首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The mitochondrial ATP-sensitive potassium channel (mK(ATP)) is important in cardioprotection, although the channel remains molecularly undefined. Several studies have demonstrated that mitochondrial complex II inhibitors activate the mK(ATP), suggesting a potential role for complex II in channel composition or regulation. However, these inhibitors activate mK(ATP) at concentrations which do not affect bulk complex II activity. Using the potent complex II inhibitor Atpenin A5, this relationship was investigated using tight-binding inhibitor theory, to demonstrate that only 0.4 % of total complex II molecules are necessary to activate the mK(ATP). These results estimate the mK(ATP) content at 15 channels per mitochondrion.  相似文献   

2.
The mitochondrial ATP-sensitive potassium channel (mK(ATP)) is important in the protective mechanism of ischemic preconditioning (IPC). The channel is reportedly sensitive to reactive oxygen and nitrogen species, and the aim of this study was to compare such species in parallel, to build a more comprehensive picture of mK(ATP) regulation. mK(ATP) activity was measured by both osmotic swelling and Tl(+) flux assays, in isolated rat heart mitochondria. An isolated adult rat cardiomyocyte model of ischemia-reperfusion (IR) injury was also used to determine the role of mK(ATP) in cardioprotection by nitroxyl. Key findings were as follows: (i) mK(ATP) was activated by O(2)(-) and H(2)O(2) but not other peroxides. (ii) mK(ATP) was inhibited by NADPH. (iii) mK(ATP) was activated by S-nitrosothiols, nitroxyl, and nitrolinoleate. The latter two species also inhibited mitochondrial complex II. (iv) Nitroxyl protected cardiomyocytes against IR injury in an mK(ATP)-dependent manner. Overall, these results suggest that the mK(ATP) channel is activated by specific reactive oxygen and nitrogen species, and inhibited by NADPH. The redox modulation of mK(ATP) may be an underlying mechanism for its regulation in the context of IPC. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.  相似文献   

3.
The ATP-sensitive K(+) (K(ATP)) channels in both sarcolemmal (sarcK(ATP)) and mitochondrial inner membrane (mitoK(ATP)) are the critical mediators in cellular protection of ischemic preconditioning (IPC). Whereas cardiac sarcK(ATP) contains Kir6.2 and sulfonylurea receptor (SUR)2A, the molecular identity of mitoK(ATP) remains elusive. In the present study, we tested the hypothesis that protein kinase C (PKC) may promote import of Kir6.2-containing K(ATP) into mitochondria. Fluorescence imaging of isolated mitochondria from both rat adult cardiomyocytes and COS-7 cells expressing recombinant Kir6.2/SUR2A showed that Kir6.2-containing K(ATP) channels were localized in mitochondria and this mitochondrial localization was significantly increased by PKC activation with phorbol 12-myristate 13-acetate (PMA). Fluorescence resonance energy transfer microscopy further revealed that a significant number of Kir6.2-containing K(ATP) channels were localized in mitochondrial inner membrane after PKC activation. These results were supported by Western blotting showing that the Kir6.2 protein level in mitochondria from COS-7 cells transfected with Kir6.2/SUR2A was enhanced after PMA treatment and this increase was inhibited by the selective PKC inhibitor chelerythrine. Furthermore, functional analysis indicated that the number of functional K(ATP) channels in mitochondria was significantly increased by PMA, as shown by K(ATP)-dependent decrease in mitochondrial membrane potential in COS-7 cells transfected with Kir6.2/SUR2A but not empty vector. Importantly, PKC-mediated increase in mitochondrial Kir6.2-containing K(ATP) channels was blocked by a selective PKCepsilon inhibitor peptide in both COS-7 cells and cardiomyocytes. We conclude that the K(ATP) channel pore-forming subunit Kir6.2 is indeed localized in mitochondria and that the Kir6.2 content in mitochondria is increased by activation of PKCepsilon. PKC isoform-regulated mitochondrial import of K(ATP) channels may have significant implication in cardioprotection of IPC.  相似文献   

4.
Activation by diazoxide and inhibition by 5-hydroxydecanoate are the hallmarks of mitochondrial ATP-sensitive K+ (K(ATP)) channels. Opening of these channels is thought to trigger cytoprotection (preconditioning) through the generation of reactive oxygen species. However, we found that diazoxide-induced oxidation of the widely used reactive oxygen species indicator 2',7'-dichlorodihydrofluorescein in isolated liver and heart mitochondria was observed in the absence of ATP or K+ and therefore independent of K(ATP) channels. The response was blocked by stigmatellin, implying a role for the cytochrome bc1 complex (complex III). Diazoxide, though, did not increase hydrogen peroxide (H2O2) production (quantitatively measured with Amplex Red) in intact mitochondria, submitochondrial particles, or purified cytochrome bc1 complex. We confirmed that diazoxide inhibited succinate oxidation, but it also weakly stimulated state 4 respiration even in K+-free buffer, excluding a role for K(ATP) channels. Furthermore, we have shown previously that 5-hydroxydecanoate is partially metabolized, and we hypothesized that fatty acid metabolism may explain the ability of this putative mitochondrial K(ATP) channel blocker to inhibit diazoxide-induced flavoprotein fluorescence, commonly used as an assay of K(ATP) channel activity. Indeed, consistent with our hypothesis, we found that decanoate inhibited diazoxide-induced flavoprotein oxidation. Taken together, our data question the "mitochondrial K(ATP) channel" hypothesis of preconditioning. Diazoxide did not evoke superoxide (which dismutates to H2O2) from the respiratory chain by a direct mechanism, and the stimulatory effects of this compound on mitochondrial respiration and 2',7'-dichlorodihydrofluorescein oxidation were not due to the opening of K(ATP) channels.  相似文献   

5.
Whether the mitochondrial ATP-dependent potassium (mK(ATP)) channel is the trigger or the mediator of cardioprotection is controversial. We investigated the critical time sequences of mK(ATP) channel opening for cardioprotection in isolated rabbit hearts. Pretreatment with diazoxide (100 microM), a selective mK(ATP) channel opener, for 5 min followed by 10 min washout before the 30-min ischemia and 2-h reperfusion significantly reduced infarct size (9 +/- 3 vs. 35 +/- 3% in control), indicating a role of mK(ATP) channels as a trigger of protection. The protection was blocked by coadministration of the L-type Ca(2+) channel blockers nifedipine (100 nM) or 5-hydroxydecanoic acid (5-HD; 50 microM) or by the protein kinase C (PKC) inhibitor chelerythrine (5 microM). The protection of diazoxide was not blocked by 50 microM 5-HD but was blocked by 200 microM 5-HD or 10 microM glybenclamide administrated 5 min before and throughout the 30 min of ischemia, indicating a role of mK(ATP) opening as a mediator of protection. Giving diazoxide throughout the 30 min of ischemia also protected the heart, and the protection was not blocked by chelerythrine. Nifedipine did not affect the ability of diazoxide to open mK(ATP) channels assessed by mitochondrial redox state. In electrically stimulated rabbit ventricular myocytes, diazoxide significantly increased Ca(2+) transient but had no effect on L-type Ca(2+) currents. Our results suggest that opening of mK(ATP) channels can trigger cardioprotection. The trigger phase may be induced by elevation of intracellular Ca(2+) and activation of PKC. During the lethal ischemia, mK(ATP) channel opening mediates the protection, independent of PKC, by yet unknown mechanisms.  相似文献   

6.
ATP-sensitive potassium channels of the inner mitochondrial membrane (mtKATP) are blocked by ATP. They are suggested to be involved in protective mechanisms such as ischemic preconditioning (IPC). Here we identify this channel type for the first time in a human cell line (Jurkat cells). Vesicles of the inner mitochondrial membrane (mitoplasts) were prepared by hypoosmotic shock. Single-channel currents were measured by means of the patch-clamp technique. We identified an outward-rectifying channel with a slope conductance of 15 and 82 pS at negative and positive potentials, respectively. The block by 5-hydroxydecanoic acid and inhibition by ATP characterize this channel as the mtKATP channel. ATP also increased the frequency of events within the burst. This effect was modulated by the Ca2+-bath concentration. We also show that the human mtKATP channel is a direct target for nitric oxide that blocked the channel activity. Although the molecular structure of this channel type is still unknown, its characterization as an outward-rectifying channel and modulation by calcium ions and nitric oxide may help to elucidate its functional significance, which possibly implicates a role in cell survival after IPC.  相似文献   

7.
From time of their discovery, sarcolemmal ATP-sensitive K+ (sarcK ATP) channels were thought to have an important protective role in the heart during stress whereby channel opening protects the heart from stress-induced Ca2+ overload and resulting damage. In contrast, some recent studies indicate that sarcK ATP channel closing can lead to cardiac protection. Also, the role of the sarcK ATP channel in apoptotic cell death is unclear. In the present study, the effects of channel inhibition on apoptosis and the specific interaction between the sarcK ATP channel and mitochondria were investigated. Apoptotic cell death of cultured HL-1 and neonatal cardiomyocytes following exposure to oxidative stress was significantly increased in the presence of sarcK ATP channel inhibitor HMR-1098 as evidenced by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling and caspase-3,7 assays. This was paralleled by an increased release of cytochrome c from mitochondria to cytosol, suggesting activation of the mitochondrial death pathway. sarcK ATP channel inhibition during stress had no effect on Bcl-2, Bad, and phospho-Bad, indicating that the increase in apoptosis cannot be attributed to these modulators of the apoptotic pathway. However, monitoring of mitochondrial Ca2+ with rhod-2 fluorescent indicator revealed that mitochondrial Ca2+ accumulation during stress is potentiated in the presence of HMR-1098. In conclusion, this study provides novel evidence that opening of sarcK ATP channels, through a specific Ca2+-related interaction with mitochondria, plays an important role in preventing cardiomyocyte apoptosis and mitochondrial damage during stress.  相似文献   

8.
《BBA》2013,1827(10):1156-1164
The impact of complex II (succinate:ubiquinone oxidoreductase) on the mitochondrial production of reactive oxygen species (ROS) has been underestimated for a long time. However, recent studies with intact mitochondria revealed that complex II can be a significant source of ROS. Using submitochondrial particles from bovine heart mitochondria as a system that allows the precise setting of substrate concentrations we could show that mammalian complex II produces ROS at subsaturating succinate concentrations in the presence of Q-site inhibitors like atpenin A5 or when a further downstream block of the respiratory chain occurred. Upon inhibition of the ubiquinone reductase activity, complex II produced about 75% hydrogen peroxide and 25% superoxide. ROS generation was attenuated by all dicarboxylates that are known to bind competitively to the substrate binding site of complex II, suggesting that the oxygen radicals are mainly generated by the unoccupied flavin site. Importantly, the ROS production induced by the Q-site inhibitor atpenin A5 was largely unaffected by the redox state of the Q pool and the activity of other respiratory chain complexes. Hence, complex II has to be considered as an independent source of mitochondrial ROS in physiology and pathophysiology.  相似文献   

9.
We examined the role of the sarcolemmal and mitochondrial K(ATP) channels in a rat model of ischemic preconditioning (IPC). Infarct size was expressed as a percentage of the area at risk (IS/AAR). IPC significantly reduced infarct size (7 +/- 1%) versus control (56 +/- 1%). The sarcolemmal K(ATP) channel-selective antagonist HMR-1098 administered before IPC did not significantly attenuate cardioprotection. However, pretreatment with the mitochondrial K(ATP) channel-selective antagonist 5-hydroxydecanoic acid (5-HD) 5 min before IPC partially abolished cardioprotection (40 +/- 1%). Diazoxide (10 mg/kg iv) also reduced IS/AAR (36.2 +/- 4.8%), but this effect was abolished by 5-HD. As an index of mitochondrial bioenergetic function, the rate of ATP synthesis in the AAR was examined. Untreated animals synthesized ATP at 2.12 +/- 0.30 micromol x min(-1) x mg mitochondrial protein(-1). Rats subjected to ischemia-reperfusion synthesized ATP at 0.67 +/- 0.06 micromol x min(-1) x mg mitochondrial protein(-1). IPC significantly increased ATP synthesis to 1.86 +/- 0.23 micromol x min(-1) x mg mitochondrial protein(-1). However, when 5-HD was administered before IPC, the preservation of ATP synthesis was attenuated (1.18 +/- 0.15 micromol x min(-1) x mg mitochondrial protein(-1)). These data are consistent with the notion that inhibition of mitochondrial K(ATP) channels attenuates IPC by reducing IPC-induced protection of mitochondrial function.  相似文献   

10.
ATP-sensitive potassium channels of the inner mitochondrial membrane (mtKATP) are blocked by ATP. They are suggested to be involved in protective mechanisms such as ischemic preconditioning (IPC). Here we identify this channel type for the first time in a human cell line (Jurkat cells). Vesicles of the inner mitochondrial membrane (mitoplasts) were prepared by hypoosmotic shock. Single-channel currents were measured by means of the patch-clamp technique. We identified an outward-rectifying channel with a slope conductance of 15 and 82 pS at negative and positive potentials, respectively. The block by 5-hydroxydecanoic acid and inhibition by ATP characterize this channel as the mtKATP channel. ATP also increased the frequency of events within the burst. This effect was modulated by the Ca2+-bath concentration. We also show that the human mtKATP channel is a direct target for nitric oxide that blocked the channel activity. Although the molecular structure of this channel type is still unknown, its characterization as an outward-rectifying channel and modulation by calcium ions and nitric oxide may help to elucidate its functional significance, which possibly implicates a role in cell survival after IPC.  相似文献   

11.
We have previously demonstrated that remote ischemic preconditioning (IPC) by instigation of three cycles of 10-min occlusion/reperfusion in a hindlimb of the pig elicits an early phase of infarct protection in local and distant skeletal muscles subjected to 4 h of ischemia immediately after remote IPC. The aim of this project was to test our hypothesis that hindlimb remote IPC also induces a late phase of infarct protection in skeletal muscle and that K(ATP) channels play a pivotal role in the trigger and mediator mechanisms. We observed that pig bilateral latissimus dorsi (LD) muscle flaps sustained 46 +/- 2% infarction when subjected to 4 h of ischemia/48 h of reperfusion. The late phase of infarct protection appeared at 24 h and lasted up to 72 h after hindlimb remote IPC. The LD muscle infarction was reduced to 28 +/- 3, 26 +/- 1, 23 +/- 2, 24 +/- 2 and 24 +/- 4% at 24, 28, 36, 48 and 72 h after remote IPC, respectively (P < 0.05; n = 8). In subsequent studies, hindlimb remote IPC or intravenous injection of the sarcolemmal K(ATP) (sK(ATP)) channel opener P-1075 (2 microg/kg) at 24 h before 4 h of sustained ischemia (i.e., late preconditioning) reduced muscle infarction from 43 +/- 4% (ischemic control) to 24 +/- 2 and 19 +/- 3%, respectively (P < 0.05, n = 8). Intravenous injection of the sK(ATP) channel inhibitor HMR 1098 (6 mg/kg) or the nonspecific K(ATP) channel inhibitor glibenclamide (Glib; 1 mg/kg) at 10 min before remote IPC completely blocked the infarct- protective effect of remote IPC in LD muscle flaps subjected to 4 h of sustained ischemia at 24 h after remote IPC. Intravenous bolus injection of the mitochondrial K(ATP) (mK(ATP)) channel inhibitor 5-hydroxydecanoate (5-HD; 5 mg/kg) immediately before remote IPC and 30-min intravenous infusion of 5-HD (5 mg/kg) during remote IPC did not affect the infarct-protective effect of remote IPC in LD muscle flaps. However, intravenous Glib or 5-HD, but not HMR 1098, given 24 h after remote IPC completely blocked the late infarct-protective effect of remote IPC in LD muscle flaps. None of these drug treatments affected the infarct size of control LD muscle flaps. The late phase of infarct protection was associated with a higher (P < 0.05) muscle content of ATP at the end of 4 h of ischemia and 1.5 h of reperfusion and a lower (P < 0.05) neutrophilic activity at the end of 1.5 h of reperfusion compared with the time-matched control. In conclusion, these findings support our hypothesis that hindlimb remote IPC induces an uninterrupted long (48 h) late phase of infarct protection, and sK(ATP) and mK(ATP) channels play a central role in the trigger and mediator mechanism, respectively.  相似文献   

12.
Two kinetically distinct states of succinate oxidase have been detected in the mitochondria of Neruospora crassa. One state has a K(m) for succinate of 4.1 x 10(-3)m, and the other has a K(m) for succinate of 3.5 x 10(-4)m. The high K(m) state was found in freshly extracted mitochondria from either 20- or 72-hr mycelium. However, the succinate oxidase activity in mitochondria from 20-hr mycelium rapidly deteriorated in vitro, leaving a stable residual activity with the lower K(m) for succinate. Adenosine triphosphate (ATP) plus Mg(2+) stabilized the high K(m) state in these preparations. The high K(m) state of succinate oxidase was further characterized by a two- to threefold increase in activity over the pH range 6.6 to 8.0 and by classical competitive inhibition by fumarate and malonate. By contrast, the low K(m) state of succinate oxidase showed a relatively flat response to pH over the range 6.6 to 8.0 and a nonclassical pattern of inhibition by fumarate and malonate, as shown by nonlinear plots of reciprocal velocity versus reciprocal substrate concentration in the presence of inhibitor or reciprocal velocity versus inhibitor concentration at fixed substrate concentrations. The relationship of mycelial age to the in vitro stability of succinate oxidase is considered with reference to probable changes in the relative pool sizes of extra- and intramitochondrial ATP in response to changes in the rate of glycolysis.  相似文献   

13.
We have investigated the presence of diazoxide- and nicorandil-activated K+ channels in rat skeletal muscle. Activation of potassium transport in the rat skeletal muscle myoblast cell line L6 caused a stimulation of cellular oxygen consumption, implying a mitochondrial effect. Working with isolated rat skeletal muscle mitochondria, both potassium channel openers (KCOs) stimulate respiration, depolarize the mitochondrial inner membrane and lead to oxidation of the mitochondrial NAD-system in a strict potassium-dependent manner. This is a strong indication for KCO-mediated stimulation of potassium transport at the mitochondrial inner membrane. Moreover, the potassium-specific effects of both diazoxide and nicorandil on oxidative phosphorylation in skeletal muscle mitochondria were completely abolished by the antidiabetic sulfonylurea derivative glibenclamide, a well-known inhibitor of ATP-regulated potassium channels (K(ATP) channels). Since both diazoxide and nicorandil facilitated swelling of de-energised mitochondria in KSCN buffer at the same concentrations, our results implicate the presence of a mitochondrial ATP-regulated potassium channel (mitoK(ATP) channel) in rat skeletal muscle which can modulate mitochondrial oxidative phosphorylation.  相似文献   

14.
15.
《BBA》2023,1864(1):148930
At low inner mitochondrial membrane potential (ΔΨ) oxaloacetate (OAA) accumulates in the organelles concurrently with decreased complex II-energized respiration. This is consistent with ΔΨ-dependent OAA inhibition of succinate dehydrogenase. To assess the metabolic importance of this process, we tested the hypothesis that perturbing metabolic clearance of OAA in complex II-energized mitochondria would alter O2 flux and, further, that this would occur in both ΔΨ and tissue-dependent fashion. We carried out respiratory and metabolite studies in skeletal muscle and interscapular brown adipose tissue (IBAT) directed at the effect of OAA transamination to aspartate (catalyzed by the mitochondrial form of glutamic-oxaloacetic transaminase, Got2) on complex II-energized respiration. Addition of low amounts of glutamate to succinate-energized mitochondria at low ΔΨ increased complex II (succinate)-energized respiration in muscle but had little effect in IBAT mitochondria. The transaminase inhibitor, aminooxyacetic acid, increased OAA concentrations and impaired succinate-energized respiration in muscle but not IBAT mitochondria at low but not high ΔΨ. Immunoblotting revealed that Got2 expression was far greater in muscle than IBAT mitochondria. Because we incidentally observed metabolism of OAA to pyruvate in IBAT mitochondria, more so than in muscle mitochondria, we also examined the expression of mitochondrial oxaloacetate decarboxylase (ODX). ODX was detected only in IBAT mitochondria. In summary, at low but not high ΔΨ, mitochondrial transamination clears OAA preventing loss of complex II respiration: a process far more active in muscle than IBAT mitochondria. We also provide evidence that OAA decarboxylation clears OAA to pyruvate in IBAT mitochondria.  相似文献   

16.
Evidence is increasing that mitochondrial dysfunction is involved in amyotrophic lateral sclerosis, a neurodegenerative disease characterized by selective motoneuron death. To study the role of mitochondrial dysfunction in the pathways leading to motoneuron death, we developed an in vitro model of chronic motoneuron toxicity, based on malonate-induced inhibition of complex II in the mitochondrial electron transport chain. Treatment with malonate resulted in a dose-dependent decrease in cellular ATP levels. We observed that motoneurons were significantly more vulnerable to mitochondrial inhibition than control neurons in the dorsal horn. We could reproduce this dose-dependent phenomenon with the complex IV inhibitor sodium azide. The free radical scavenger alpha-phenyl-N-tert-butylnitrone, the AMPA/kainate receptor blocker 6-cyano-7-nitroquinoxaline-2,3-dione, and riluzole, a drug that is currently used for the treatment of amyotrophic lateral sclerosis, were protective against malonate-induced motoneuron death. Furthermore, the caspase inhibitors N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone and z-Asp-Glu-Val-Asp-fluoromethyl ketone were both protective against malonate toxicity. Our model shows that chronic mitochondrial inhibition leads to selective motoneuron death, which is most likely apoptotic.  相似文献   

17.
Adaphostin is a dihydroquinone derivative that is undergoing extensive preclinical testing as a potential anticancer drug. Previous studies have suggested that the generation of reactive oxygen species (ROS) plays a critical role in the cytotoxicity of this agent. In this study, we investigated the source of these ROS. Consistent with the known chemical properties of dihydroquinones, adaphostin simultaneously underwent oxidation to the corresponding quinone and generated ROS under aqueous conditions. Interestingly, however, this quinone was not detected in intact cells. Instead, high performance liquid chromatography demonstrated that adaphostin was concentrated by up to 300-fold in cells relative to the extracellular medium and that the highest concentration of adaphostin (3000-fold over extracellular concentrations) was detected in mitochondria. Consistent with a mitochondrial site for adaphostin action, adaphostin-induced ROS production was diminished by >75% in MOLT-4 rho(0) cells, which lack mitochondrial electron transport, relative to parental MOLT-4 cells. In addition, inhibition of oxygen consumption was observed when intact cells were treated with adaphostin. Loading of isolated mitochondria to equivalent adaphostin concentrations caused inhibition of uncoupled oxygen consumption in mitochondria incubated with the complex I substrates pyruvate and malate or the complex II substrate succinate. Further analysis demonstrated that adaphostin had no effect on pyruvate or succinate dehydrogenase activity. Instead, adaphostin inhibited reduced decylubiquinone-induced cytochrome c reduction, identifying complex III as the site of inhibition by this agent. Moreover, adaphostin enhanced the production of ROS by succinate-charged mitochondria. Collectively, these observations demonstrate that mitochondrial respiration rather than direct redox cycling of the hydroquinone moiety is a source of adaphostin-induced ROS and identify complex III as a potential target for antineoplastic agents.  相似文献   

18.
Ischemic preconditioning (IPC) is an evolutionarily conserved endogenous mechanism whereby short periods of non-lethal exposure to hypoxia alleviate damage caused by subsequent ischemia reperfusion (IR). Pharmacologic targeting has suggested that the mitochondrial ATP-sensitive potassium channel (mKATP) is central to IPC signaling, despite its lack of molecular identity. Here, we report that isolated Caenorhabditis elegans mitochondria have a KATP channel with the same physiologic and pharmacologic characteristics as the vertebrate channel. Since C. elegans also exhibit IPC, our observations provide a framework to study the role of mKATP in IR injury in a genetic model organism.  相似文献   

19.
It has been found that amytal competitively inhibits succinate (+ rotenone) oxidation by intact uncoupled mitochondria. Similar results were obtained in metabolic state 3, the Ki value being 0.45 mM. Amytal did not effect succinate oxidation by broken mitochondria and submitochondrial particles (at a concentration which inhibited succinate oxidation by intact mitochondria). Amytal inhibited the swelling of mitochondria suspended in ammonium succinate or ammonium malate but was without effect on the swelling of mitochondria in ammonium phosphate and potassium phosphate in the presence of valinomycin+carbonylcyanide p-trifluoromethoxyphenylhydrazone.Using [14C] succinate and [14C] citrate it has been shown that amytal inhibited the succinate/succinate, succinate/Pi, succinate/malate, and citrate/citrate and citrate/malate exchanges. Amytal inhibited Pi transport across mitochondrial membrane only if preincubated with mitochondria. Other barbiturates: phenobarbital, dial, veronal were found to inhibit [14C]succinate/anion (Pi, succinate, malonate, malate) exchange reactions in a manner similar to amytal. It is concluded that barbiturates non-specifically inhibit the dicarboxylate carrier system, tricarboxylate carrier and Pi translocator. It is postulated that the inhibition of succinate oxidation by barbiturates is caused mainly by the inhibition of succinate and Pi translocation across the mitochondrial membrane.  相似文献   

20.
Carbon monoxide (CO), produced during the degradation of heme by the enzyme heme oxygenase, is an important signaling mediator in mammalian cells. Here we show that precise delivery of CO to isolated heart mitochondria using a water-soluble CO-releasing molecule (CORM-3) uncouples respiration. Addition of low-micromolar concentrations of CORM-3 (1–20 μM), but not an inactive compound that does not release CO, significantly increased mitochondrial oxygen consumption rate (State 2 respiration) in a concentration-dependent manner. In contrast, higher concentrations of CORM-3 (100 μM) suppressed ADP-dependent respiration through inhibition of cytochrome c oxidase. The uncoupling effect mediated by CORM-3 was inhibited in the presence of the CO scavenger myoglobin. Moreover, this effect was associated with a gradual decrease in membrane potential (ψ) over time and was partially reversed by malonate, an inhibitor of complex II activity. Similarly, inhibition of uncoupling proteins or blockade of adenine nucleotide transporter attenuated the effect of CORM-3 on both State 2 respiration and Δψ. Hydrogen peroxide (H2O2) produced by mitochondria respiring from complex I-linked substrates (pyruvate/malate) was increased by CORM-3. However, respiration initiated via complex II using succinate resulted in a fivefold increase in H2O2 production and this effect was significantly inhibited by CORM-3. These findings disclose a counterintuitive action of CORM-3 suggesting that CO at low levels acts as an important regulator of mitochondrial respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号