首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Female CBA mice, aged 16 weeks, were irradiated to the total pelvic region with either single doses (5-20 Gy) or two equal fractions (10- to 30-Gy total dose, 24-h interval) of 240 kV X rays. Total protein and collagen synthesis rates, collagen breakdown, and net collagen content of the colon were measured at various times postirradiation using a radioisotope incorporation method and HPLC analysis. Immunohistochemical staining and computerized image analysis were used to assess the relative amounts of collagen types I and III at various times postirradiation, in various regions of the colon. Total protein and collagen synthesis rates were elevated above control levels at 4 and 8 weeks postirradiation, as was collagen degradation. Values had returned to control levels by 16 weeks postirradiation, and there were no further changes up to 71 weeks postirradiation. The net amount of collagen in the colon did not change relative to controls at any time during the investigation. There was, however, increased immunohistochemical staining for collagen type I 52 weeks postirradiation in all regions of the colon and decreased staining of type III in the circular muscle layer and villi. Altered ratios of these two collagen isotypes are consistent with changes in mechanical properties of the tissue.  相似文献   

2.
The kinetics of repair of sublethal damage in mouse lung was studied after fractionated doses of 137Cs gamma-rays. A wide range of doses per fraction (1.7-12 Gy) was given with interfraction intervals ranging from 0.5 to 24 h. The data were analysed by a direct method of analysis using the incomplete repair model. The half-time of repair (T1/2) was 0.76 h for the pneumonitis phase of damage (up to 8 months) and 0.65 h for the later phase of damage up to 12 months. The rate of repair was dependent on fraction size for both phases of lung damage and was faster after large dose fractions than after small fractions. The T1/2 was 0.6 h (95 per cent c.1. 0.53, 0.69) for doses per fraction greater than 5 Gy and 0.83 h (95 per cent c.1 0.76, 0.92) for doses per fraction of 2 Gy. Repair was nearly complete by 6 h, at least for the pneumonitis phase of damage. To the extent that extrapolation of these data to humans may be valid, these results imply that treatments with multiple fractions per day that involve the lung will not be limited by the necessity for interfraction intervals much longer than 6 h.  相似文献   

3.
Effects of a range (2-50 Gy) of single doses of 250 kV X rays on epidermal Langerhans cells in vivo were quantified in groups of CBA/CaH mice. Animals were sacrificed and compared with controls on the 10th day after local irradiation of their hind feet, when Langerhans cell numbers were at a minimum. ATPase-positive Langerhans cells in sheets of footpad epidermis were counted by light microscopy and cells with Birbeck granules were enumerated by electron microscopy. Both methods revealed a dose-dependent loss of Langerhans cells after ionizing radiation. Fifty percent of the ATPase-positive cells were lost after 14.4 +/- 1.3 Gy, and 50% of Birbeck granule-containing cells were lost after 17.9 +/- 4.2 Gy, suggesting that differentiated epidermal Langerhans cells are radioresistant. Loss of equivalent proportions of ATPase-positive and ultrastructurally identifiable cells after a range of doses indicates that X rays do not merely alter Langerhans cell surface markers but actually deplete the epidermal population of these cells.  相似文献   

4.
Effects of 250-kV X rays on epidermal Langerhans cells were studied in CBA/CaH mice. One group received 20 Gy to the feet, another 8 Gy to the whole body, and a third both the 8 Gy whole-body and a 12 Gy local dose to the feet. Mice from each group and controls were sacrificed at intervals from 1 to 64 days later. ATPase-positive cells in sheets of footpad epidermis were counted by light microscopy. The density of Langerhans cells in controls was 1515 +/- 36/mm2 (mean +/- SE; n = 34). By 3 days after irradiation they became rounded and less dendritic and numbers gradually reached a nadir by 10 days, at 18% of controls after 20 Gy and 57% of controls after 8 Gy. Some of the remainder exhibited bizarre morphology and ultrastructural abnormalities. After local irradiation of the feet Langerhans cell numbers recovered rapidly between 14 and 16 days, although their distribution was uneven until 30 days after irradiation. Repopulation was delayed after an 8 Gy whole-body dose by at least 3 weeks. These results demonstrate that high local doses of X rays substantially but transiently deplete the epidermal Langerhans cell population and support the hypothesis that functional hemopoietic tissue is required for extensive Langerhans cell replenishment.  相似文献   

5.
6.
Biochemical and blood perfusion changes in a mouse tumor system (MDAH MCaIV) were studied relative to normal tissues under conditions of normal blood flow and clamped blood supply. Further studies were performed during tumor growth and after local X irradiation. The biochemical profiles of three untreated human soft tissue sarcomas were also investigated. Animal tumors were irradiated in situ with either a single or fractionated regime to total doses of 20 or 49 Gy. Assays of lactate, pyruvate, AMP, ADP, and ATP were made on freeze-clamped tissue following authentic or sham treatments. Blood perfusion to tumors treated in the same way was measured using iv injection of 201Tl. The human tumors were found to have a lower lactate to pyruvate ratio (L/P) than the MCaIV tumors; their ATP levels were also lower. L/P was much higher in the MCaIV tumors than in normal liver, kidney, and muscle in the mouse. Occlusion of the blood supplies of the normal kidney and the MCaIV tumor caused an increase in the lactate and L/P levels in both cases. However, whereas the ATP level in the kidney fell, the level in the tumor was maintained. There was some evidence that the adenine nucleotides were not in equilibrium via the adenyl kinase catalyzed reaction. In addition, tumors were found to contain the enzyme creatine kinase. These results suggest that energy charge calculations cannot be computed in a meaningful manner because the creatine kinase catalyzed phosphorylation of ADP would maintain a higher than normal ATP level. Lactate and L/P ratio was found to increase during tumor growth and decrease following X irradiation. The total adenine nucleotides (AMP + ADP + ATP) exhibited a trend toward lower values with increasing tumor size. There was no significant change in total adenine nucleotides after a single 20-Gy dose; however, fractionated radiation caused some fall in total nucleotides. It is concluded that, in this tumor system, lactate level is a sensitive index of radiation-induced biochemical changes which are likely to reflect changes in tumor oxygenation.  相似文献   

7.
To evaluate whether DNA alterations in mature spermatozoa could stem from DNA damage induced in immature germ cells, testis cells and spermatozoa were analyzed by the comet assay and by the sperm chromatin structure assay 14, 45 and 100 days after in vivo X irradiation of the testes. These times were selected, according to the mouse seminiferous epithelium cycle, to follow the DNA damage induced in different germ cell compartments. The cytotoxic action was assessed by DNA flow cytometric analysis of testicular cells. A dose-dependent increase of DNA damage in testis cells was observed 14 days after irradiation, whereas mature sperm cells were not affected. On the other hand, an increase in DNA strand breaks was seen in spermatozoa 45 days after treatment. DNA damage returned to the control levels 100 days after irradiation. The methods used to evaluate DNA damage gave comparable results, emphasizing the correlation between DNA fragmentation and susceptibility of sperm chromatin to denaturation. Both techniques showed the high radiosensitivity of differentiating spermatogonia. The overall results showed that DNA damage induced in pre-meiotic germ cells is detectable in primary spermatocytes and is still present in mature spermatozoa.  相似文献   

8.
We investigated the replicative activity of type 2 cells in the lungs of mice at various times from 3 to 22 weeks after 18 Gy of X rays to the thorax. No significant changes were found until 11 weeks after thoracic X irradiation. Thereafter the replicative index of type 2 cells was significantly elevated, rising four to sixfold above that of control, sham-irradiated mice. During the period when the replicative activity of type 2 cells was elevated, the breathing frequency increased and there was histologic evidence of the presence of radiation pneumonitis. The magnitude of each of these indices of pneumonitis correlated significantly with the type 2 cell replicative index, suggesting that type 2 cell replication is related to pneumonitis in extent as well as in chronology. How these changes relate to the pathogenesis of radiation pneumonitis is unclear.  相似文献   

9.
10.
The response of the lung was studied in CFLP mice after exposure of the whole thorax to X rays (250 kVp) or cyclotron neutrons (16 MeV deuterons on Be, mean energy 7.5 MeV). To measure blood volume and leakage of plasma proteins, 51Cr-labeled red blood cells and 125I-albumin were injected intravenously and 24 h later lungs were lavaged via the trachea. Radioactivities in lung tissue and lavage fluid were determined to estimate the accumulation of albumin in the interstitial and alveolar spaces indicating damage to blood vessels and alveolar epithelium respectively. Function of type II pneumonocytes was assessed by the amounts of surfactant (assayed as lipid phosphorous) released into the lavage fluid. During the first 6 weeks, lavage protein and surfactant were increased, the neutron relative biological effectiveness (RBE) being unity. During pneumonitis at 12-24 weeks, surfactant levels were normal, blood volume was decreased, and both interstitial and alveolar albumin were increased. Albumin levels then decreased. At late times after exposure (42-64 weeks) alveolar albumin returned to normal but interstitial albumin was still slightly elevated. Values of RBE for changes in blood volume and interstitial and alveolar albumin at 15 weeks and for changes in blood volume and interstitial albumin at 46 weeks were 1.4, comparable with that for animal survival at 180 days. The results indicate that surfactant production is not critical for animal survival. They suggest that changes in blood vessels and alveolar epithelium occur during acute pneumonitis; epithelial repair follows but some vascular damage may persist. The time course of the changes in albumin levels did not correlate with increases in collagen biosynthesis which have been observed as early as 1 month after exposure and persist for up to 1 year. Furthermore, a dose which had no effect on leakage caused a marked increase in collagen biosynthesis. Thus the present results do not support a causal relationship between exudation of vascular protein during pneumonitis and the later development of fibrosis.  相似文献   

11.
12.
Collagen content of lungs of mice after x-ray irradiation.   总被引:2,自引:0,他引:2  
  相似文献   

13.
The catabolism of uracil and the total balance of excreted radioactivity were studied in golden hamsters after a peroral application of 14C-uracil. Twenty-four hours after administration most of the radioactivity taken up appeared in expired carbon dioxide. The percent proportion of radioactivity in carbon dioxide was independent of the amount of uracil administered. On the other hand, the percentage of radioactivity excreted in urine depended on the amount of uracil taken up, high doses of the compound causing up to eight-fold increase in urine-excreted radioactivity. Most of the exogenously-administered uracil was catabolized within the first 5 hours. Irradiation had no substantial effect on the dynamics of uracil catabolism. Analysis of urine revealed that most urine-excreted radioactivity is in the form of uracil. On peroral application of high doses of uracil to irradiated hamsters, their urine was found to contain barbituric acid which originated from uracil.  相似文献   

14.
The radioprotective effect of WR-2721 on late damage after whole thorax irradiation has been studied after split doses of radiation using the standard death and breathing rate assays at monthly intervals between 3 and 15 months after irradiation, as well as two biochemical measurements of injury at 15 months, hydroxyproline (HP), an indicator of tissue fibrosis, and DNA content, an indicator of tissue cellularity. A comparison of HP/lung and breaths per minute (BPM) in each dose group in the WR-2721 and non-WR-2721-treated mice 15 months after irradiation showed that the relationship between these two assays of late lung injury was not the same. There were large dose-related increases in breathing rate corresponding to relatively small changes in HP in the lungs of mice given radiation alone. In contrast, the mice given WR-2721 before irradiation showed large dose-related increases in HP/lung, but BPM remained relatively constant independent of dose. These data suggest then that changes in breathing rate and deaths later than 9 months after whole lung irradiation may not be due to collagen accumulation in the lung. WR-2721 did protect better against late lung functional changes (protection factors (PF) = 1.6) and late deaths (PF = 1.51) than against earlier changes in these same assays (PF = 1.4 and 1.28, respectively). Although the earlier-appearing injury after whole thoracic irradiation is most likely related to lung damage with deaths and increases in breathing rate resulting from pneumonitis, the cause of the late-appearing functional injury in the lung after radiation is not clear. Thus protection of late lung damage measured from either lethality or breathing rate is not related to the prevention of lung fibrosis.  相似文献   

15.
Chromosome anomalies in mouse oocytes after irradiation.   总被引:2,自引:0,他引:2  
We investigated the cytogenetic effects of X-rays on unfertilized mouse oocytes. NMRI females received an irradiation with 0,22.2,66.6,200, and 600 R during the preovulatory phase 3 hrs after HCG (human chorionic gonadotrophin). This is a stage during oogenesis in which the oocytes pass from late dictyotene to diakinesis. Chromosome analysis was performed after ovulation at metaphase II. From these experiments we can draw the following conclusions: 1) X-rays induced during the preovulatory phase a high number of chromosome anomalies. Among these, structural anomalies prevail. 7 out of 144 ovulated oocytes in matched controls carried such an abnormality, whereas after irradiation we observed with 22.2, 66.6, 200, and 600 R, 11 out of 72, 34 out of 108, 89 out of 102, and 122 out of 124, respectively. 2) Irradiation seems also to affect the chromosome segregation during the 1. meiotic division, as we observed after 22.2, 66.6, and 200 R a total of 6 oocytes out of 204 with a supernummary chromosome. In controls, however, no hyperploidy was found in 143 ova. This increase, however, was not significant. 3) Chromosome anomalies, e.g. breaks and deletions that go back to a one-break event increased linearly with increasing dose. Exchanges, however, going back to two-break events fittest best to the linear-quadratic dose-response model. 4) The dose of 600 R seems to represents a kind of borderline in this experiment, because nearly all (122 out 124) carried at least one structural chromosome anomaly. It is also this dose after which the highest frequency of reciprocal translocations was observed in a hump-shaped slope in spermatocytes after irradiation of spermatogonia (Preston and Brewen, 1973). With an increasing dosage up to 1200 R the frequency of translocations decrease again. The elimination of cells, crossing this borderline, might be due to genetic or non-genetic effects. 5) The frequency of radiation-induced translocations per oocyte agrees with the frequency of translocations in human lymphocytes (Dolphin and Lloyd, 1974) after in vitro irradiation. 6) Significant, lower frequencies of structural chromosome anomalies were observed irradiating earlier stages of mouse oogenesis. These stages are dictyotene from females at the age of 3, or 6 weeks and prophase I-stages in female embryos on the 17th day of gestation. This result may be due to a lower sensitivity of these stages or to modifying events during the interval between irradiation and preparations.  相似文献   

16.
17.
Functional changes in the mouse urinary bladder following single-dose or fractionated irradiation were assessed by cystometry, i.e., by measuring the intravesical volume-pressure relationship during transurethral filling. The early response presented as a dose-dependent and transitory decrease in the reservoir function of the organ as defined by the intravesical volume at a filling pressure of 10 or 20 mm Hg, V10 or V20. The quantal dose response used in the present study was a reduction in the individual bladder volume (V10 and V20) by at least 50%. After single doses greater than or equal to 10 Gy, the reaction occurred between Days 7 and 25 with maximum prevalence between Days 7 and 14. The individual duration of the response was 3-9 days. Treatment with single doses and 2, 3, 5, and 10 fractions demonstrated a significant sparing effect with ED50 values of 18.3, 24.9, 26.8, 29.8, and 38.0 Gy, respectively. The linear-quadratic model fitted the data reasonably well when tested according to Tucker (Int. J. Radiat. Oncol. Biol. Phys. 10, 1933-1939, 1984). The alpha/beta ratios estimated with different two-step techniques ranged from 11.1 to 12.4 Gy. Analysis of the data as proposed by Thames et al. (Int. J. Radiat. Biol. 49, 999-1009, 1986) yielded an alpha/beta value of 13.9 Gy (95% confidence limits 8.4 and 24.6 Gy), illustrating a fractionation effect typical for acutely responding tissues, although no clear cell depletion occurred in the urothelium.  相似文献   

18.
19.
During spermatogenesis, the radiosensitivity of testicular cells changes considerably. To investigate the molecular mechanism underlying these radiosensitivity differences, p21(Cip1/WAF1) expression was studied before and after irradiation in the adult mouse testis. P21(Cip1/WAF1) is a cyclin-dependent kinase inhibitor (CDI) and has a role in the G1/S checkpoint and differentiation. P21(Cip1/WAF1) expression was observed in the normal testis, using Western blotting analysis. After a dose of 4 Gy, but not after 0.3 Gy, an increase in p21(Cip1/WAF1) expression could be determined in whole testis lysates. To investigate which germ cells are involved in p21(Cip1/WAF1) protein expression, immunohistochemical analysis was performed on irradiated testis. In the normal testis a weak staining for p21(Cip1/WAF1) was found in pachytene spermatocytes in epithelial stage V up to step 5 spermatids. A dose of 4 Gy of X-irradiation resulted in a transient increase of p21(Cip1/WAF1) staining in these cells with a maximum at 6 hr post irradiation, despite the fact that the irradiation did not induce an increase in the number of apoptotic spermatocytes. When a dose of 0.3 Gy was given, no increase in p21(Cip1/WAF1) staining was observed. Using the TUNEL technique, a 10-fold increase in apoptotic spermatogonia was found after a dose of 4 Gy. However, no staining for p21(Cip1/WAF1) was observed in spermatogonia, suggesting that these cells do not undergo a p21(Cip1/WAF1)-induced G1 arrest prior to DNA repair or apoptosis. These data imply that p21(Cip1/WAF1) is a factor which could be important during the meiotic prophase in spermatocytes and repair mechanisms in these cells, but not in spermatogonial cell cycle delay or apoptosis induction. Mol. Reprod. Dev. 47:240–247, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
We have previously used NotI as the marker enzyme (recognizing GCGGCCGC) in a genome scanning approach for detection of mutations induced in mouse spermatogonia and estimated the mutation induction rate as about 0.7 x 10(-5) per locus per Gy. To see whether different parts of the genome have different sensitivities for mutation induction, we used AflII (recognizing CTTAAG) as the marker enzyme in the present study. After the screening of 1,120 spots in each mouse offspring, we found five mutations among 92,655 spots from the unirradiated paternal genome, five mutations among 218,411 spots from the unirradiated maternal genome, and 13 mutations among 92,789 spots from 5 Gy-exposed paternal genome. Among the 23 mutations, 11 involved mouse satellite DNA sequences (AT-rich), and the remaining 12 mutations also involved AT-rich but non-satellite sequences. Both types of sequences were found as multiple, similar-sequence blocks in the genome. Counting each member of cluster mutations separately and excluding results on one hypermutable spot, the spontaneous mutation rates were estimated as 3.2 (+/- 1.9) x 10(-5) and 2.3 (+/- 1.0) x 10(-5) per locus per generation in the male and female genomes, respectively, and the mutation induction rate as 1.1 (+/- 1.2) x 10(-5) per locus per Gy. The induction rate would be reduced to 0.9 x 10(-5) per locus per Gy if satellite sequence mutations were excluded from this analysis. The results indicate that mutation induction rates do not largely differ between GC-rich and AT-rich regions: 1 x 10(-5) per locus per Gy or less, which is close to 1.08 x 10(-5) per locus per Gy, the current estimate for the mean mutation induction rate in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号