首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactivity of 4-[13C]- and 5-[13C]-5-chloro-2-methylisothiazol-3-one (MCI) and 2-methylisothiazol-3-one (MI) towards a model peptide and glutathione was followed by 13C and 1H[13C] NMR spectroscopy. Both molecules were found to react with GSH but in addition MCI was found to react with histidine and lysine to form adducts of a different nature. Reaction with histidine led to stable substitution adducts through an addition-elimination reaction at position 5 while reaction with lysine led to the formation of open adducts of the thioamide or amide type.  相似文献   

2.
Formation of adriamycin--DNA adducts in vitro.   总被引:3,自引:2,他引:1       下载免费PDF全文
  相似文献   

3.
The inactivation of estradiol dehydrogenase by enzyme-generated 3-hydroxy-14,15-secoestra-1,3,5(10)-trien-15-yn-17-one is accompanied by the formation of a lysine enaminone. The experiments leading to this conclusion involved degradation of the inactivated enzyme with Pronase and subsequent analysis by solution-state 13C NMR. The present paper reports solid-state 13C NMR experiments on lyophilized intact inactivated enzyme which are free from problems due to Pronase digestion. These experiments combine conventional cross-polarization and magic-angle spinning with selective irradiation of resonances arising from a 13C double label in the steroid. Magnetization transfer between neighboring 13C nuclei is used to simplify the spectra and to identify peaks due to label. The formation of cysteine and lysine Michael adducts of the enzyme is established by comparisons with chemical shifts of solid model adducts.  相似文献   

4.
19F NMR spectroscopy was used in conjunction with isotopic labeling to demonstrate that difluorothionoacetyl-protein adducts are formed by metabolites of the nephrotoxic cysteine conjugate S-(1,1,2,2-tetrafluoroethyl)-L-cysteine (TFEC). To determine which amino acid residues can be involved in adduct formation, the reactivity of TFEC metabolites with a variety of N-acetyl amino acids was also investigated. An N alpha-acetyl-N epsilon-(difluorothionoacetyl)lysine (DFTAL) adduct was isolated and characterized by 19F and 13C NMR spectroscopy and mass spectrometry. N alpha-Acetylhistidine and N-acetyltyrosine were found to act as nucleophilic catalysts to facilitate the formation of both the protein and DFTAL adducts. Adduct formation was greatly reduced when lysyl-modified protein was used as the substrate, indicating that lysyl residues are primary sites of adduct formation. However N alpha-acetyllysine, at concentrations of greater than 100-fold in excess compared to protein lysyl residues, was not effective in preventing binding of metabolites to protein. Therefore, nucleophilic catalysis at the surface of the protein may be an important mechanism for the binding of TFEC metabolites to specific lysyl residues in protein. TFEC metabolites were very reactive with the thiol nucleophiles glutathione and N-acetylcysteine. However, the predicted difluorodithioesters could not be isolated. Both stable difluorothioacetamide and less stable difluorodithioester protein adducts may play a role in TFEC-mediated nephrotoxicity.  相似文献   

5.
Reaction of acetaldehyde with hemoglobin   总被引:2,自引:0,他引:2  
Acetaldehyde reacted with hemoglobin at neutral pH and 37 degrees C to form adducts that were stable to dialysis and that were not reduced by sodium borohydride. Hemoglobin tetramers having 2, 3, and probably 4 molar eq of bound aldehyde were isolated by cation exchange chromatography. The sites of attachment of the aldehyde were the free amino groups of the N-terminal valine residues of the alpha and beta chains of hemoglobin. Derivatization of the beta chains caused a greater increase in the acidity of the hemoglobin than did derivatization of the alpha chains. Derivatization of the beta chains was also preferred over that of the alpha chains. Acetaldehyde derivatives of the N-terminal octapeptide of hemoglobin S (beta sT-1 peptide), Val-Gly-Gly, and tetraglycine were formed readily, contained 1 M eq of acetaldehyde/mol of peptide, and were not reduced by sodium borohydride. In contrast, Ala-Pro-Gly failed to form a 1:1 adduct with acetaldehyde. 13C NMR analysis of the peptide adducts formed with [1,2-13C]acetaldehyde indicated that tetrahedral diastereomeric derivatives were produced. The 13C chemical shifts of the adducts formed between hemoglobin and [1,2-13C]acetaldehyde were identical to those of the peptide adducts although resonances from the individual diastereomeric adducts at each hemoglobin site could not be resolved. The results cited above as well as other evidence indicate that acetaldehyde reacts with the amino termini of hemoglobin to form stable cyclic imidazolidinone derivatives. An exchange of acetaldehyde residues between peptides was also documented.  相似文献   

6.
The role of DT-diaphorase (DTD, EC 1.6.99.2) in the bioreductive activation of mitomycin C was examined using purified rat hepatic DTD. The formation of adducts with reduced glutathione (GSH), binding of [3H]mitomycin C to DNA, and mitomycin C-induced DNA interstrand cross-linking were used as indicators of bioactivation. Mitomycin C was metabolized by DTD in a pH-dependent manner with increasing amounts of metabolism observed as the pH was decreased from 7.8 to 5.8. The major metabolite observed during DTD-mediated reduction of mitomycin C was 2,7-diaminomitosene. GSH adduct formation, binding of [3H]mitomycin C and mitomycin C-induced DNA interstrand cross-linking were observed during DTD-mediated metabolism. In agreement with the pH dependence of metabolism, increased bioactivation was observed at lower pH values. Temporal studies and experiments using authentic material showed that 2,7-diaminomitosene could be further metabolized by DTD resulting in the formation of mitosene adducts with GSH. DNA cross-linking during either chemical (sodium borohydride) or enzymatic (DTD) mediated reduction of mitomycin C could be observed at pH 7.4, but it increased as the pH was decreased to 5.8, showing the critical role of pH in the cross-linking process. These data provide unequivocal evidence that the obligate two-electron reductase DTD can bioactivate mitomycin C to reactive species which can form adducts with GSH and DNA and induce DNA cross-linking. The use of mitomycin C may be a viable approach to the therapy of tumors high in DTD activity, particularly when combined with strategies to lower tumor pH.  相似文献   

7.
Despite intensive research over the last two decades, there are still no specific markers of endogenous lipid hydroperoxide-mediated DNA damage. We recently demonstrated that heptanone-etheno-2'-deoxyguanosine adducts are formed in the DNA of rat intestinal epithelial cells that stably express cyclooxygenase-2. Heptanone-etheno adducts can only arise from the reaction of lipid hydroperoxide-derived 4-oxo-2(E)-nonenal with DNA. This raised the possibility that similar adducts would be formed in vivo in settings where cyclooxygenase-2 expression is increased. Therefore, DNA-adduct formation was studied in C57BL/6JAPC(min) mice, a colorectal cancer mouse model in which cyclooxygenase-2 is up-regulated. 15(S)-Hydroperoxy-5Z,8Z,11Z,13E-eicosatetraenoic acid is the major lipid hydroperoxide produced endogenously by cyclooxygenase-2. It undergoes homolytic decomposition to the DNA-reactive bifunctional electrophile 4-oxo-2(E)-nonenal, which forms heptanone-etheno adducts with DNA. A quantitative comparison was made of the heptanone-etheno-DNA adducts present in C57BL/6J and C57BL/6JAPC(min) mice. Using highly specific and sensitive methodology based on stable isotope dilution liquid chromatography/tandem mass spectrometry, we have detected the endogenous formation of heptanone-etheno adducts in mammalian tissue DNA for the first time. In addition, we found that there were statistically significant increased levels of the heptanone-etheno-2'-deoxyguanosine and heptanone-etheno-2'-deoxycytidine adducts in the C57BL/6JAPC(min) mice when compared with the control C57BL/6J mice.  相似文献   

8.
2'-Deoxyadenosine (dA) and 2'-deoxyguanosine (dG) were reacted with mutagenic epoxide glycidamide (GA, Scheme 1). The reactions yielded three GA-dA adducts (N1-GA-dA, N6-GA-dA and N1-GA-dI) and two GA-dG adducts (N1-GA-dG I and N1-GA-dG II) (Scheme 2). The structures of the adducts were characterized by spectroscopic and spectrometric methods (1H-, 13C, and 2D NMR, MS, UV). The mechanism of the amide hydrolysis taking place during formation of the adducts N1-GA-dA and N1-GA-dG I was studied. We propose a mechanism where a transamidation is the key step in the hydrolysis of the amide function of GA.  相似文献   

9.
We report in vivo evidence for fatty acid-derived free radical metabolite formation in bile of rats dosed with spin traps and oxidized polyunsaturated fatty acids (PUFA). When rats were dosed with the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and oxidized PUFA, the DMPO thiyl radical adduct was formed due to a reaction between oxidized PUFA and/or its metabolites with biliary glutathione. In vitro experiments were performed to determine the conditions necessary for the elimination of radical adduct formation by ex vivo reactions. Fatty acid-derived radical adducts of alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) were detected in vivo in bile samples collected into a mixture of iodoacetamide, desferrioxamine, and glutathione peroxidase. Upon the administration of oxidized 13C-algal fatty acids and 4-POBN, the EPR spectrum of the radical adducts present in the bile exhibited hyperfine couplings due to 13C. Our data demonstrate that the carbon-centered radical adducts observed in in vivo experiments are unequivocally derived from oxidized PUFA. This in vivo evidence for PUFA-derived free radical formation supports the proposal that processes involving free radicals may be the molecular basis for the previously described cytotoxicity of dietary oxidized PUFA.  相似文献   

10.
M Kuwabara  W Hiraoka  F Sato 《Biochemistry》1989,28(25):9625-9632
A method combining spin trapping, ESR, and HPLC was employed to obtain evidence for the formation of sugar radicals in OH-attacked TMP with special emphasis on the detection of strand-break precursors of DNA. OH radicals were produced by irradiating an N2O-saturated aqueous solution with X-rays. When an N2O-saturated aqueous solution containing TMP and a spin trapping reagent, MNP, was irradiated with X-rays, it was estimated on the basis of theoretical calculations using rate constants that 94% of the TMP radicals were induced by OH radicals. Since several spin adducts between TMP radicals and MNP, as well as the byproducts of the spin trapping reagent itself, were produced, reverse-phase HPLC was used to separate them. The presence of six spin adducts was confirmed by ESR examination. Further examination of these spin adducts by UV absorbance spectrophotometry showed the presence of a chromophore at 260 nm in three adducts. Since a gradual increase in the release of unaltered base from these adducts was observed when they were allowed to stand for 0-22 h at room temperature, they could be regarded as the spin adducts of sugar radicals and MNP. ESR spectra from the spin adducts were consistent with hydrogen abstraction radicals at the C1', C4', and C5' positions of the sugar moiety. These radicals appeared to be precursors of AP sites and strand breaks. In addition to these spin adducts, ESR spectra that were consistent with the spin adducts of base radicals (the C5 and C6 radicals) and MNP were observed.  相似文献   

11.
Carbon-13 (13C) nuclear magnetic resonance spectroscopy (NMR) is performed to characterize the formation of carbamino adducts between insulin and (13C) carbon dioxide over a range of pH values in the presence of a physiological concentration (23 mM) of sodium bicarbonate. The peaks from two of the carbamino adducts resonate at higher frequencies than the signal from bicarbonate, at 164.6 and 165.3 ppm, and are attributed to the adducts with the terminal amino groups of phenylalanine B1 and glycine A1. The intensities of these signals vary with the pH, with unique patterns. Over 6% of each terminal amino group exists as the carbamino adduct at the optimum pH values of 7.8 and 8.3. A unique third adduct resonates at 159.3 ppm, and is attributed to lysine B29. This adduct is present on 2% of the insulin molecules at pH 8.2, but has minimal intensity at pH 7.4. No signals from adducts are detected below pH 6.2, where the amino groups exist predominantly in the protonated form. Creation of the adducts is rapid and they are stable for over 4 wk at 37 degrees C. The narrow bandwidth of the resonance of the adduct (4.0-4.5 Hz) relative to the irreversible cyanate adduct is consistent with molecular forms of the carbamino adduct smaller than the 2-Zn-hexamer which is the preponderate form of clinically utilized U-100 insulin (i.e., 100 U/ml).  相似文献   

12.
This study examined the potential use of hemoglobin (Hb)- and serum-protein adducts of alachlor as potential biomarkers of alachlor exposure, a genotoxic and carcinogenic herbicide. The method developed was based on the observation that cleavage of S-cysteinyl alachlor-protein adducts by methanesulfonic acid gave the rearrangement product 3-(2',6'-diethylphenyl)-1, 3-thiazolidine-4-one (TZO). The structure of TZO was confirmed by mass spectroscopy, NMR spectroscopy, and independent synthesis. In the assay, treatment of alachlor-cysteinyl protein adducts by methanesulfonic acid was followed by extraction and analysis. TZO was detected and quantitated by electron-impact GC/MS in the single ion-monitoring mode. [ring-13C6]Alachlor-N-acetylcysteine was added as an internal standard prior to treatment and was converted to [ring-13C6]TZO, allowing response factors to be used to quantitate TZO concentrations. Incubations of alachlor (0-1000 microM) with human albumin and bovine serum albumin (BSA) resulted in linear adduct formation with both proteins. Maximal adduction levels of 613-1130 pmol alachlor-albumin adducts/mg protein were observed, with BSA binding close to twice that of human albumin. A linear concentration response of alachlor-Hb adducts was observed when whole blood from female CD rats was incubated with alachlor in vitro at concentrations up to 300 microM. Maximal binding was 1860 pmol alachlor-Hb adducts/mg globin. Male CD rats treated with alachlor at 150 mg/kg body wt/day ip for 0, 1, 2, and 3 days were sacrificed 4 days after final dosing. A maximal binding of 2250 pmol alachlor-Hb adducts/mg globin was observed. This assay provides a new approach for biomonitoring alachlor levels in experimental animals and has the potential for use in humans.  相似文献   

13.
The covalent binding of [14C]acetaldehyde to purified beef brain tubulin was characterized. As we have found for several other proteins, tubulin bound acetaldehyde to form both stable and unstable adducts. Unstable adducts (Schiff bases) were stabilized, and rendered detectable, by treating incubated reaction mixtures with the reducing agent sodium borohydride. In short-term incubations, the majority of the adducts formed were unstable, but the percentage of total adducts that were stable gradually increased with time. Stable adduct formation was greatly increased by the inclusion of sodium cyanoborohydride in reaction mixtures (reductive ethylation). When reaction mixtures were submitted to sodium dodecyl sulfate-polyacrylamide gel electrophoresis to separate the alpha- and beta-chains of the heterodimeric tubulin molecule, the alpha-chain of free tubulin, but not intact microtubules, was the preferential site of stable adduct formation under both reductive and nonreductive conditions. Denaturation studies showed that the native tubulin conformation was necessary for the alpha-chain to show enhanced reactivity toward acetaldehyde. Competition binding studies showed that alpha-tubulin could effectively compete with beta-tubulin and bovine serum albumin for a limited amount of acetaldehyde. Unstable acetaldehyde adducts with free tubulin or microtubules did not exhibit alpha-chain selectivity. Analysis of reaction mixtures indicates that lysine residues are the major group of the protein participating in adduct formation. These data indicate that the alpha-chain of free tubulin is the preferential site of stable acetaldehyde-tubulin adduct formation. Further, these data raise the possibility that alpha-tubulin may be a selective target for acetaldehyde adduct formation in cellular systems.  相似文献   

14.
Atylamines and nitroarenes are very important environmental and occupational pollutants. Genotoxic effects of arylamines are believed to be initiated by the formation of DNA adducts. DNA adducts of arylamines have been found in experimental animals and in exposed humans, and are predominantly formed with the carbon 8 of 2'-deoxyguanosine. Reference standards are necessary to develop methods for the quantification of DNA-adducts. Therefore, we have synthesized the 2'-deoxyguanosin-8-yI adducts of 2-methylaniline, 2-chloroaniline, 4-chloroaniline, 2,4dimethylaniline, and 2,6-dimethylaniline. The products were characterized by 1H-NMR, 13C-NMR, MS and UV. The corresponding 2'-deoxyguanosine-3' -monophosphate adducts were synthesized for the quantification of DNA adducts by the 32P-postlabelling technique. A GC-MS method was developed for the analysis of the new adducts as an alternative to the 32P-postlabelling. DNA was spiked with the synthesized adducts and treated with 0.3 m NaOH overnight at 110 °C in the presence of a deuterated internal standard. We observed up to 80% recovery from about 1 adduct in 108 to 1 in 105 nucleotides.  相似文献   

15.
Human 3-hydroxy-3-methylglutaryl-CoA lyase catalyzes formation of acetyl-CoA and acetoacetate in a reaction that requires divalent cation and is stimulated by sulfhydryl protective reagents. The enzyme is a homodimer and inter-subunit adducts form in the absence of reducing agents or upon treatment with cysteine selective crosslinking agents. To address the influence of cysteines on enzyme activity and formation of inter-subunit and intra-subunit adducts, single serine substitutions have been engineered for each enzyme cysteine. Enzyme activity varies for each cysteine→serine mutant protein and different mutations have widely different effects on recovery of activity upon DTT treatment of non-reduced enzyme. These levels of enzyme activity do not strongly correlate with formation of inter-subunit adducts by these HMGCL mutants. C170S, C266S, and C323S proteins do not form inter-subunit disulfide adducts but such an adduct is restored in the C170S/C174S double mutant. Coexpression of HMGCL proteins encoded by C266S and C323S expression plasmids supports formation of a C266S/C323S heterodimer which does form a covalent inter-subunit adduct. These observations are interpreted in the context of competition between cysteines in formation of intra-subunit and inter-subunit heterodisulfide adducts.  相似文献   

16.
Reaction of cis-diamminedichloroplatinum (II) with single-stranded M13 phage DNA in vitro produced monofunctional platinum-DNA adducts on guanine and bifunctional lesions with either two guanine bases (GG) or one adenine and one guanine (AG). When DNA containing a majority of monofunctional platinum-DNA lesions was dialyzed against 10 mM NaCIO4 at 37 degrees C, conversion of monoadducts to bifunctional lesions was observed. We examined the effect of post-treatment formation of bifunctional lesions on DNA synthesis by Escherichia coli DNA polymerase I and highly purified eukaryotic DNA polymerase alpha from Drosophila melanogaster and calf thymus. Arrest sites on the platinated template were determined by polyacrylamide gel electrophoresis. Monofunctional lesions did not appear to block DNA synthesis. Inhibition of replication increased as bifunctional platinum-DNA lesions formed during post-treatment incubation; GG adducts inhibited replication more than AG. These results suggest that bifunctional GG platinum-DNA adducts may be the major toxic damage of cisplatin.  相似文献   

17.
The cyanyl radical was formed during the oxidation of potassium or sodium cyanide by horseradish peroxidase, lactoperoxidase, chloroperoxidase, NADH peroxidase, or methemoglobin in the presence of hydrogen peroxide. The spin adducts of the cyanyl radical with 5,5-dimethyl-1-pyrroline-N-oxide and N-tert-butyl-alpha-phenylnitrone were quite stable at neutral pH. The identity of these spin adducts could be demonstrated using 13C-labeled cyanide and by comparison with the spin adducts of the formamide radical, a hydrolysis product of the cyanyl radical adduct. The enzymatic conversion of cyanide to cyanyl radical by peroxidases should be considered in addition to its well-known role as a metal ligand. Furthermore, since cyanide is used routinely as an inhibitor of peroxidases, some consideration should be given to the biochemical consequences of this formation of the cyanyl radical by the catalytic activity of these enzymes.  相似文献   

18.
Enhancement of acetaldehyde-protein adduct formation by L-ascorbate   总被引:5,自引:0,他引:5  
The effect of L-ascorbate on the binding of [14C]acetaldehyde to bovine serum albumin was examined. In the absence of ascorbate, acetaldehyde reacted with albumin to form both unstable (Schiff bases) and stable adducts. Ascorbate (5 mM) caused a time-dependent increase in the formation of total acetaldehyde-albumin adducts, which were comprised mainly of stable adducts. Significant enhancement of adduct formation by ascorbate was observed at acetaldehyde concentrations as low as 5 microM. An ascorbate concentration as low as 0.5 mM was still effective in stimulating stable adduct formation. The electron acceptor, 2,6 dichlorophenolindophenol, prevented the ascorbate-induced increase in albumin-adduct formation. Ascorbate also caused enhanced acetaldehyde adduct formation with other purified proteins, including cytochrome c and histones, as well as the polyamino acid, poly-L-lysine. These results indicate that ascorbate, acting as a reducing agent, can convert unstable acetaldehyde adducts to stable adducts, and can thereby increase and stabilize the binding of acetaldehyde to proteins.  相似文献   

19.
Direct spin trapping studies of protein radical adducts are limited as a consequence of the long rotational correlation times and consequent broadening of the ESR resonances. It can be difficult to determine both the nature and number of adduct species present. NMR detection of reduced spin adducts represents an alternate approach which, however, is subject to the limitations of lower sensitivity and a limited capability for isolating the resonances arising from the reduced adduct from other chemistry involving the spin trap. In the present study, we have utilized [methyl-13C(3)]-MNP for the detection and analysis of tyrosyl spin adducts formed as a result of exposure of equine myoglobin to hydrogen peroxide. The methyl-13C label allows high detection sensitivity in two dimensions, narrow line widths and most significantly, removal by dialysis of unreacted spin trap as well as any nonprotein derivatives that may form. For equine myoglobin, it is found that adduct formation involves a single residue-Tyr-103 and further that adduct formation occurs at the C-3 carbon of the amino acid. HMQC-NOESY experiments further revealed the proximity of the labeled methyl groups to both the three aromatic tyrosyl protons as well as the aromatic protons of the nearby Phe-106 residue.  相似文献   

20.
In vivo spin trapping of radical metabolites has become a promising tool in understanding and predicting toxicities caused by different xenobiotics. However, in biological systems radical adducts can be reduced to electron paramagnetic resonance (EPR)-silent hydroxylamines. To overcome this difficulty, different procedures for reoxidation of the reduced radical adducts were systematically investigated and some metabolic inhibitors of nitroxide reduction were tested. As a test system, carbon tetrachloride (CCl4), a known hepatotoxic substance, was used. CCl4 is metabolized by liver to .CCl3 and, in the presence of the spin trap phenyl N-t-butylnitrone (PBN), forms the PBN/.CCl3 and PBN/.CO2- radical adducts. These radical adducts were measured in the bile using electron paramagnetic resonance after administration of CCl4 and PBN to the rat. We have shown that these radical adducts were reduced to the corresponding hydroxylamines in vivo, since immediately after the collection of bile only traces of the radical adducts could be detected, but after oxidation by different procedures such as bubbling with oxygen, addition of mild oxidant potassium ferricyanide or autoxidation the EPR spectra intensity increases, indicating that the hydroxylamines had been re-oxidized back to nitroxides. The collection of bile into plastic Eppendorf tubes containing the sulfhydryl reagent N-ethylmaleimide (NEM) or the enzyme ascorbate oxidase did not increase the intensity of the spectra significantly, demonstrating that neither reduction by reduced glutathione (GSH) nor ascorbic acid occurred ex vivo. However in the presence of NEM faster re-oxidation was observed. A new radical adduct that was not observed previously in any in vivo experiment and which exhibited 13C hyperfine coupling was detected when the rats were injected with 13CCl4. We have proven that this is the same adduct detected previously in vitro in microsomal incubations of CCl4, PBN, GSH, and reduced nicotinamide adenine dinucleotide phosphate (NADPH). As a general rule, we have shown that a variety of oxidation procedures should be tried to detect the different radical adducts which are otherwise not observable due to the in vivo reduction of radical adducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号