首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Voltage-dependent calcium channels consist of a pore-forming subunit (Ca(V)alpha(1)) that includes all the molecular determinants of a voltage-gated channel, and several accessory subunits. The ancillary beta-subunit (Ca(V)beta) is a potent activator of voltage-dependent calcium channels, but the mechanisms and structural bases of this regulation remain elusive. Ca(V)beta binds reversibly to a conserved consensus sequence in Ca(V)alpha(1), the alpha(1)-interaction domain (AID), which forms an alpha-helix when complexed with Ca(V)beta. Conserved aromatic residues face to one side of the helix and strongly interact with a hydrophobic pocket on Ca(V)beta. Here, we studied the effect of mutating residues located opposite to the AID-Ca(V)beta contact surface in Ca(V)1.2. Substitution of AID-exposed residues by the corresponding amino acids present in other Ca(V)alpha(1) subunits (E462R, K465N, D469S, and Q473K) hinders Ca(V)beta's ability to increase ionic-current to charge-movement ratio (I/Q) without changing the apparent affinity for Ca(V)beta. At the single channel level, these Ca(V)1.2 mutants coexpressed with Ca(V)beta(2a) visit high open probability mode less frequently than wild-type channels. On the other hand, Ca(V)1.2 carrying either a mutation in the conserved tryptophan residue (W470S, which impairs Ca(V)beta binding), or a deletion of the whole AID sequence, does not exhibit Ca(V)beta-induced increase in I/Q. In addition, we observed a shift in the voltage dependence of activation by +12 mV in the AID-deleted channel in the absence of Ca(V)beta, suggesting a direct participation of these residues in the modulation of channel activation. Our results show that Ca(V)beta-dependent potentiation arises primarily from changes in the modal gating behavior. We envision that Ca(V)beta spatially reorients AID residues that influence the channel gate. These findings provide a new framework for understanding modulation of VDCC gating by Ca(V)beta.  相似文献   

3.
The intracellular loops that interlink the four transmembrane domains of Ca(2+)- and Na(+)-channels (Ca(v), Na(v)) have critical roles in numerous forms of channel regulation. In particular, the intracellular loop that joins repeats I and II (I-II loop) in high voltage-activated (HVA) Ca(2+) channels possesses the binding site for Ca(v)beta subunits and plays significant roles in channel function, including trafficking the alpha(1) subunits of HVA channels to the plasma membrane and channel gating. Although there is considerable divergence in the primary sequence of the I-II loop of Ca(v)1/Ca(v)2 HVA channels and Ca(v)3 LVA/T-type channels, evidence for a regulatory role of the I-II loop in T-channel function has recently emerged for Ca(v)3.2 channels. In order to provide a comprehensive view of the role this intracellular region may play in the gating and surface expression in Ca(v)3 channels, we have performed a structure-function analysis of the I-II loop in Ca(v)3.1 and Ca(v)3.3 channels using selective deletion mutants. Here we show the first 60 amino acids of the loop (post IS6) are involved in Ca(v)3.1 and Ca(v)3.3 channel gating and kinetics, which establishes a conserved property of this locus for all Ca(v)3 channels. In contrast to findings in Ca(v)3.2, deletion of the central region of the I-II loop in Ca(v)3.1 and Ca(v)3.3 yielded a modest increase (+30%) and a reduction (-30%) in current density and surface expression, respectively. These experiments enrich our understanding of the structural determinants involved in Ca(v)3 function by highlighting the unique role played by the intracellular I-II loop in Ca(v)3.2 channel trafficking, and illustrating the prominent role of the gating brake in setting the slow and distinctive slow activation kinetics of Ca(v)3.3.  相似文献   

4.
The auxiliary beta subunit importantly regulates voltage-dependent Ca(2+) channel activity through an interaction with the AID domain, a binding site located in the cytoplasmic I-II linker of the ion-conducting alpha(1) subunit. In the present study, we used two synthetic peptides corresponding to partial sequences of the I-II linker of alpha(1A) (AID(A)-peptides) as tools to disrupt the alpha(1)-beta interaction. In vitro binding experiments confirmed that these peptides exhibit a reasonable affinity to the neuronal beta(3) subunit to serve this purpose, although they failed to prevent immunoprecipitation of native N- and P/Q-type channels by anti-beta(3) antibodies. Together, our results (i) provide evidence for the reversibility of channel subunit association suggesting that the disruption of the alpha(1)-beta interaction may be a possible mechanism for Ca(2+) channel regulation in vivo, and (ii) support a model whereby the alpha(1)-beta association is based on multiple interaction sites.  相似文献   

5.
The molecular mechanisms of how alpha(1) and beta subunits of voltage-gated Ca(2+) channels interact with one another are still controversial. Here we show that despite a mutation in the beta interaction domain that has previously been shown to disrupt binding, alpha(1C)Y467S and beta(1a-myc) still formed immunoprecipitable complexes when coexpressed in tsA201 cells. However, the alpha(1C)Y467S-beta(1a-myc) complexes had a decreased affinity to (+)-[(3)H]isradipine. This indicates that the beta interaction domain in the I-II loop of the alpha(1) subunit is not merely an anchor required for the functional interaction of the two Ca(2+) channel subunits but is itself part of the effector pathway for beta-induced channel modulation.  相似文献   

6.
Voltage-dependent inactivation of CaV2.3 channels was investigated using point mutations in the beta-subunit-binding site (AID) of the I-II linker. The quintuple mutant alpha1E N381K + R384L + A385D + D388T + K389Q (NRADK-KLDTQ) inactivated like the wild-type alpha1E. In contrast, mutations of alpha1E at position R378 (position 5 of AID) into negatively charged residues Glu (E) or Asp (D) significantly slowed inactivation kinetics and shifted the voltage dependence of inactivation to more positive voltages. When co-injected with beta3, R378E inactivated with tau(inact) = 538 +/- 54 ms (n = 14) as compared with 74 +/- 4 ms (n = 21) for alpha1E (p < 0.001) with a mid-potential of inactivation E(0.5) = -44 +/- 2 mV (n = 10) for R378E as compared with E(0.5) = -64 +/- 3 mV (n = 9) for alpha1E. A series of mutations at position R378 suggest that positively charged residues could promote voltage-dependent inactivation. R378K behaved like the wild-type alpha1E whereas R378Q displayed intermediate inactivation kinetics. The reverse mutation E462R in the L-type alpha1C (CaV1.2) produced channels with inactivation properties comparable to alpha1E R378E. Hence, position 5 of the AID motif in the I-II linker could play a significant role in the inactivation of Ca(V)1.2 and CaV2.3 channels.  相似文献   

7.
The putative hinge point revealed by the crystal structure of the MthK potassium channel is a glycine residue that is conserved in many ion channels. In high voltage-activated (HVA) Ca(V) channels, the mid-S6 glycine residue is only present in IS6 and IIS6, corresponding to G422 and G770 in Ca(V)1.2. Two additional glycine residues are found in the distal portion of IS6 (Gly(432) and Gly(436) in Ca(V)1.2) to form a triglycine motif unique to HVA Ca(V) channels. Lethal arrhythmias are associated with mutations of glycine residues in the human L-type Ca(2+) channel. Hence, we undertook a mutational analysis to investigate the role of S6 glycine residues in channel gating. In Ca(V)1.2, alpha-helix-breaking proline mutants (G422P and G432P) as well as the double G422A/G432A channel did not produce functional channels. The macroscopic inactivation kinetics were significantly decreased with Ca(V)1.2 wild type > G770A > G422A congruent with G436A > G432A (from the fastest to the slowest). Mutations at position Gly(432) produced mostly nonfunctional mutants. Macroscopic inactivation kinetics were markedly reduced by mutations of Gly(436) to Ala, Pro, Tyr, Glu, Arg, His, Lys, or Asp residues with stronger effects obtained with charged and polar residues. Mutations within the distal GX(3)G residues blunted Ca(2+)-dependent inactivation kinetics and prevented the increased voltage-dependent inactivation kinetics brought by positively charged residues in the I-II linker. In Ca(V)2.3, mutation of the distal glycine Gly(352) impacted significantly on the inactivation gating. Altogether, these data highlight the role of the GX(3)G motif in the voltage-dependent activation and inactivation gating of HVA Ca(V) channels with the distal glycine residue being mostly involved in the inactivation gating.  相似文献   

8.
The E462R mutation in the fifth position of the AID (alpha1 subunit interaction domain) region in the I-II linker is known to significantly accelerate voltage-dependent inactivation (VDI) kinetics of the L-type CaV1.2 channel, suggesting that the AID region could participate in a hinged-lid type inactivation mechanism in these channels. The recently solved crystal structures of the AID-CaVbeta regions in L-type CaV1.1 and CaV1.2 channels have shown that in addition to E462, positions occupied by Q458, Q459, E461, K465, L468, D469, and T472 in the rabbit CaV1.2 channel could also potentially contribute to a hinged-lid type mechanism. A mutational analysis of these residues shows that Q458A, Q459A, K465N, L468R, D469A, and T472D did not significantly alter VDI gating. In contrast, mutations of the negatively charged E461, E462, and D463 to neutral or positively charged residues increased VDI gating, suggesting that the cluster of negatively charged residues in the N-terminal end of the AID helix could account for the slower VDI kinetics of CaV1.2. A mutational analysis at position 462 (R, K, A, G, D, N, Q) further confirmed that E462R yielded faster VDI kinetics at +10 mV than any other residue with E462R > E462K approximately E462A > E462N > wild-type approximately E462Q approximately E462G > E462D (from the fastest to the slowest). E462R was also found to increase the VDI gating of the slow CEEE chimera that includes the I-II linker from CaV1.2 into a CaV2.3 background. The fast VDI kinetics of the CaV1.2 E462R and the CEEE + E462R mutants were abolished by the CaVbeta2a subunit and reinstated when using the nonpalmitoylated form of CaVbeta2a C3S + C4S (CaVbeta2a CS), confirming that CaVbeta2a and E462R modulate VDI through a common pathway, albeit in opposite directions. Altogether, these results highlight the unique role of E461, E462, and D463 in the I-II linker in the VDI gating of high-voltage activated CaV1.2 channels.  相似文献   

9.
Voltage-gated Ca(2+) channel beta (Ca(v)beta) subunits have a highly conserved core consisting of interacting Src homology 3 and guanylate kinase domains, and are postulated to exert their effects through AID, the major interaction site in the pore-forming alpha(1) subunit. This stereotypical interaction does not explain how individual Ca(v)beta subunits modulate alpha(1) subunits differentially. Here we show that AID is neither necessary nor sufficient for critical Ca(v)beta regulatory properties. Complete modulation depends on additional contacts that are exclusive of AID and not revealed in recent crystal structures. These data offer a new context for understanding Ca(v)beta modulation, suggesting that the AID interaction orients the Ca(v)beta core so as to permit additional isoform-specific Ca(v)alpha(1)-Ca(v)beta interactions that underlie the particular regulation seen with each Ca(v)alpha(1)-Ca(v)beta pair, rather than as the main site of regulation.  相似文献   

10.
Voltage-gated calcium channels are multiprotein complexes that regulate calcium influx and are important contributors to cardiac excitability and contractility. The auxiliary beta-subunit (CaV beta) binds a conserved domain (the alpha-interaction domain (AID)) of the pore-forming CaV alpha1 subunit to modulate channel gating properties and promote cell surface trafficking. Recently, members of the RGK family of small GTPases (Rem, Rem2, Rad, Gem/Kir) have been identified as novel contributors to the regulation of L-type calcium channel activity. Here, we describe the Rem-association domain within CaV beta2a. The Rem interaction module is located in a approximately 130-residue region within the highly conserved guanylate kinase domain that also directs AID binding. Importantly, CaV beta mutants were identified that lost the ability to bind AID but retained their association with Rem, indicating that the AID and Rem association sites of CaV beta2a are structurally distinct. In vitro binding studies indicate that the affinity of Rem for CaV beta2a interaction is lower than that of AID for CaV beta2a. Furthermore, in vitro binding studies indicate that Rem association does not inhibit the interaction of CaV beta2a with AID. Instead, CaV beta can simultaneously associate with both Rem and CaV alpha1-AID. Previous studies had suggested that RGK proteins may regulate Ca2+ channel activity by blocking the association of CaV beta subunits with CaV alpha1 to inhibit plasma membrane trafficking. However, surface biotinylation studies in HIT-T15 cells indicate that Rem can acutely modulate channel function without decreasing the density of L-type channels at the plasma membrane. Together these data suggest that Rem-dependent Ca2+ channel modulation involves formation of a Rem x CaV beta x AID regulatory complex without the need to disrupt CaV alpha1 x CaV beta association or alter CaV alpha1 expression at the plasma membrane.  相似文献   

11.
The structural determinant of the permeation and selectivity properties of high voltage-activated (HVA) Ca(2+) channels is a locus formed by four glutamate residues (EEEE), one in each P-region of the domains I-IV of the alpha(1) subunit. We tested whether the divergent aspartate residues of the EEDD locus of low voltage-activated (LVA or T-type) Ca(2+) channels account for the distinctive permeation and selectivity features of these channels. Using the whole-cell patch-clamp technique in the HEK293 expression system, we studied the properties of the alpha(1G) T-type, the alpha(1C) L-type Ca(2+) channel subunits, and alpha(1G) pore mutants, containing aspartate-to-glutamate conversions in domain III, domain IV, or both. Three characteristic features of HVA Ca(2+) channel permeation, i.e. (a) Ba(2+) over Ca(2+) permeability, (b) Ca(2+)/Ba(2+) anomalous mole fraction effect (AMFE), and (c) high Cd(2+) sensitivity, were conferred on the domain III mutant (EEED) of alpha(1G). In contrast, the relative Ca(2+)/Ba(2+) permeability and the lack of AMFE of the alpha(1G) wild type channel were retained in the domain IV mutant (EEDE). The double mutant (EEEE) displayed AMFE and a Cd(2+) sensitivity similar to that of alpha(1C), but currents were larger in Ca(2+)- than in Ba(2+)-containing solutions. The mutation in domain III, but not that in domain IV, consistently displayed outward fluxes of monovalent cations. H(+) blocked Ca(2+) currents in all mutants more efficiently than in alpha(1G). In addition, activation curves of all mutants were displaced to more positive voltages and had a larger slope factor than in alpha(1G) wild type. We conclude that the aspartate residues of the EEDD locus of the alpha(1G) Ca(2+) channel subunit not only control its permeation properties, but also affect its activation curve. The mutation of both divergent aspartates only partially confers HVA channel permeation properties to the alpha(1G) Ca(2+) channel subunit.  相似文献   

12.
Large conductance, Ca(2+)- and voltage-activated K(+) (BK) channels are exquisitely regulated to suit their diverse roles in a large variety of physiological processes. BK channels are composed of pore-forming alpha subunits and a family of tissue-specific accessory beta subunits. The smooth muscle-specific beta1 subunit has an essential role in regulating smooth muscle contraction and modulates BK channel steady-state open probability and gating kinetics. Effects of beta1 on channel's gating energetics are not completely understood. One of the difficulties is that it has not yet been possible to measure the effects of beta1 on channel's intrinsic closed-to-open transition (in the absence of voltage sensor activation and Ca(2+) binding) due to the very low open probability in the presence of beta1. In this study, we used a mutation of the alpha subunit (F315Y) that increases channel openings by greater than four orders of magnitude to directly compare channels' intrinsic open probabilities in the presence and absence of the beta1 subunit. Effects of beta1 on steady-state open probabilities of both wild-type alpha and the F315Y mutation were analyzed using the dual allosteric HA model. We found that mouse beta1 has two major effects on channel's gating energetics. beta1 reduces the intrinsic closed-to-open equilibrium that underlies the inhibition of BK channel opening seen in submicromolar Ca(2+). Further, P(O) measurements at limiting slope allow us to infer that beta1 shifts open channel voltage sensor activation to negative membrane potentials, which contributes to enhanced channel opening seen at micromolar Ca(2+) concentrations. Using the F315Y alpha subunit with deletion mutants of beta1, we also demonstrate that the small N- and C-terminal intracellular domains of beta1 play important roles in altering channel's intrinsic opening and voltage sensor activation. In summary, these results demonstrate that beta1 has distinct effects on BK channel intrinsic gating and voltage sensor activation that can be functionally uncoupled by mutations in the intracellular domains.  相似文献   

13.
Ca(v)beta subunits support voltage gating of Ca(v)1.2 calcium channels and play important role in excitation-contraction coupling. The common central membrane-associated guanylate kinase (MAGUK) region of Ca(v)beta binds to the alpha-interaction domain (AID) and the IQ motif of the pore-forming alpha(1C) subunit, but these two interactions do not explain why the cardiac Ca(v)beta(2) subunit splice variants differentially modulate inactivation of Ca(2+) currents (I(Ca)). Previously we described beta(2Deltag), a functionally active splice variant of human Ca(v)beta(2) lacking MAGUK. By deletion analysis of beta(2Deltag), we have now identified a 41-amino acid C-terminal essential determinant (beta(2)CED) that stimulates I(Ca) in the absence of Ca(v)beta subunits and conveys a +20-mV shift in the peak of the I(Ca)-voltage relationship. The beta(2)CED is targeted by alpha(1C) to the plasma membrane, forms a complex with alpha(1C) but does not bind to AID. Electrophysiology and binding studies point to the calmodulin-interacting LA/IQ region in the alpha(1C) subunit C terminus as a functionally relevant beta(2)CED binding site. The beta(2)CED interacts with LA/IQ in a Ca(2+)- and calmodulin-independent manner and need LA, but not IQ, to activate the channel. Deletion/mutation analyses indicated that each of the three Ca(v)beta(2)/alpha(1C) interactions is sufficient to support I(Ca). However, beta(2)CED does not support Ca(2+)-dependent inactivation, suggesting that interactions of MAGUK with AID and IQ are crucial for Ca(2+)-induced inactivation. The beta(2)CED is conserved only in Ca(v)beta(2) subunits. Thus, beta(2)CED constitutes a previously unknown integrative part of the multifactorial mechanism of Ca(v)beta(2)-subunit differential modulation of the Ca(v)1.2 calcium channel that in beta(2Deltag) occurs without MAGUK.  相似文献   

14.
The auxiliary Ca(v)beta subunit is essential for functional expression of high-voltage activated Ca(2+) channels. Here, we describe a lure sequence designed to sequester the Ca(v)beta subunits in transfected bovine chromaffin cells. This sequence is composed of the extracellular and transmembrane domains of the alpha chain of the human CD8, the I-II loop of Ca(v)2.1 subunit, and EGFP. We showed that expressing the CD8-I-II-EGFP sequence in chromaffin cells led to a >50% decrease in overall Ca(2+) current density. Although this decrease involved all the Ca(2+) channel types (L, N, P/Q, R), the proportion of each type supporting the remaining current was altered. A similar effect was observed after transfection when measuring the functional role of Ca(2+) channels in catecholamine release by chromaffin cells: global decrease of release and change of balance between the different channel types supporting it. Possible explanations for this apparent discrepancy are further discussed.  相似文献   

15.
High voltage-gated calcium channels consist of a pore-forming subunit (alpha(1)) and three nonhomologous subunits (alpha(2)/delta, beta, and gamma). Although it is well established that the beta-subunit promotes traffic of channels to the plasma membrane and modifies their activity, the reversible nature of the interaction with the alpha(1)-subunit remains controversial. Here, we address this issue by examining the effect of purified beta(2a) protein on Ca(V)1.2 and Ca(V)2.3 channels expressed in Xenopus oocytes. The beta(2a)-subunit binds to the alpha(1)-interaction domain (AID) in vitro, and when injected into oocytes, it shifts the voltage dependence of activation and increases charge movement to ionic current coupling of Ca(V)1.2 channels. This increase depended on the integrity of AID but was not abolished by bafilomycin, demonstrating that the alpha(1)-beta interaction through the AID site can take place at the plasma membrane. Furthermore, injection of beta(2a) protein inhibited inactivation of Ca(V)2.3 channels and converted fast inactivating Ca(V)2.3/beta(1b) channels to slow inactivating channels. Inhibition of inactivation required larger concentration of beta(2a) in oocytes expressing Ca(V)2.3/beta(1b) channels than expressing Ca(V)2.3 alone but reached the same maximal level as expected for a competitive interaction through a single binding site. Together, our data show that the alpha(1)-beta interaction is reversible in intact cells and defines calcium channels beta-subunits as regulatory proteins rather than stoichiometric subunits.  相似文献   

16.
We have investigated the molecular mechanisms whereby the I-II loop controls voltage-dependent inactivation in P/Q calcium channels. We demonstrate that the I-II loop is localized in a central position to control calcium channel activity through the interaction with several cytoplasmic sequences; including the III-IV loop. Several experiments reveal the crucial role of the interaction between the I-II loop and the III-IV loop in channel inactivation. First, point mutations of two amino acid residues of the I-II loop of Ca(v)2.1 (Arg-387 or Glu-388) facilitate voltage-dependent inactivation. Second, overexpression of the III-IV loop, or injection of a peptide derived from this loop, produces a similar inactivation behavior than the mutated channels. Third, the III-IV peptide has no effect on channels mutated in the I-II loop. Thus, both point mutations and overexpression of the III-IV loop appear to act similarly on inactivation, by competing off the native interaction between the I-II and the III-IV loops of Ca(v)2.1. As they are known to affect inactivation, we also analyzed the effects of beta subunits on these interactions. In experiments in which the beta(4) subunit is co-expressed, the III-IV peptide is no longer able to regulate channel inactivation. We conclude that (i) the contribution of the I-II loop to inactivation is partly mediated by an interaction with the III-IV loop and (ii) the beta subunits partially control inactivation by modifying this interaction. These data provide novel insights into the mechanisms whereby the beta subunit, the I-II loop, and the III-IV loop altogether can contribute to regulate inactivation in high voltage-activated calcium channels.  相似文献   

17.
beta-Subunits of voltage-dependent Ca(2+) channels regulate both their expression and biophysical properties. We have injected a range of concentrations of beta3-cDNA into Xenopus oocytes, with a fixed concentration of alpha1B (Ca(V)2.2) cDNA, and have quantified the corresponding linear increase of beta3 protein. The concentration dependence of a number of beta3-dependent processes has been studied. First, the dependence of the a1B maximum conductance on beta3-protein occurs with a midpoint around the endogenous concentration of beta3 (approximately 17 nM). This may represent the interaction of the beta-subunit, responsible for trafficking, with the I-II linker of the nascent channel. Second, the effect of beta3-subunits on the voltage dependence of steady-state inactivation provides evidence for two channel populations, interpreted as representing alpha1B without or with a beta3-subunit, bound with a lower affinity of 120 nM. Third, the effect of beta3 on the facilitation rate of G-protein-modulated alpha1B currents during a depolarizing prepulse to +100 mV provides evidence for the same two populations, with the rapid facilitation rate being attributed to Gbetagamma dissociation from the beta-subunit-bound alpha1B channels. The data are discussed in terms of two hypotheses, either binding of two beta-subunits to the alpha1B channel or a state-dependent alteration in affinity of the channel for the beta-subunit.  相似文献   

18.
The molecular basis for inactivation in Ca(V)2.3 (alpha 1E) channels was studied after expression of alpha 1E/alpha 1C (Ca(V)2.3/Ca(V)1.2) chimeras in Xenopus oocytes. In the presence of 10 mM Ba(2+), the CEEE chimera (Repeat I+part of the I-II linker from Ca(V)1.2) displayed inactivation properties similar to Ca(V)1.2 despite being more than 90% homologous to Ca(V)2.3. The transmembrane segments of Repeat I did not appear to be crucial as inactivation of EC(IS1-6)EEE was not significantly different than Ca(V)2.3. In contrast, EC(AID)EEE, with the beta-subunit binding domain from Ca(V)1.2, tended to behave like Ca(V)1.2 in terms of inactivation kinetics and voltage dependence. A detailed kinetic analysis revealed nonetheless that CEEE and EC(AID)EEE retained the fast inactivation time constant (tau(fast) approximately equal to 20-30 ms) that is a distinctive feature of Ca(V)2.3. Altogether, these data suggest that the region surrounding the AID binding site plays a pivotal albeit not exclusive role in determining the inactivation properties of Ca(V)2.3.  相似文献   

19.
(1) We constructed Escherichia coli strain JP17 with a deletion in the ATP synthase beta-subunit gene. JP17 is completely deficient in ATP synthase activity and expresses no beta-subunit. Expression of normal beta-subunit from a plasmid restores haploid levels of ATP synthase in membranes. JP17 was shown to be efficacious for studies of beta-subunit mutations. Site-directed mutants were studied directly in JP17. Randomly generated chromosomal mutants were identified by PCR and DNA sequencing, cloned, and expressed in JP17. (2) Eight novel mutations occurring within the putative catalytic nucleotide-binding domain were characterized with respect to their effects on catalysis and structure. The mutations beta C137S, beta G152D, beta G152R, beta E161Q, beta E161R, and beta G251D each impaired catalysis without affecting enzyme assembly or oligomeric structure and are of interest for future studies of catalytic mechanism. The mutations beta D301V and beta D302V, involving strongly conserved carboxyl residues, caused oligomeric instability of F1. However, growth characteristics of these mutants suggested that neither carboxyl side chain is critical for catalysis. (3) The mutations beta R398C and beta R398W rendered ATP synthase resistant to aurovertin, giving strong support to the view that beta R398 is a key residue in the aurovertin-binding site. Neither beta R398C or beta R398W impaired catalysis significantly.  相似文献   

20.
Although inhibition of voltage-gated calcium channels by RGK GTPases (RGKs) represents an important mode of regulation to control Ca(2+) influx in excitable cells, their exact mechanism of inhibition remains controversial. This has prevented an understanding of how RGK regulation can be significant in a physiological context. Here we show that RGKs-Gem, Rem, and Rem2-decreased Ca(V)1.2 Ca(2+) current amplitude in a dose-dependent manner. Moreover, Rem2, but not Rem or Gem, produced dose-dependent alterations on gating kinetics, uncovering a new mode by which certain RGKs can precisely modulate Ca(2+) currents and affect Ca(2+) influx during action potentials. To explore how RGKs influence gating kinetics, we separated the roles mediated by the Ca(2+) channel accessory beta subunit's interaction with its high affinity binding site in the pore-forming alpha(1C) subunit (AID) from its other putative contact sites by utilizing an alpha(1C)*beta3 concatemer in which the AID was mutated to prevent beta subunit interaction. This mutant concatemer generated currents with all the hallmarks of beta subunit modulation, demonstrating that AID-beta-independent interactions are sufficient for beta subunit modulation. Using this construct we found that although inhibition of current amplitude was still partially sensitive to RGKs, Rem2 no longer altered gating kinetics, implicating different determinants for this specific mode of Rem2-mediated regulation. Together, these results offer new insights into the molecular mechanism of RGK-mediated Ca(2+) channel current modulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号