
To identify the target proteins of CD8+ T lymphocytes we have explored the cytolytic immune responses of 12 rhesus macaques experimentally infected with the simian immunodeficiency virus (SIVmac). Target cells were autologous B cell lines presenting SIVmac proteins after infection with recombinant vaccinia viruses. The eight following proteins were studied: ENV, POL, GAG, NEF, VIF, REV, TAT, and VPX. Macaque PBMC stimulated with Con A and expanded in T cell growth factor-containing medium produced cell lines with cytolytic activity in the majority of infected animals (9/12). The structural proteins ENV, POL, and GAG were recognized by cell lines derived from nine, eight, and six macaques, respectively. The small regulatory proteins also represented efficient CTL targets, a specific activity being detected against NEF (8/12), REV (7/12), VPX (7/12), TAT (6/12), and VIF (5/12). Most cytotoxic responses (except those directed against ENV) were mediated by CD8 cells and were MHC class I restricted. Limiting dilution analysis allowed us to quantify the frequency of CTL precursors and confirmed the high immunogenicity of multiple SIV proteins. Three different patterns of response could be defined: six animals were able to recognize at least six of the eight tested target proteins, two of them reacting with all eight target proteins. The other three responder macaques reacted only against a few SIV proteins, whereas no cytotoxic activity was detected in the three remaining infected macaques and in the nine negative controls. The six animals responding against multiple proteins were still healthy 12 to 22 mo after infection with two of them presenting a decrease in circulating CD4 cells concurrently to the disappearance of the CTL response. Conversely, three nonresponder or low responder macaques developed an overt disease after 4 to 12 mo, and two other presented a very low level of CD4 cells, suggesting that the pattern of response may be of prognostic value.  相似文献   

20.
The nef gene of the pathogenic simian immunodeficiency virus (SIV) 239 clone was replaced with primary human immunodeficiency virus type 1 (HIV-1) nef alleles to investigate whether HIV-1 Nef can substitute for SIV Nef in vivo. Initially, two rhesus macaques were infected with the chimeric viruses (Nef-SHIVs). Most of the nef alleles obtained from both animals predicted intact open reading frames. Furthermore, forms containing upstream nucleotide substitutions that enhanced expression of the inserted gene became predominant. One animal maintained high viral loads and slowly progressed to immunodeficiency. nef long terminal repeat sequences amplified from this animal were used to generate a second generation of Nef-SHIVs. Two macaques, which were subsequently infected with a mixture of cloned chimeric viruses, showed high viral loads and progressed to fatal immunodeficiency. Five macaques received a single molecular clone, named SHIV-40K6. The SHIV-40K6 nef allele was active in CD4 and class I major histocompatibility complex downregulation and enhanced viral infectivity and replication. Notably, all of the macaques inoculated with SHIV-40K6 showed high levels of viral replication early in infection. During later stages, however, the course of infection was variable. Three animals maintained high viral loads and developed immunodeficiency. Of the remaining two macaques, which showed decreasing viral loads after the acute phase of infection, only one efficiently controlled viral replication and remained asymptomatic during 1.5 years of follow-up. The other animal showed an increasing viral load and developed signs of progressive infection during later stages. Our data demonstrate that HIV-1 nef can, to a large extent, functionally replace SIVmac nef in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号