首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The Friend spleen focus-forming virus (SFFV) is an envelope gene recombinant between the ecotropic Friend murine leukemia virus and the endogenous xenotropic mink cell focus-forming retroviral sequences. We synthesized an octadecanucleotide complementary to the 3' end of the SFFV env gene designed for discriminating the SFFV proviruses from the xenotropic mink cell focus-forming virus and ecotropic exogenous or endogenous viral sequences. Under appropriate hybridization conditions this probe allowed the identification, in addition to few endogenous DNA fragments, of multiple SFFV proviruses integrated in the genome of Friend malignant cells. Therefore this probe should be of interest in further characterizing the SFFV integration sites and possibly the SFFV ancestor gene.  相似文献   

2.
Nucleotide sequence of AKV murine leukemia virus.   总被引:73,自引:53,他引:20       下载免费PDF全文
W Herr 《Journal of virology》1984,49(2):471-478
AKV is an endogenous, ecotropic murine leukemia virus that serves as one of the parents of the recombinant; oncogenic mink cell focus-forming viruses that arise in preleukemic AKR mice. I report the 8,374-nucleotide-long sequence of AKV, as determined from the infectious molecular clone AKR-623. The 5'-leader sequence of AKV extends to nucleotide 639, after which lies a long open reading frame encoding the gag and pol gene products. The reading frame is interrupted by a single amber codon separating the gag and pol genes. The pol gene overlaps the env gene within the 3' region of the AKV genome. The nucleotide sequence of the 5' region of AKV reveals the following features. (i) The 5'-leader sequence lacks any AUG codon to initiate translation of gPr80gag, suggesting that gPr80gag is not required for the replication of AKV. (ii) A short portion of the leader region diverges in sequence from the closely related Moloney murine leukemia virus and appears to be related to a sequence highly repeated in eucaryotic genomes. (iii) As in Moloney murine leukemia virus, there is a potential RNA secondary structure flanking the amber codon that separates the gag and pol genes. This structure might function as a regulatory protein binding site that controls the relative levels of synthesis of the gag and pol precursors. The nucleotide sequence of the 3' region of AKV is compared with sequences reported previously from both infectious and noninfectious molecular clones of AKV.  相似文献   

3.
4.
The molecular properties of three laboratory strains of the spleen focus-forming virus were compared. All strains contain genetic sequences related to the env gene of mink cell focus-inducing murine type C leukemia viruses, and each strain codes for a glycoprotein of 50,000 to 52,000 daltons which shares specific immunological properties with the gp70's of mink cell focus-inducing viruses. In contrast to this constancy, gag gene products coded for by these strains vary significantly. The gag and env gene products are synthesized from separate mRNA's, and the mRNA for the env gene product is approximately 18S. Unlike other acute leukemia viruses, which can transform various undifferentiated cells, have large unique sequence cellular gene inserts fused to helper virus gag genes, and have one known genome-length intracellular mRNA, the spleen focus-forming virus transforms only specific hematopoietic stem cells, is an env gene rather than a gag gene recombinant virus, and has a second distinct and smaller class of intracellular mRNA. Our data therefore indicate that the Friend strain of the spleen focus-forming virus is a unique replication-defective acute leukemia virus.  相似文献   

5.
An infectious NZB xenotropic murine leukemia virus (MuLV) provirus (NZB was molecularly cloned from the Hirt supernatant of NZB-IU-6-infected mink cells, and the nucleotide sequence of its env gene and long terminal repeat (LTR) was determined. The partial nucleotide sequence previously reported for the env gene of NFS-Th-1 xenotropic proviral DNA (Repaske, et al., J. Virol. 46:204-211, 1983) is identical to that of the infectious NZB xenotropic MuLV DNA reported here. Alignment of nucleotide or deduced amino acid sequences, or both, of xenotropic, mink cell focus-forming, and ecotropic MuLV proviral DNAs in the env region identified sequence differences among the three host range classes of C-type MuLVs. Major differences were confined to the 5' half of env; a high degree of homology was found among the three classes of MuLVs in the 3' half of env. Alignment of the nucleotide sequence of the LTR of NZB xenotropic MuLV with those of the LTRs of NFS-Th-1 xenotropic, mink cell focus-forming, and ecotropic MuLVs revealed extensive homology between the LTRs of xenotropic and MCF247 MuLVs. An inserted 6-base-pair repeat 5' to the TATA box was a unique feature of both NZB and NFS-Th-1 xenotropic LTRs.  相似文献   

6.
7.
Direct RNA-PCR analyses of T-cell lymphomas that developed in rhesus macaques during a gene transfer experiment revealed the presence of several different recombinant murine leukemia viruses (MuLV). Most prominent was the expected MuLV recombinant, designated MoLTRAmphoenv in which the amphotropic env of the helper packaging virus was joined to the long terminal repeat (LTR) of the Moloney MuLV-derived vector. This retrovirus does not exist in nature. An additional copy of the core enhancer acquired from the vector LTR may have augmented the replicative properties of MoLTRAmphoenv MuLV in several different rhesus cell types compared with the prototype amphotropic MuLV4070A. Unexpectedly, at least two types of mink cell focus-forming MuLV elements, arising from endogenous retroviral sequences expressed in the murine packaging cell line, were also transmitted and highly expressed in one of the macaques. Furthermore, murine virus-like VL-30 sequences were detected in the rhesus lymphomas, but these were not transcribed into RNA. The unanticipated presence of an array of MuLV-related structures in a primate gene transfer recipient demands ever-vigilant scrutiny for the existence of transmissible retroviral elements and replication-competent viruses possessing altered tropic or growth properties in packaging cells producing retroviral vectors.  相似文献   

8.
The myeloproliferative leukemia virus (MPLV) is a new acute leukemogenic, nonsarcomatogenic retroviral complex that is generated during the in vivo passage of a molecularly cloned Friend ecotropic helper virus. Examination of viral RNA expression in MPLV-producing cells revealed the presence of two distinct molecular species that hybridized with a long terminal repeat or an ecotropic env-specific probe but not with a xenotropic mink cell focus-forming virus env-specific probe derived from a spleen focus-forming virus: an 8.2-kilobase species corresponding to a full-length Friend murine leukemia virus (F-MuLV) and a deleted species with a genomic size of 7.4 kilobases. This deleted virus was biologically cloned by limiting dilutions and single cell cloning in Mus dunni fibroblasts. Three nonproducer clones with normal morphologies and containing one single integrated copy of the deleted virus were superinfected with F-MuLV, Moloney murine leukemia virus, Gross murine leukemia virus, mink cell focus-forming virus (HIX), or the amphotropic 1504 murine leukemia virus. All pseudotypes caused macroscopic and microscopic abnormalities in mice that were similar to those seen in the parental stock. A comparison of the physical maps of F-MuLV and MPLV, which was deduced from the restriction enzyme digests of unintegrated proviral DNAs, indicated that the MPLV-defective genome (i) is probably derived from F-MuLV, (ii) has conserved the F-MuLV gag and pol regions, and (iii) is deleted and rearranged in the env region in a manner that is clearly distinct from that of Friend or Rauscher spleen focus-forming viruses.  相似文献   

9.
10.
The highly oncogenic erythroleukemia-inducing Friend mink cell focus-inducing (MCF) virus was molecularly cloned in phage lambda gtWES.lambda B, and the DNA sequences of the env gene and the long terminal repeat were determined. The nucleotide sequences of Friend MCF virus and Friend spleen focus-forming virus were quite homologous, supporting the hypothesis that Friend spleen focus-forming virus might be generated via Friend MCF virus from an ecotropic Friend virus mainly by some deletions. Despite their different pathogenicity, the nucleotide sequences of the env gene of Friend MCF virus and Moloney MCF virus were quite homologous, suggesting that the putative parent sequence for the generation of both MCF viruses and the recombinational mechanism for their generation might be the same. We compare the amino acid sequences in lymphoid leukemia-inducing ecotropic Moloney virus and Moloney MCF virus, and erythroblastic leukemia-inducing ecotropic Friend virus, Friend-MCF virus, and Friend spleen focus-forming virus. The Friend MCF virus long terminal repeat was found to be 550 base pairs long. This contained two copies of the 39-base-pair tandem repeat, whereas the spleen focus-forming virus genome contained a single copy of the same sequence.  相似文献   

11.
We characterized mink cell focus-forming murine leukemia viruses that were isolated from C3H/MCA-5 cells after induction with 5-iododeoxyuridine in culture. Mink lung epithelial cells malignantly transformed in vitro by induced virus were the source of four molecular clones of mink cell focus-forming virus. CI-1, CI-2, CI-3, and CI-4. Three clones, CI-1, CI-2, and CI-3, had full-length mink cell focus-forming viral genomes, one of which (CI-3) was infectious. In addition, we obtained a defective viral genome (CI-4) which had a deletion in the envelope gene. A comparison between the envelope genes of CI-4 and those of spleen focus-forming virus by heteroduplex mapping showed close homology in the substitution region and defined the deletion as being identical to the p15E deletion of spleen focus-forming virus. The recombinant mink cell focus-forming genomes are not endogenous in C3H/MCA-5 cells and therefore must have been formed in culture after induction by 5-iododeoxyuridine. CI-3, the infectious clone of mink cell focus-forming murine leukemia virus, was dualtropic, and mink cells infected with CI-3 were altered in their response to epidermal growth factor. In the presence of epidermal growth factor at 10 ng/ml, uninfected mink cells retained their epithelial morphology in monolayer culture and did not form colonies in soft agar. In contrast, CI-3 virus-infected mink cells grew with fibroblastic morphology in monolayer culture and showed an increased growth rate in soft agar in the presence of epidermal growth factor.  相似文献   

12.
The murine leukemia virus (MuLV) sequence associated with the resistance allele of the Fv-4 gene (Fv-4r) was molecularly cloned from genomic DNA of uninfected mice carrying this allele. The 5.2-kilobase cloned EcoRI DNA fragment (pFv4) was shown by nucleotide sequencing to contain 3.4 kilobases of a colinear MuLV-related proviral sequence which began in the C-terminal end of the pol region and extended through the env region and the 3' long terminal repeat. Cellular sequences flanked the 3' as well as the 5' ends of the truncated MuLV sequence. Alignment of the N-terminal half of the pFv4 env sequence with ecotropic, mink cell focus-forming, and xenotropic MuLV env sequences established the relatedness of pFv4 and ecotropic MuLV env sequences. A subcloned 700-base pair segment (pFv4env) from the 5' env region of pFv4 was used as an Fv-4-specific probe; it hybridized specifically to the Fv-4r-associated proviral sequence but not to endogenous ecotropic MuLV proviral DNA under high stringency. All Fv-4-resistant mice contained the same retroviral segment associated with the same flanking cellular DNA. Expression of Fv-4r-specific mRNA was demonstrated in the spleens of Fv-4r mice but not Fv-4s mice, supporting the previously proposed resistance model based on interference.  相似文献   

13.
The genomes of most vertebrates contain numerous retroviral sequences, the great majority of which are non-infectious. These endogenous retroviral sequences are transcribed and translated in many host tissues, and are induced by mitogens. The function, if any, of endogenous retroviruses has been unclear. The transmembrane envelope proteins of some infectious type C retroviruses suppress lymphocyte activation, but it is unknown whether any endogenous type C retroviruses share this suppressive activity. To study the possible effects of murine endogenous retroviral expression, specific antisense oligonucleotides were synthesized complementary to type C retroviral sequences, and were cultured with murine spleen cells. If any of these endogenous retroviruses are suppressing lymphocyte activation, then inhibiting such endogenous retroviral-mediated suppression with antisense might result in lymphocyte stimulation. Three classes of endogenous type C retroviral sequences may be distinguished by antisense oligonucleotides (based on their homology to infectious retroviruses): ecotropic, xenotropic, and mink cell focus-forming (MCF). Antisense oligonucleotides to endogenous MCF envelope gene (env) initiation regions caused: i) doubling or tripling of spleen cell RNA synthesis, and ii) marked increases in lymphocyte surface Ia and Ig expression relative to control oligonucleotides. Antisense oligos to xenotropic or ecotropic env sequences or to endogenous MCF non-envelope sequences had no effect. These data suggest that endogenous MCF sequences exert an inhibitory influence on the murine immune system. Because endogenous MCF expression is inducible by immune stimuli, such expression could constitute an inhibitory feedback circuit that participates in the regulation of immune homeostasis.  相似文献   

14.
The sequence of 863 contiguous nucleotides encompassing portions of the pol and env genes of NFS-Th-1 xenotropic proviral DNA was determined. This region of the xenotropic murine leukemia virus genome contains and env-specific segment that hybridizes exclusively to xenotropic and mink cell focus-forming but not to ecotropic proviral DNAs (C. E. Buckler et al., J. Virol. 41:228-236, 1982). The unique xenotropic env segment contained several characteristic deletions and insertions relative to the analogous region in AKR and Moloney ecotropic murine leukemia viruses. Portions of an endogenous env segment cloned from a BALB/c mouse embryo gene library that had a restriction map and hybridization properties typical of xenotropic viruses (A. S. Khan et al., J. Virol. 44:625-636, 1982) were also sequenced. The sequence of the endogenous env gene was very similar to the comparable region of the NFS-Th-1 xenotropic virus containing the characteristic deletions and insertions previously observed and could represent a segment of an endogenous xenotropic provirus.  相似文献   

15.
Specificity of retroviral RNA packaging.   总被引:28,自引:25,他引:3  
  相似文献   

16.
Fluidity of a retrovirus genome.   总被引:7,自引:5,他引:2       下载免费PDF全文
Comparison of the genomic sequences of the Friend spleen focus-forming virus with other murine retroviral sequences indicated that the spleen focus-forming virus was derived from at least three retroviruses. The 5' end of the virus, from the primer binding site through most of gag, was derived from AKV. The rest of gag and all of pol were of uncertain origin, but were probably derived from the same xenotropic virus that gave rise to the 5' half of env. The remainder was derived from Friend murine leukemia virus. The positions of a 585-base deletion, a 6-base duplication, and a point insertion that leads to a frame shift and premature protein termination in the ecotropic 3' end of env were invariant between three spleen focus-forming virus strains, indicating that they had a single common ancestor. However, the point of crossover between xenotropic viral sequences and Friend murine leukemia virus was different in each strain, and two strains were much more closely related to each other than to the third in the xenotropic region, indicating that these strains had diverged by multiple recombinations. Furthermore, a different nucleotide comprised the single point insertion near the 3' end of env, suggesting that these viruses have an extremely high transition and transversion rate.  相似文献   

17.
18.
The genome of the defective, murine spleen focus-forming Friend virus (SFFV) was identified as a 50S RNA complex consisting of 32S RNA monomers. Electrophoretic mobility and the molecular weights of unique RNase T1-resistant oligonucleotides (T1-oligonucleotides) indicated that the 32S RNA had a complexity of about 7.4 kilobases. Hybridization with DNA complementary to Friend murine leukemia virus (Fr-MLV) has distinguished two sets of nucleotide sequences in 32S SFFV RNA, 74% which were Fr-MLV related and 26% which were SFFV specific. By the same method, SFFV RNA was 48% related to Moloney MLV. We have resolved 23 large T1-oligonucleotides of SFFV RNA and 43 of Fr-MLV RNA. On the basis of the relationship between SFFV and Fr-MLV RNAs, the 23 SFFV oligonucleotides fell into four classes: (i) seven which had homologous equivalents in Fr-MLV RNA; (ii) six more which could be isolated from SFFV RNA-Fr-MLV cDNA hybrids treated with RNases A and T1; (iii) eight more which were isolated from hybrids treated with RNases A and T1; and (iv) two which did not have Fr-MLV-related counterparts. Surprisingly, the two class iv oligonucleotides had homologous counterparts in the RNA of six amphotropic MLV's including mink cell focus-forming and HIX-MLVs analyzed previously. The map locations of the 23 SFFV T1-oligonucleotides relative to the 3' polyadenylic acid coordinate of SFFV RNA were deduced from the size of the smallest polyadenylic acid-tagged RNA fragment from which a given oligonucleotide was isolated. The resulting oligonucleotide map could be divided roughly into three segments: two terminal segments which are mosaics of oligonucleotides of classes i, ii, and iii and an internal segment between 2 and 2.5 kilobases from the 3' end containing the two oligonucleotides shared with amphotropic MLVs. Since SFFV RNA consists predominantly of sequence elements related to ecotropic and amphotropic helper-independent MLVs, it would appear that the transforming gene of SFFV is not a major specific sequence unrelated to genes of helper viruses, as is the case with Rous sarcoma and probably withe other defective sarcoma and acute leukemia viruses.  相似文献   

19.
Although xenotropic murine leukemia viruses cannot productively infect cells of laboratory mice, cells from various wild-derived mice can support replication of these viruses. Although the virus-sensitive wild mice generally lack all or most of the xenotropic proviral genes characteristic of inbred strains, susceptibility to exogenous infection is unrelated to inheritance of these sequences. Instead, susceptibility is controlled by a single dominant gene, designated Sxv, which maps to chromosome 1. Sxv is closely linked to, but distinct from Bxv-1, the major locus for induction of xenotropic murine leukemia viruses in laboratory mice. Genetic experiments designed to characterize Sxv show that this gene also controls sensitivity to a wild mouse virus with the interference properties of mink cell focus-forming murine leukemia viruses, and that Sxv-mediated susceptibility to xenotropic murine leukemia viruses is restricted by the mink cell focus-forming virus resistance gene Rmcf. These data, together with genetic mapping of the mink cell focus-forming virus cell surface receptor locus to this same region of chromosome 1, suggest that Sxv may encode a wild mouse variant of the mink cell focus-forming virus receptor that allows penetration by xenotropic murine leukemia viruses.  相似文献   

20.
The 3' half of the env gene of the dualtropic Friend mink cell focus-forming virus was modified by replacing the restriction enzyme fragment of the genome DNA with the corresponding fragment of the acutely leukemogenic, polycythemia-inducing strain of Friend spleen focus-forming virus (F-SFFVP) genome DNA. Replacement with the fragment of F-SFFVP env containing the 585-bp deletion, the 6-bp duplication, and the single-base insertion converted the resulting chimeric genome so that the mutant had a pathogenic activity like that of F-SFFVP. Replacement with the fragment containing only the 585-bp deletion did not result in a pathogenic virus. However, when this virus pseudotyped by Friend murine leukemia virus was passaged in newborn DBA/2 mice, we could recover weakly pathogenic viruses with a high frequency. Molecular analysis of the genome of the recovered virus revealed the presence of a single-base insertion in the same T5 stretch where the wild-type F-SFFV env has the single-base insertion. These results provided evidence that the unique genomic structures present in the 3' half of F-SFFV env are the sole determinants that distinguish the pathogenicity of F-SFFV from that of Friend mink cell focus-forming virus. The importance of the dualtropic env-specific sequence present in the 5' half of F-SFFV env for the pathogenic activity was evaluated by constructing a mutant F-SFFV genome in which this sequence was replaced by the ecotropic env sequence of Friend murine leukemia virus and by examining its pathogenicity. The results indicated that the dualtropic env-specific sequence was essential to pathogenic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号