首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogenase activity, determined by the acetylene reduction assay, in soybean cell suspensions infected with Rhizobium, was stimulated significantly by the addition of succinic acid or glutamine. Acetylene-dependent ethylene values as high as 4.6 μmoles of ethylene/gram dry weight·hour were observed.  相似文献   

2.
Excised roots of Spartina alterniflora Loisel. and corn reduced acetylene in air without the previously reported period of zero activity lasting 8 to 18 hours. The profiles of acetylene-dependent ethylene accumulation by excised roots and intact plants of S. alterniflora were similar. No significant change in the number of bacteria associated with the roots was detectable during the assay. Most of the nitrogenase activity was detected in the roots and rhizomes of the plants. The salt marsh sediment also was capable of reducing acetylene. Additional damage to roots by washing and cutting increased the rate of acetylene reduction with samples incubated in air. Low concentrations of nitrate significantly inhibited the nitrogenase activity associated with the sediment and excised roots, but not with intact plants. Rates of acetylene reduction by excised corn roots were low. Oxidation and endogenous production of ethylene in the absence of acetylene were negligible. Measurements made with excised grass roots as described probably reflect the occurrence and magnitude of nitrogenase activity associated with the plants in the field.  相似文献   

3.
The Gram-positive coryneform bacteria strains 14g and 7C were found to be able to grow with N2 as sole nitrogen source when incubated under microaerobic conditions. Nitrogenase activity in whole cells was assayed by acetylene reduction. High rates of ethylene production (50–120 nmole/hxmg cell protein) were observed in N2 or glutamate grown cell suspensions shaken in an atmosphere of 2.5% O2, 10% acetylene and 87.5% argon.  相似文献   

4.
Soybean cells in suspension culture were inhibited in their growth by mixed culture with Rhizobium japonicum 5033. Rhizobium cells had the ability to adsorb on the surface of soybean cells. Cell envelope prepared from Rhizobium by sonic oscillation inhibited the growth of soybean cells. The growth-inhibiting activity of the cell envelope was depressed by β-glucosidase, KIO4, urea, sodium cholate, and Triton X-100, but was stable on heating at 120 C for 15 minutes. Adsorption of the cell envelope on soybean cells was depressed by only β-glucosidase. The sodium cholate-soluble fraction of the cell envelope had the growth-inhibiting activity. Results in this paper suggest that components of the Rhizobium cell surface cause the inhibition of soybean cell growth after the adsorption of the Rhizobium cell to the soybean cell.  相似文献   

5.
The relationship between ureide N and N2 fixation was evaluated in greenhouse-grown soybean (Glycine max L. Merr.) and lima bean (Phaseolus lunatus L.) and in field studies with soybean. In the greenhouse, plant N accumulation from N2 fixation in soybean and lima bean correlated with ureide N. In soybean, N2 fixation, ureide N, acetylene reduction, and nodule mass were correlated when N2 fixation was inhibited by applying KNO3 solutions to the plants. The ureide-N concentrations of different plant tissues and of total plant ureide N varied according to the effectiveness of the strain of Bradyrhizobium japonicum used to inoculate plants. The ureide-N concentrations in the different plant tissues correlated with N2 fixation. Ureide N determinations in field studies with soybean correlated with N2 fixation, aboveground N accumulation, nodule weight, and acetylene reduction. N2 fixation was estimated by 15N isotope dilution with nine and ten soybean genotypes in 1979 and 1980, respectively, at the V9, R2, and R5 growth stages. In 1981, we investigated the relationship between ureide N, aboveground N accumulation, acetylene reduction, and nodule mass using four soybean genotypes harvested at the V4, V6, R2, R4, R5, and R6 growth stages. Ureide N concentrations of young stem tissues or plants or aboveground ureide N content of the four soybean genotypes varied throughout growth correlating with acetylene reduction, nodule mass, and aboveground N accumulation. The ureide-N concentrations of young stem tissues or plants or aboveground ureide-N content in three soybean genotypes varied across inoculation treatments of 14 and 13 strains of Bradyrhizobium japonicum in 1981 and 1982, respectively, and correlated with nodule mass and acetylene reduction. In the greenhouse, results correlating nodule mass with N2 fixation and ureide N across strains were variable. Acetylene reduction in soybean across host-strain combinations did not correlate with N2 fixation and ureide N. N2 fixation, ureide N, acetylene reduction, and nodule mass correlated across inoculation treatments with strains of Bradyrhizobium spp. varying in effectiveness on lima beans. Our data indicate that ureide-N determinations may be used as an additional method to acetylene reduction in studies of the physiology of N2 fixation in soybean. Ureide-N measurements also may be useful to rank strains of B. japonicum for effectiveness of N2 fixation.  相似文献   

6.
Rhizobium japonicum cells were grown in liquid suspension cultures and separated from soybean plant cells by two to three bacterial membrane filters. Under these conditions, the plant cells elaborated materials into the medium which aided in the expression of a major rhizobial phenotype, namely, nitrogenase activity (acetylene reduction). The evolution of H2 was also measured and this activity relative to acetylene reduction, was influenced by: (a) O2; (b) the quantity of conditioned plant medium; and (c) ammonia. It is concluded that plant substances are of major importance in the H2 evolution and nitrogenase activities of free-living rhizobia in suspension cultures.  相似文献   

7.
Rhizobium trifolii 0403 was treated with 16.6 mM succinate and other nutrients and thereby induced to grow in nitrogen-free medium. The organism grew microaerophilically on either semisolid or liquid medium, fixing atmospheric nitrogen to meet metabolic needs. Nitrogen fixation was measured via 15N incorporation (18% 15N enrichment in 1.5 doublings) and acetylene reduction. Nitrogen-fixing cells had a Km for acetylene of 0.07 atm (ca. 7.09 kPa), required about 3% oxygen for optimum growth in liquid medium, and showed a maximal specific activity of 5 nmol of acetylene reduced per min per mg of protein at 0.04 atm (ca. 4.05 kPa) of acetylene. The doubling time on N-free liquid medium ranged from 1 to 5 days, depending on oxygen tension, with an optimum temperature for growth of about 30°C. Nodulation of white clover by the cultures showing in vitro nitrogenase activity indicates that at least part of the population maintained identity with wild-type strain 0403.  相似文献   

8.
An apparatus was designed that permitted acetylene reduction (N2 fixation) by root nodules to be measured in situ simultaneously with net photosynthesis, dark respiration, and transpiration of the shoot in soybean plants (Glycine max [L.] Merr. var. Beeson). Tests showed that acetylene reduction was linear with time for at least 5 hours, except for the first 30 to 60 minutes. Endogenous ethylene production did not affect the measurements. Successive determinations of acetylene reduction could be made without apparent aftereffects on the plant.  相似文献   

9.
The effect of nitrate on symbiotic nitrogen fixation by root nodules of cowpea (Vigna unguiculata L., Walp., cv. California Blackeye) and lupine (Lupinus augustifolius L., cv. Frost) plants inoculated with nitrate reductase-expressing and nitrate reductase-nonexpressing Rhizobium strains were examined. Nitrate reductase of Rhizobium bacteroids in the nodules of cowpea and lupine reduced nitrate to nitrite. Both cowpea and lupine nodules accumulated nitrite when grown in the presence of 15 millimolar nitrate and induced by Rhizobium strains which express nitrate reductase activity (Rhizobium sp. 32H1 and 127E15). The nitrogen fixation (acetylene reduction) activities of cowpea and lupine nodules were inhibited by nitrate whether the nodules were induced by Rhizobium strains that express (Rhizobium sp. 32H1 and 127E15) or do not express (Rhizobium sp. 127E14 and R. lupini ATCC 10318) nitrate reductase activity. These findings indicate that nitrite, the product of bacteroid nitrate reductase, may not play a role in the inhibitory effect of nitrate on nitrogen fixation activities of legume root nodules. However, the degree of inhibition on the fixation activity by nitrate varied in different legume-Rhizobium combinations.  相似文献   

10.
Physiology and morphology of pole bean (Phaseolus vulgaris L. cv Kentucky Wonder) root nodules induced by two Rhizobium species of different cross-inoculation groups have been compared. Root nodules induced by Rhizobium sp. 127E15, which is a strain of the cowpea group Rhizobium, were pinkish, had irregular shapes, and were only partially effective. Their peak acetylene reduction activity was 4.36 μmol of C2H4 formed per g of fresh nodules per h at 30 days after inoculation. The effective nodules induced by Rhizobium phaseoli 127K14, which is a strain of the bean group Rhizobium, were dark red, spherical, and showed peak acetylene reduction activity of 15.95 μmol of C2H4 formed per g of fresh nodules per h at 15 days after inoculation. The partial effectiveness of 127E15-induced nodules was associated with fewer infected cells, a delay in the increase of bacteroid population within the host cells, abundance of cytoplasmic vesicles in the host cells, more bacteroids within a membrane envelope (peribacteroid membrane), and the inability of bacteroids to completely fill up the host cytoplasmic space. The 127K14-induced nodules were fully mature, with host cells filled with bacteroids by 12 days after inoculation. In contrast, the 127E15-induced nodules did not reach a similar developmental stage even 30 days after inoculation.  相似文献   

11.
Endogenous ethylene production was evaluated as a source of ethylene during acetylene reduction assays with freshly collected roots of field-grown corn, Zea mays L. cv Funks G-4646, and sorghum, Sorghum bicolor (L.) Moench. cv CK-60A. Ethylene production was not detected when roots were incubated in air without acetylene. The presence of endogenous ethylene production was confirmed when roots were incubated anaerobically and in the presence of 40 millimolar sodium hydrosulfite. Ethylene oxidase activity was also associated with excised roots. The rate of ethylene oxidation was higher than the rates of ethylene accumulation during either acetylene reduction assays or anaerobic incubations. These results indicate that the procedure of incubating roots of grasses in air to monitor endogenous ethylene production is not a valid control in acetylene reduction studies with grasses. The presence of endogenous ethylene production during acetylene reduction assays was demonstrated by using either CO to inhibit nitrogenase activity or chloramphenicol to inhibit nitrogenase synthesis in freshly excised roots.  相似文献   

12.
Summary 15 strains of Pullularia, Rhodotorula, Bullera and Torulopsis were tested for acetylene reduction under anaerobic and low pO2 (0.05) conditions. No production of ethylene was observed and it is concluded that nitrogenase activity is absent.  相似文献   

13.
In free-living Rhizobium japonicum cultures, the stimulatory effect of CO2 on nitrogenase (acetylene reduction) activity was mediated through ribulose bisphosphate carboxylase activity. Two mutant strains (CJ5 and CJ6) of R. japonicum defective in CO2 fixation were isolated by mitomycin C treatment. No ribulose bisphosphate carboxylase activity could be detected in strain CJ6, but a low level of enzyme activity was present in strain CJ5. Mutant strain CJ5 also exhibited pleiotropic effects on carbon metabolism. The mutant strains possessed reduced levels of hydrogen uptake, formate dehydrogenase, and phosphoribulokinase activities, which indicated a regulatory relationship between these enzymes. The CO2-dependent stimulation of nitrogenase activity was not observed in the mutant strains. Both mutant strains nodulated soybean plants and fixed nitrogen at rates comparable to that of the wild-type strain.  相似文献   

14.
Summary Acetylene reduction to ethylene by filtrates of rumen contents has been studied. The Km values for acetylene are comparable to those reported for nitrogenase enzymes from N2 fixing bacteria. The enhancement of ethylene production from acetylene by phosphate and pyruvate suggests that the reduction was carried out by anaerobic microorganisms. Acetylene reduction occurred in the rumen only when a high nitrogen diet was fed to the sheep. Some microorganisms isolated from the rumen contents were grown anaerobically under N2 gas on agar not supplemented with combined nitrogen. Methane production by filtrates of rumen contents was found to be inhibited by acetylene.  相似文献   

15.
Rhizobium strain BTAi 1, which nodulates both stems and roots of Aeschynomene indica L., formed bacteriochlorophyll and photosynthetic reaction centers resembling those of purple photosynthetic bacteria when grown aerobically ex planta under a light-dark cycle. Bacteriochlorophyll formation was not observed under continuous dark or light growth conditions. The amount of pigment formed was similar to that previously found in aerobic photosynthetic bacteria. Stem nodules appear to fix nitrogen photosynthetically, as illumination of A. indica stem nodules with near-infrared light resulted in an enhanced rate of acetylene reduction. Near-infrared light did not enhance acetylene reduction when either A. indica or soybean root nodules were illuminated. The BTAi 1 isolate can be differentiated from members of the family Rhodospirillaceae by several criteria.  相似文献   

16.
Bradyrhizobium japonicum WM1, an ethylmethane-sulfonate-induced derivative of B. japonicum 110spc4 with reduced phosphatase activity but normal symbiotic properties, was randomly mutagenized using TnphoA. From about 1000 purified single colonies, approximately 300, preferentially those with enhanced phosphatase activity, were inoculated onto soybean seedlings to test their symbiotic traits. Sixteen strains were either completely Fix? or possessed markedly reduced acetylene reduction activity (Fixred). Contrary to expectations, hybridization of total DNA of these strains to a transposonspecific DNA probe showed that many contained no transposon. Apparently these strains had gained resistance towards kanamycin spontaneously rather than through the introduction of TnphoA. However, in five mutant strains, two hybridizing BamHI fragments of different sizes were detected, as expected. All strains performed acetylene reduction under ex planta conditions, indicating that mutations had not occurred in nif or fix genes. A more than 50-fold increased specific activity of alkaline phosphatase was observed in strain 132, indicating the synthesis and secretion of a polypeptide fused to 'PhoA. Light and electron-microscopic analyses showed that in nodules induced by strain 132 (Fixred) the infected cells of the central tissue were vacuolated. In some of these cells callose deposition was observed, indicating plant defense reactions. Nodules induced by mutant 184 were infected by bacteroids only in a few cells of the central tissue as isolated clusters, whereas the majority of cells remained uninfected. The concentration of phosphoenolpyruvatecarboxylase protein within the infected tissue was significantly reduced and starch granules accumulated. In both strains TnphoA insertions were identified to be the reasons for the observed phenotypes. These mutant strains should be helpful for studying the influence of the microsymbiont on the differentiation and colonization of infected cells in soybean nodules.  相似文献   

17.
Lim ST 《Plant physiology》1978,62(4):609-611
A sensitive tritium exchange assay was applied to the Rhizobium system for measuring the expression of uptake hydrogenase in free-living cultures of Rhizobium japonicum. Hydrogenase was detected about 45 hours after inoculation of cultures maintained under microaerophilic conditions (about 0.1% O2). The tritium exchange assay was used to screen a variety of different strains of R. japonicum (including major production strains) with the findings that about 30% of the strains expressed hydrogenase activity with identical results being observed using an alternative assay based on uptake of H2. The relative efficiency of intact soybean nodules inoculated with 10 different rhizobial strains gave results identical to those obtained using free-living cultures. The tritium exchange assay provides an easy, quick, and accurate assessment of H2 uptake efficiency of intact nodules.  相似文献   

18.
Nitrogen fixation (diazotrophy) has recently been demonstrated in several methanogenic archaebacteria. To compare the process in an archaebacterium with that in eubacteria, we examined the properties of diazotrophic growth and nitrogenase activity in Methanosarcina barkeri 227. Growth yields with methanol or acetate as a growth substrate were significantly lower in N2-grown cultures than in NH4+-grown cultures, and the culture doubling times were increased, indicating that diazotrophy was energetically costly, as it is in eubacteria. Growth of nitrogen-fixing cells was inhibited when molybdenum was omitted from the medium; addition of 10 nM molybdate stimulated growth, while 1 μM molybdate restored maximum diazotrophic growth. Omission of molybdenum did not inhibit growth of ammonia-grown cells. Tungstate (100 μM) strongly inhibited growth of molybdenum-deficient diazotrophic cells, while ammonia-grown cells were unaffected. The addition of 100 nM vanadate or chromate did not stimulate diazotrophic growth of molybdenum-starved cells. These results are consistent with the presence of a molybdenum-containing nitrogenase in M. barkeri. Acetylene, the usual substrate for assaying nitrogenase activity, inhibited methanogenesis by M. barkeri and consequently needed to be used at a low partial pressure (0.3% of the headspace) when acetylene reduction by whole cells was assayed. Whole cells reduced 0.3% acetylene to ethylene at a very low rate (1 to 2 nmol h−1 mg of protein−1), and they “switched off” acetylene reduction in response to added ammonia or glutamine. Crude extracts from diazotrophic cells reduced 10% acetylene at a rate of 4 to 5 nmol of C2H4 formed h−1 mg of protein−1 when supplied with ATP and reducing power, while extracts of Klebsiella pneumoniae prepared by the same procedures had rates 100-fold higher. Acetylene reduction by extracts required ATP and was completely inhibited by 1 mM ADP in the presence of 5 mM ATP. The low rates of C2H2 reduction could be due to improper assay conditions, to switched-off enzyme, or to the nitrogenase's having lower activity towards acetylene than towards dinitrogen.  相似文献   

19.
Peas (Pisum sativum L.) were inoculated with strains of Rhizobium leguminosarum having different levels of uptake hydrogenase (Hup) activity and were grown in sterile Leonard jars under controlled conditions. Rates of H2 evolution and acetylene reduction were determined for intact nodulated roots at intervals after the onset of darkness or after removal of the shoots. Hup activity was estimated using treatment plants or equivalent plants from the growth chamber, by measuring the uptake of H2 or 3H2 in the presence of acetylene. In all cases, the rate of H2 evolution was a continuous function of the rate of acetylene reduction. In symbioses with no demonstrable Hup activity, H2 evolution increased in direct proportion to acetylene reduction and the slopes were similar with the Hup strains NA502 and 128C79. Hup activity was similar in strains 128C30 and 128C52 but significantly lower in strain 128C54. With these strains, the slopes of the H2 evolution versus acetylene reduction curves initially increased with acetylene reduction, but became constant and similar to those for the Hup strains at high rates of acetylene reduction. On these parallel portions of the curves, the decreases in H2 evolution by Hup+ strains were similar in magnitude to their H2-saturated rates of Hup activity. The curvilinear relationship between H2 evolution and acetylene reduction for a representative Hup+ strain (128C52) was the same, regardless of the experimental conditions used to vary the nitrogenase activity.  相似文献   

20.
Summary The non-heterocystous filamentous blue-green alga, Plectonema boryanum strain 594 reduces acetylene to ethylene, incorporates 15N2 into cell protoplasm, and grows readily in medium free of combined nitrogen, when incubated in a gas phase without added oxygen. Cells grown in the presence of 50 mg/l of ammonium-nitrogen do not reduce acetylene, and a concentration of 0.015 atm. CO in the gas phase inhibits nitrogenase activity completely but inhibits 14CO2 incorporation by only 28%. Nitrogenase activity is inhibited after 2 h treatment with 3×10-5 M DCMU and is inhibited completely in air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号