首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary We present a detailed analysis of the function of the right and left T-DNA border regions of the nopaline Ti plasmid of Agrobacterium tumefaciens. An avirulent deletion of the right border of the nopaline Ti plasmid (pGV3852) was used as an acceptor for 14 different T-DNA border constructs. The functional activities of these constructs were assayed by their ability to restore virulence, i.e. transformation on inoculated plants. Tumorigenicities were measured in several independent experiments over a 2 year period and the statistical significance of their relative levels was evaluated. The data indicate: (i) the entire sequence of the 25 bp direct repeat of the T-DNA is required to provide an efficient substrate for mediating T-DNA transfer events; deletion derivatives of either the conserved or the vaiable domain of the repeat are defective in T-DNA transfer; (ii) while the 25 bp direct repeat alone can promote the T-DNA transfer, the flanking sequences of the repeats enhance (on the right) or attenuate (on the left) their activity; and (iii) tumorigenicity measurements vary depending on the plant assay system: potato discs are more sensitive than wounded tobacco leaves in detecting differences in T-DNA border activity.  相似文献   

3.
4.
Lacroix B  Citovsky V 《PloS one》2011,6(10):e25578
VirB5 is a type 4 secretion system protein of Agrobacterium located on the surface of the bacterial cell. This localization pattern suggests a function for VirB5 which is beyond its known role in biogenesis and/or stabilization of the T-pilus and which may involve early interactions between Agrobacterium and the host cell. Here, we identify VirB5 as the first Agrobacterium virulence protein that can enhance infectivity extracellularly. Specifically, we show that elevating the amounts of the extracellular VirB5--by exogenous addition of the purified protein, its overexpression in the bacterium, or transgenic expression in and secretion out of the host cell--enhances the efficiency the Agrobacterium-mediated T-DNA transfer, as measured by transient expression of genes contained on the transferred T-DNA molecule. Importantly, the exogenous VirB5 enhanced transient T-DNA expression in sugar beet, a major crop recalcitrant to genetic manipulation. Increasing the pool of the extracellular VirB5 did not complement an Agrobacterium virB5 mutant, suggesting a dual function for VirB5: in the bacterium and at the bacterium-host cell interface. Consistent with this idea, VirB5 expressed in the host cell, but not secreted, had no effect on the transformation efficiency. That the increase in T-DNA expression promoted by the exogenous VirB5 was not due to its effects on bacterial growth, virulence gene induction, bacterial attachment to plant tissue, or host cell defense response suggests that VirB5 participates in the early steps of the T-DNA transfer to the plant cell.  相似文献   

5.
The presence of ribonucleotides in genomic DNA is undesirable given their increased susceptibility to hydrolysis. Ribonuclease (RNase) H enzymes that recognize and process such embedded ribonucleotides are present in all domains of life. However, in unicellular organisms such as budding yeast, they are not required for viability or even efficient cellular proliferation, while in humans, RNase H2 hypomorphic mutations cause the neuroinflammatory disorder Aicardi-Goutières syndrome. Here, we report that RNase H2 is an essential enzyme in mice, required for embryonic growth from gastrulation onward. RNase H2 null embryos accumulate large numbers of single (or di-) ribonucleotides embedded in their genomic DNA (>1,000,000 per cell), resulting in genome instability and a p53-dependent DNA-damage response. Our findings establish RNase H2 as a key mammalian genome surveillance enzyme required for ribonucleotide removal and demonstrate that ribonucleotides are the most commonly occurring endogenous nucleotide base lesion in replicating cells.  相似文献   

6.
The 9.5kb virB operon is the largest of the six major operons in the Ti plasmid vir region. This operon contains eleven genes, the largest of which is virB4. This gene encodes an 84kDa protein whose function has not been identified. Its roles in conferring virulence on Agrobacterium tumefaciens and in the T-DNA transfer process were determined by generating non-polar mutants by using the Tn5pvirB transposon in which the virB promoter is transcribed downstream of its position of insertion. Several independent mutants were isolated and each insertion site in virB4 was confirmed by nucleotide sequence analysis. These mutants were tested for T-DNA transfer ability by agroinfection and for tumorigenicity by inoculation in Brassica and Datura. All mutants were agroinfection- and tumorigenicity-negative. These data strongly suggest that virB4 is essential for both the interkingdom transfer of the T-DNA and virulence. Furthermore, by using anti-VirB4 serum, the protein product of virB4 was localized to the inner-membrane fraction of A. tumefaciens. Purified VirB4 protein hydrolyses ATP and this activity was quenched by the anti-VirB4 serum. The energy generated by VirB4 ATPase therefore may be used to transfer T-DNA or to assemble the T-DNA transfer apparatus on the bacterial membrane. Protein sequence analyses revealed striking similarities between VirB4 protein and the proteins required for conjugative transfer, which include TraC, TrwK, and TrbE of plasmids F, R388, and RP4, repectively. These findings suggest that VirB proteins play a direct role in the assembly of a conjugative transfer apparatus required for the transfer of the T-DNA from A. tumefaciens to plant cells.  相似文献   

7.
The product of the Escherichia coli F plasmid traI gene is required for DNA transfer via bacterial conjugation. This bifunctional protein catalyzes the unwinding of duplex DNA and is a sequence-specific DNA transesterase. The latter activity provides the site- and strand-specific nick required to initiate DNA transfer. To address the role of the TraI helicase activity in conjugative DNA transfer traI mutants were constructed and their function in DNA transfer was evaluated using genetic and biochemical methods. A traI deletion/insertion mutant was transfer-defective as expected. A traI C-terminal deletion that removed the helicase-associated motifs was also transfer-defective despite the fact that the region of traI encoding the transesterase activity was intact. Biochemical studies demonstrated that the N-terminal domain was sufficient to catalyze oriT-dependent transesterase activity. Thus, a functional transesterase was not sufficient to support DNA transfer. Finally, a point mutant, TraI-K998M, that lacked detectable helicase activity was characterized. This protein catalyzed oriT-dependent transesterase activity in vitro and in vivo but failed to complement a traI deletion strain in conjugative DNA transfer assays. Thus, both the transesterase and helicase activities of TraI are essential for DNA strand transfer.  相似文献   

8.
Different factors involved in the early steps of the T-DNA transfer process were studied by using a -glucuronidase gene (gusA) as a reporter in Nicotiana glauca leaf disc transformation experiments. The levels of transient expression of the gusA gene in leaf discs infected with several strains or vir mutants correlated well with their virulence phenotype, except for virC mutants. The rate of T-DNA transfer was shown to be stimulated in the case of non-oncogenic strains by the co-transfer of small amounts of oncogenic genes. It was found that the location of the T-DNA in the Agrobacterium genome affected the T-DNA transfer rate especially in virC mutants. The virC mutants transferred the gusA-containing T-DNA located on a binary vector more efficiently than the oncogenic T-DNA of the Ti plasmid. Although wild-type strains induced high levels of gusA expression early after infection, the gusA expression appeared to be lost late after infection in the infected leaf discs. In contrast, in leaf discs infected by virC mutants the level of gusA expression increased steadily in time. A model explaining these results is presented.  相似文献   

9.
10.
DNA binding and the topology of DNA have been determined in complexes formed by >20 archaeal histone variants and archaeal histone dimer fusions with residue replacements at sites responsible for histone fold dimer:dimer interactions. Almost all of these variants have decreased affinity for DNA. They have also lost the flexibility of the wild type archaeal histones to wrap DNA into a negative or positive supercoil depending on the salt environment; they wrap DNA into positive supercoils under all salt conditions. The histone folds of the archaeal histones, HMfA and HMfB, from Methanothermus fervidus are almost identical, but (HMfA)(2) and (HMfB)(2) homodimers assemble into tetramers with sequence-dependent differences in DNA affinity. By construction and mutagenesis of HMfA+HMfB and HMfB+HMfA histone dimer fusions, the structure formed at the histone dimer:dimer interface within an archaeal histone tetramer has been shown to determine this difference in DNA affinity. Therefore, by regulating the assembly of different archaeal histone dimers into tetramers that have different sequence affinities, the assembly of archaeal histone-DNA complexes could be localized and used to regulate gene expression.  相似文献   

11.
Safeguarding of genome integrity is a key process in all living organisms. Due to their sessile lifestyle, plants are particularly exposed to all kinds of stress conditions that could induce DNA damage. However, very few genes involved in the maintenance of genome integrity are indispensable to plants’ viability. One remarkable exception is the POLQ gene, which encodes DNA polymerase theta (Pol θ), a non-replicative polymerase involved in trans-lesion synthesis during DNA replication and double-strand break (DSB) repair. The Arabidopsis tebichi (teb) mutants, deficient in Pol θ, have been reported to display severe developmental defects, leading to the conclusion that Pol θ is required for normal plant development. However, this essential role of Pol θ in plants is challenged by contradictory reports regarding the phenotypic defects of teb mutants and the recent finding that rice (Oryza sativa) null mutants develop normally. Here we show that the phenotype of teb mutants is highly variable. Taking advantage of hypomorphic mutants for the replicative DNA polymerase epsilon, which display constitutive replicative stress, we show that Pol θ allows maintenance of meristem activity when DNA replication is partially compromised. Furthermore, we found that the phenotype of Pol θ mutants can be aggravated by modifying their growth conditions, suggesting that environmental conditions impact the basal level of replicative stress and providing evidence for a link between plants’ responses to adverse conditions and mechanisms involved in the maintenance of genome integrity.  相似文献   

12.
13.
The plasma membrane soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins syntaxin and synaptosome-associated protein of 25 kDa (SNAP25) and the vesicle SNARE protein vesicle-associated membrane protein (VAMP) are essential for a late Ca(2+)-dependent step in regulated exocytosis, but their precise roles and regulation by Ca(2+) are poorly understood. Botulinum neurotoxin (BoNT) E, a protease that cleaves SNAP25 at Arg(180)-Ile(181), completely inhibits this late step in PC12 cell membranes, whereas BoNT A, which cleaves SNAP25 at Gln(197)-Arg(198), is only partially inhibitory. The difference in toxin effectiveness was found to result from a reversal of BoNT A but not BoNT E inhibition by elevated Ca(2+) concentrations. BoNT A treatment essentially increased the Ca(2+) concentration required to activate exocytosis, which suggested a role for the C terminus of SNAP25 in the Ca(2+) regulation of exocytosis. Synaptotagmin, a proposed Ca(2+) sensor for exocytosis, was found to bind SNAP25 in a Ca(2+)-stimulated manner. Ca(2+)-dependent binding was abolished by BoNT E treatment, whereas BoNT A treatment increased the Ca(2+) concentration required for binding. The C terminus of SNAP25 was also essential for Ca(2+)-dependent synaptotagmin binding to SNAP25. syntaxin and SNAP25.syntaxin.VAMP SNARE complexes. These results clarify classical observations on the Ca(2+) reversal of BoNT A inhibition of neurosecretion, and they suggest that an essential role for the C terminus of SNAP25 in regulated exocytosis is to mediate Ca(2+)-dependent interactions between synaptotagmin and SNARE protein complexes.  相似文献   

14.
In bacteria, Dps is one of the critical proteins to build up a condensed nucleoid in response to the environmental stresses. In this study, we found that the expression of Dps and the nucleoid condensation was not simply correlated in Escherichia coli, and that Fis, which is an E. coli (gamma-Proteobacteria)-specific nucleoid protein, interfered with the Dps-dependent nucleoid condensation. Atomic force microscopy and Northern blot analyses indicated that the inhibitory effect of Fis was due to the repression of the expression of Topoismerase I (Topo I) and DNA gyrase. In the Deltafis strain, both topA and gyrA/B genes were found to be upregulated. Overexpression of Topo I and DNA gyrase enhanced the nucleoid condensation in the presence of Dps. DNA-topology assays using the cell extract showed that the extracts from the Deltafis and Topo I-/DNA gyrase-overexpressing strains, but not the wild-type extract, shifted the population toward relaxed forms. These results indicate that the topology of DNA is dynamically transmutable and that the topology control is important for Dps-induced nucleoid condensation.  相似文献   

15.
The VirD2 protein of Agrobacterium tumefaciens was shown to pilot T-DNA during its transfer to the plant cell nucleus. We analyze here its participation in the integration of T-DNA by using a virD2 mutant. This mutation reduces the efficiency of T-DNA transfer, but the efficiency of integration of T-DNA per se is unaffected. Southern and sequence analyses of integration events obtained with the mutated VirD2 protein revealed an aberrant pattern of integration. These results indicate that the wild-type VirD2 protein participates in ligation of the 5'-end of the T-strand to plant DNA and that this ligation step is not rate limiting for T-DNA integration.  相似文献   

16.
To develop a model system for studies of homologous recombination in plants, transgenic Nicotiana tabacum and Nicotiana plumbaginifolia lines were generated harbouring a single target T-DNA containing the negative selective codA gene encoding cytosine deaminase (CD) and the β-glucuronidase (GUS) gene. Subsequently, the target lines were transformed with a replacement-type T-DNA vector in which the CD gene and the GUS promoter had been replaced with a kanamycin-resistance gene. For both Nicotiana species kanamycin-resistant lines were selected which had lost the CD gene and the GUS activity. One tobacco line was the result of a precise gene targeting event. However, most other lines were selected due to a chromosomal deletion of the target locus. The deletion frequency of the target locus varied between target lines, and could be present in up to 20% of the calli which were grown from leaf protoplasts. T-DNA transfer was not required for induction of the deletions, indicating that the target loci were unstable. A few lines were obtained in which the target locus had been deleted partially. Sequence analysis of the junctions revealed deletion of DNA sequences between microhomologies. We conclude that T-DNAs, which are stable during plant development as well as in transmission to the offspring, may become unstable during propagation in callus tissue. The relationships between callus culture, genetic instability and the process of T-DNA integration and deletion in the plant genome are discussed.  相似文献   

17.
Dube T  Thomson JA 《Plasmid》2003,50(1):1-11
The ability of the plasmid pTF-FC2 to transfer genes into plants was investigated. Using this plasmid as the backbone two plasmids were constructed namely pTD1 and pDER-bar. These plasmids contained, as plant selectable markers, the nptII and the bar genes, respectively. The nptII gene was flanked by the right and left borders and the bar gene was not. Transgenic plants were obtained through the co-cultivation of tobacco leaf discs with the Agrobacterium tumefaciens strain LBA4404(pAL4404)(pDER-bar). Molecular and genetic analysis indicated that the bar gene had been stably integrated into the plant genome and had been inherited in a Mendelian fashion. Integration was shown to be polar and unidirectional and in some cases the entire plasmid was found to have integrated into the plant genome. Interestingly, no plants were generated from tobacco leaf discs that were co-cultivated with the strain C58C1(pMP90)(pTD1).  相似文献   

18.
19.
Transfer of T-DNA from Agrobacterium to the plant cell.   总被引:19,自引:0,他引:19       下载免费PDF全文
J R Zupan  P Zambryski 《Plant physiology》1995,107(4):1041-1047
Agrobacterium tumefaciens is the causative agent of crown gall, a disease of dicotyledonous plants characterized by a tumorous phenotype. Earlier in this century, scientific interest in A. tumefaciens was based on the possibility that the study of plant tumors might reveal mechanisms that were also operating in animal neoplasia. In the recent past, the tumorous growth was shown to result from the expression of genes coded for by a DNA segment of bacterial origin that was transferred and became stably integrated into the plant genome. This initial molecular characterization of the infection process suggested that Agrobacterium might be used to deliver genetic material into plants. The potential to genetically engineer plants generated renewed interest in the study of A. tumefaciens. In this review, we concentrate on the most recent advances in the study of Agrobacterium-mediated gene transfer, its relationship to conjugation, DNA processing and transport, and nuclear targeting. In the following discussion, references for earlier work can be found in more comprehensive reviews (Hooykaas and Schilperoort, 1992; Zambryski, 1992; Hooykaas and Beijersbergen, 1994).  相似文献   

20.
Species lacking either 8 or 10 residues at the amino terminus of recombinant human interferon-gamma (Hu-IFN-gamma) were generated by limited digestion with Staphylococcus aureus V8 protease. A crude digest, consisting predominantly of these species, were completely inactive in inducing antiviral activity and the expression of HLA-DR antigens on HL-60 cells. The NH2-terminal deletion fragments were separated from residual intact IFN-gamma and from smaller polypeptides by reverse phase high performance liquid chromatography (HPLC) at pH 2.2. Intact IFN-gamma, purified by HPLC and subsequently refolded by dilution in 0.1 M sodium phosphate buffer (pH 7.5, 0.1% bovine serum albumin) was similar to untreated IFN-gamma in terms of binding to its cell surface receptor and in inducing antiviral activity and the expression of HLA-DR molecules. Conversely, biological activity was not detected in purified fragments 8-139 and 10-139. Examination of fragments 8-139 and 10-139 by far-UV circular dichroism revealed that cleavage of 8-10 residues at the amino terminus accompanied a dramatic change in secondary structure (6% alpha-helical and 36% beta-sheet content) as compared to untreated or HPLC-purified IFN-gamma (66% alpha-helix and 0% beta-sheet content). In summary, these results indicate that the amino terminus contributes to the structural integrity of the IFN-gamma molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号