共查询到20条相似文献,搜索用时 0 毫秒
1.
Akimoto T Sugawara J Ichikawa D Terada N Fadel PJ Ogoh S 《American journal of physiology. Regulatory, integrative and comparative physiology》2011,301(5):R1591-R1598
The neural interaction between the cardiopulmonary and arterial baroreflex may be critical for the regulation of blood pressure during orthostatic stress. However, studies have reported conflicting results: some indicate increases and others decreases in cardiac baroreflex sensitivity (i.e., gain) with cardiopulmonary unloading. Thus the effect of orthostatic stress-induced central hypovolemia on regulation of heart rate via the arterial baroreflex remains unclear. We sought to comprehensively assess baroreflex function during orthostatic stress by identifying and comparing open- and closed-loop dynamic cardiac baroreflex gains at supine rest and during 60° head-up tilt (HUT) in 10 healthy men. Closed-loop dynamic "spontaneous" cardiac baroreflex sensitivities were calculated by the sequence technique and transfer function and compared with two open-loop carotid-cardiac baroreflex measures using the neck chamber system: 1) a binary white-noise method and 2) a rapid-pulse neck pressure-neck suction technique. The gain from the sequence technique was decreased from -1.19 ± 0.14 beats·min(-1)·mmHg(-1) at rest to -0.78 ± 0.10 beats·min(-1)·mmHg(-1) during HUT (P = 0.005). Similarly, closed-loop low-frequency baroreflex transfer function gain was reduced during HUT (P = 0.033). In contrast, open-loop low-frequency transfer function gain between estimated carotid sinus pressure and heart rate during white-noise stimulation was augmented during HUT (P = 0.01). This result was consistent with the maximal gain of the carotid-cardiac baroreflex stimulus-response curve (from 0.47 ± 0.15 beats·min(-1)·mmHg(-1) at rest to 0.60 ± 0.20 beats·min(-1)·mmHg(-1) at HUT, P = 0.037). These findings suggest that open-loop cardiac baroreflex gain was enhanced during HUT. Moreover, under closed-loop conditions, spontaneous baroreflex analyses without external stimulation may not represent open-loop cardiac baroreflex characteristics during orthostatic stress. 相似文献
2.
R Fiocchi R Fagard L Vanhees R Grauwels A Amery 《European journal of applied physiology and occupational physiology》1985,54(5):461-465
Carotid baroreceptors were stimulated with neck suction in 47 healthy subjects. Pulse interval lengthening was measured and the time course of the response was evaluated. Eight intensities of neck chamber suction were applied to select a criterion for computing the "RR response" that gives a significant linear relationship with the magnitude of the stimuli in the highest number of individuals. The best criterion was the maximal RR prolongation within 5 seconds after the onset of the stimulus. The slope of this relationship was defined as baroreflex sensitivity. The effect of physical fitness on baroreceptor function was investigated in 24 cycling tourists with a wide range of peak oxygen uptake and training characteristics. Baroreflex sensitivity averaged 7.3 +/- 0.8 msec X mm Hg-1 and was not significantly related to age, weight, basal heart rate, peak oxygen uptake and ventilation and other training characteristics. The results suggest that in man the so defined sensitivity of the carotid baroreflex control of heart rate is not influenced by the level of physical fitness and therefore the measurement of these characteristics can be neglected in evaluating baroreflex sensitivity. 相似文献
3.
Olufsen MS Tran HT Ottesen JT;Research Experiences for Undergraduates Program Lipsitz LA Novak V 《American journal of physiology. Regulatory, integrative and comparative physiology》2006,291(5):R1355-R1368
During orthostatic stress, arterial and cardiopulmonary baroreflexes play a key role in maintaining arterial pressure by regulating heart rate. This study presents a mathematical model that can predict the dynamics of heart rate regulation in response to postural change from sitting to standing. The model uses blood pressure measured in the finger as an input to model heart rate dynamics in response to changes in baroreceptor nerve firing rate, sympathetic and parasympathetic responses, vestibulo-sympathetic reflex, and concentrations of norepinephrine and acetylcholine. We formulate an inverse least squares problem for parameter estimation and successfully demonstrate that our mathematical model can accurately predict heart rate dynamics observed in data obtained from healthy young, healthy elderly, and hypertensive elderly subjects. One of our key findings indicates that, to successfully validate our model against clinical data, it is necessary to include the vestibulo-sympathetic reflex. Furthermore, our model reveals that the transfer between the nerve firing and blood pressure is nonlinear and follows a hysteresis curve. In healthy young people, the hysteresis loop is wide, whereas, in healthy and hypertensive elderly people, the hysteresis loop shifts to higher blood pressure values, and its area is diminished. Finally, for hypertensive elderly people, the hysteresis loop is generally not closed, indicating that, during postural change from sitting to standing, baroreflex modulation does not return to steady state during the first minute of standing. 相似文献
4.
Westerhof BE Gisolf J Karemaker JM Wesseling KH Secher NH van Lieshout JJ 《American journal of physiology. Heart and circulatory physiology》2006,291(6):H2864-H2874
Postural stress requires immediate autonomic nervous action to maintain blood pressure. We determined time-domain cardiac baroreflex sensitivity (BRS) and time delay (tau) between systolic blood pressure and interbeat interval variations during stepwise changes in the angle of vertical body axis (alpha). The assumption was that with increasing postural stress, BRS becomes attenuated, accompanied by a shift in tau toward higher values. In 10 healthy young volunteers, alpha included 20 degrees head-down tilt (-20 degrees), supine (0 degree), 30 and 70 degrees head-up tilt (30 degrees, 70 degrees), and free standing (90 degrees). Noninvasive blood pressures were analyzed over 6-min periods before and after each change in alpha. The BRS was determined by frequency-domain analysis and with xBRS, a cross-correlation time-domain method. On average, between 28 (-20 degrees) to 45 (90 degrees) xBRS estimates per minute became available. Following a change in alpha, xBRS reached a different mean level in the first minute in 78% of the cases and in 93% after 6 min. With increasing alpha, BRS decreased: BRS = -10.1.sin(alpha) + 18.7 (r(2) = 0.99) with tight correlation between xBRS and cross-spectral gain (r(2) approximately 0.97). Delay tau shifted toward higher values. In conclusion, in healthy subjects the sensitivity of the cardiac baroreflex obtained from time domain decreases linearly with sin(alpha), and the start of baroreflex adaptation to a physiological perturbation like postural stress occurs rapidly. The decreases of BRS and reduction of short tau may be the result of reduced vagal activity with increasing alpha. 相似文献
5.
J Staessen R Fiocchi R Fagard P Hespel A Amery 《European journal of applied physiology and occupational physiology》1989,59(1-2):131-137
Physical effort involves, along with an increase in the plasma concentration of beta-endorphin, profound cardiovascular adaptations. The aim of the present study was to investigate with the use of the variable neck chamber technique, the influence of the endogenous opioids on the carotid baroreflex control of blood pressure and heart rate at rest as well as during exercise. Ten normal volunteers exercised in the supine position up to 33% and 66% of their maximal exercise capacity and received, in a randomized double-blind cross-over protocol, either saline or naloxone (10 mg intravenously, followed by a continuous infusion of 10 mg.h-1). During exercise a progressive attenuation of the carotid baroreceptor reflex control of blood pressure and heart rate was noted. However, neither at rest nor during exercise, did opioid antagonism influence the carotid baroreceptor control of blood pressure and heart rate. Intra-arterial pressure and heart rate also remained unaffected. In contrast, both at rest and during exercise, naloxone administration produced a significant increase in the plasma concentration of cortisol. The latter suggests that in vivo the opioid receptors were effectively antagonized. In conclusion the present study confirms that opioids play only a minor role in cardiovascular homeostasis at rest. In addition, this study demonstrates that they are not involved in the cardiovascular adaptation to exercise, nor in the exercise-related attenuation of the carotid baroreceptor control of pressure and heart rate. 相似文献
6.
Crandall CG 《American journal of physiology. Heart and circulatory physiology》2000,279(4):H1955-H1962
The effects of whole body heating on human baroreflex function are relatively unknown. The purpose of this project was to identify whether whole body heating reduces the maximal slope of the carotid baroreflex. In 12 subjects, carotid-vasomotor and carotid-cardiac baroreflex responsiveness were assessed in normothermia and during whole body heating. Whole body heating increased sublingual temperature (from 36.4 +/- 0.1 to 37.4 +/- 0.1 degrees C, P < 0.01) and increased heart rate (from 59 +/- 3 to 83 +/- 3 beats/min, P < 0. 01), whereas mean arterial blood pressure (MAP) was slightly decreased (from 88 +/- 2 to 83 +/- 2 mmHg, P < 0.01). Carotid-vasomotor and carotid-cardiac responsiveness were assessed by identifying the maximal gain of MAP and heart rate to R wave-triggered changes in carotid sinus transmural pressure. Whole body heating significantly decreased the responsiveness of the carotid-vasomotor baroreflex (from -0.20 +/- 0.02 to -0.13 +/- 0.02 mmHg/mmHg, P < 0.01) without altering the responsiveness of the carotid-cardiac baroreflex (from -0.40 +/- 0.05 to -0.36 +/- 0.02 beats x min(-1) x mmHg(-1), P = 0.21). Carotid-vasomotor and carotid-cardiac baroreflex curves were shifted downward and upward, respectively, to accommodate the decrease in blood pressure and increase in heart rate that accompanied the heat stress. Moreover, the operating point of the carotid-cardiac baroreflex was shifted closer to threshold (P = 0.02) by the heat stress. Reduced carotid-vasomotor baroreflex responsiveness, coupled with a reduction in the functional reserve for the carotid baroreflex to increase heart rate during a hypotensive challenge, may contribute to increased susceptibility to orthostatic intolerance during a heat stress. 相似文献
7.
Karl-Jürgen B?r Michael Karl Boettger Sandy Berger Vico Baier Heinrich Sauer Vikram K Yeragani Andreas Voss 《Journal of applied physiology》2007,102(3):1051-1056
Decreased vagal activity has been described in acute schizophrenia and might be associated with altered cardiovascular regulation and increased cardiac mortality. The aim of this study was to assess baroreflex sensitivity in the context of psychopathology. Twenty-one acute, psychotic, unmedicated patients with a diagnosis of paranoid schizophrenia were investigated after admission to the hospital. Results were compared with 21 healthy volunteers matched with respect to age and sex. Cardiovascular parameters obtained included measures for heart rate variability, baroreflex sensitivity, as well as cardiac output, left ventricular work index, and total peripheral resistance. All parameters investigated were analyzed using linear and novel nonlinear techniques. Positive and negative symptoms were assessed to estimate the impact of psychopathology on autonomic parameters. Subjects with acute schizophrenia showed reduction of baroreflex sensitivity accompanied by tachycardia and greatly increased left ventricular work index. Nonlinear parameters of baroreflex sensitivity correlated with positive symptoms. For heart rate variability, mainly parameters indicating parasympathetic modulation were decreased. Vascular pathology could be excluded as a confounding factor. These results reflect a dysfunctional cardiovascular regulation in acute schizophrenic patients at rest. The changes are similar to adaptational regulatory processes following stressful mental or physical tasks in healthy subjects. This study suggests that hyperarousal in acute schizophrenia is accompanied by decreased efferent vagal activity, thus increasing the risk for cardiovascular mortality. Future studies are warranted to examine the role of the sympathetic system and possible autonomic differences in hyperarousal induced by anxiety and/or external stressful events. 相似文献
8.
The arterial baroreflex is an important determinant of the neural regulation of the cardiovascular system. It has been recognised that baroreflex-mediated sympathoexcitation contributes to the development and progression of many cardiovascular disorders. Accordingly, the quantitative estimation of the arterial baroreceptor-heart rate reflex (baroreflex sensitivity, BRS), has been regarded as a synthetic index of neural regulation at the sinus atrial node. The evaluation of BRS has been shown to provide clinical and prognostic information in a variety of cardiovascular diseases, including myocardial infarction and heart failure that are reviewed in the present article. 相似文献
9.
Myers CW Farquhar WB Forman DE Williams TD Dierks DL Taylor JA 《American journal of physiology. Heart and circulatory physiology》2002,283(6):H2592-H2598
Distensibility of the large elastic arteries is a key index for cardiovascular health. Distensibility, usually estimated from resting values in humans, is not a static characteristic but a negative curvilinear function of pressure. We hypothesized that differences in vascular function with gender and age may only be recognized if distensibility is quantified over a range of pressures. We used isometric handgrip exercise to induce progressive increases in pressures and carotid diameters, thereby enhancing the characterization of distensibility. In 30 volunteers, evenly distributed by gender and age across the third to fifth decades of life, we derived pulsatile distensibility slopes as a function of arterial pressure for a dynamic distensibility index and compared it with a traditional static index at a reference pressure of 95 mmHg. We also assessed intima-media thickness (IMT). We found that women had greater distensibility slopes within each decade, despite comparable IMT. Furthermore, declines in distensibility slope with increasing age were correlated to increased IMT. The static distensibility index failed to show gender-related differences in distensibility but did show age-related differences. Our results indicate that gender- and age-related differences can be manifest even in young, healthy adults and may only be identified with techniques that assess carotid distensibility across a range of pressures. 相似文献
10.
Monahan KD Ray CA 《American journal of physiology. Heart and circulatory physiology》2005,288(2):H737-H743
Animal studies suggest that prostanoids (i.e., such as prostacyclin) may sensitize or impair baroreceptor and/or baroreflex responsiveness depending on the site of administration and/or inhibition. We tested the hypothesis that acute inhibition of cyclooxygenase (COX), the rate-limiting enzyme in prostanoid synthesis, impairs baroreflex regulation of cardiac period (R-R interval) and muscle sympathetic nerve activity (MSNA) in humans and augments pressor reactivity. Baroreflex sensitivity (BRS) was determined at baseline (preinfusion) and 60 min after (postinfusion) intravenous infusion of a COX antagonist (ketorolac; 45 mg) (24 +/- 1 yr; n = 12) or saline (25 +/- 1 yr; n = 12). BRS was assessed by using the modified Oxford technique (bolus intravenous infusion of nitroprusside followed by phenylephrine). BRS was quantified as the slope of the linear portion of the 1) R-R interval-systolic blood pressure relation (cardiovagal BRS) and 2) MSNA-diastolic blood pressure relation (sympathetic BRS) during pharmacological changes in arterial blood pressure. Ketorolac did not alter cardiovagal (19.4 +/- 2.1 vs. 18.4 +/- 2.4 ms/mmHg preinfusion and postinfusion, respectively) or sympathetic BRS (-2.9 +/- 0.7 vs. -2.6 +/- 0.4 arbitrary units.beat(-1).mmHg(-1)) but significantly decreased a plasma biomarker of prostanoid generation (plasma thromboxane B2) by 53 +/- 11%. Cardiovagal BRS (21.3 +/- 3.8 vs. 21.2 +/- 3.0 ms/mmHg), sympathetic BRS (-3.4 +/- 0.3 vs. -3.2 +/- 0.2 arbitrary units.beat(-1).mmHg(-1)), and thromboxane B2 (change in -1 +/- 12%) were unchanged in the control (saline infusion) group. Pressor responses to steady-state incremental (0.5, 1.0, and 1.5 microg.kg(-1).min(-1)) infusion (5 min/dose) of phenylephrine were not altered by ketorolac (n = 8). Collectively, these data indicate that acute pharmacological antagonism of the COX enzyme does not impair BRS (cardiovagal or sympathetic) or augment pressor reactivity in healthy young adults. 相似文献
11.
David M Keller Wendy L Wasmund D Walter Wray Shigehiko Ogoh Paul J Fadel Michael L Smith Peter B Raven 《Journal of applied physiology》2003,94(2):542-548
We sought to test the hypothesis that the carotid baroreflex (CBR) alters mean leg blood flow (LBF) and leg vascular conductance (LVC) at rest and during exercise. In seven men and one woman, 25 +/- 2 (SE) yr of age, CBR control of LBF and LVC was determined at rest and during steady-state one-legged knee extension exercise at approximately 65% peak O(2) uptake. The application of 5-s pulses of +40 Torr neck pressure and -60 Torr neck suction significantly altered mean arterial pressure (MAP) and LVC both at rest and during exercise. CBR-mediated changes in MAP were similar between rest and exercise (P > 0.05). However, CBR-mediated decreases in LVC (%change) to neck pressure were attenuated in the exercising leg (16.4 +/- 1.6%) compared with rest (33 +/- 2.1%) and the nonexercising leg (23.7 +/- 1.9%) (P < 0.01). These data suggest CBR control of blood pressure is partially mediated by changes in leg vascular tone both at rest and during exercise. Furthermore, despite alterations in CBR-induced changes in LVC during exercise, CBR control of blood pressure was well maintained. 相似文献
12.
Durocher JJ Klein JC Carter JR 《American journal of physiology. Heart and circulatory physiology》2011,300(5):H1788-H1793
Mental stress consistently induces a pressor response that is often accompanied by a paradoxical increase of muscle sympathetic nerve activity (MSNA). The purpose of the present study was to evaluate sympathetic baroreflex sensitivity (BRS) by examining the relations between spontaneous fluctuations of diastolic arterial pressure (DAP) and MSNA. We hypothesized that sympathetic BRS would be attenuated during mental stress. DAP and MSNA were recorded during 5 min of supine baseline, 5 min of mental stress, and 5 min of recovery in 32 young healthy adults. Burst incidence and area were determined for each cardiac cycle and placed into 3-mmHg DAP bins; the slopes between DAP and MSNA provided an index of sympathetic BRS. Correlations between DAP and MSNA were strong (> 0.5) during baseline in 31 of 32 subjects, but we evaluated the change in slope only for those subjects maintaining a strong correlation during mental stress (16 subjects). During baseline, the relation between DAP and MSNA was negative when expressed as either burst incidence [slope = -1.95 ± 0.18 bursts·(100 beats)?1)·mmHg?1; r = -0.86 ± 0.03] or total MSNA [slope = -438 ± 91 units·(beat)?1 mmHg?1; r = -0.76 ± 0.06]. During mental stress, the slope between burst incidence and DAP was significantly reduced [slope = -1.14 ± 0.12 bursts·(100 beats)?1·mmHg?1; r = -0.72 ± 0.03; P < 0.01], indicating attenuation of sympathetic BRS. A more detailed analysis revealed an attenuation of sympathetic BRS during the first 2 min of mental stress (P < 0.01) but no change during the final 3 min of mental stress (P = 0.25). The present study demonstrates that acute mental stress attenuates sympathetic BRS, which may partially contribute to sympathoexcitation during the mental stress-pressor response. However, this attenuation appears to be isolated to the onset of mental stress. Moreover, variable MSNA responses to mental stress do not appear to be directly related to sympathetic BRS. 相似文献
13.
Muenter Swift N Cutler MJ Fadel PJ Wasmund WL Ogoh S Keller DM Raven PB Smith ML 《American journal of physiology. Heart and circulatory physiology》2003,285(6):H2411-H2419
Muscle sympathetic nerve activity (MSNA) and arterial pressure increase concomitantly during apnea, suggesting a possible overriding of arterial baroreflex inhibitory input to sympathoregulatory centers by apnea-induced excitatory mechanisms. Apnea termination is accompanied by strong sympathoinhibition while arterial pressure remains elevated. Therefore, we hypothesized that the sensitivity of carotid baroreflex control of MSNA would decrease during apnea and return upon apnea termination. MSNA and heart rate responses to -60-Torr neck suction (NS) were evaluated during baseline and throughout apnea. Responses to +30-Torr neck pressure (NP) were evaluated during baseline and throughout 1 min postapnea. Apnea did not affect the sympathoinhibitory or bradycardic response to NS (P > 0.05); however, whereas the cardiac response to NP was maintained postapnea, the sympathoexcitatory response was reduced for 50 s (P < 0.05). These data demonstrate that the sensitivity of carotid baroreflex control of MSNA is not attenuated during apnea. We propose a transient rightward and upward resetting of the carotid baroreflex-MSNA function curve during apnea and that return of the function curve to, or more likely beyond, baseline (i.e., a downward and leftward shift) upon apnea termination may importantly contribute to the reduced sympathoexcitatory response to NP. 相似文献
14.
Krabbendam I Jacobs LC Lotgering FK Spaanderman ME 《American journal of physiology. Heart and circulatory physiology》2008,295(4):H1587-H1593
Head-up tilt (HUT) induces a reduction in preload, which is thought to be restored through sympathetic venoconstriction, reducing unstressed volume (V(u)) and venous compliance (VeC). In this study, we assessed venous inflow and outflow responses and their reproducibility and determined the relation with autonomic function during HUT. Eight healthy non-pregnant women were subjected to 20 degrees head-down tilt to 60 degrees HUT at 20 degrees intervals. At each rotational step, we randomly assessed forearm pressure-volume (P-V) curves (venous occlusion plethysmography) during inflow (VeC(IN)) and outflow [venous emptying rate (VER(OUT))]. VeC(IN) was defined as the ratio of the slope of the volume-time curve and pressure-time curve, with direct intravenous pressure measurement. VER(OUT) was determined using the derivate of a quadratic regression model using cuff pressure. We defined V(u) as the y-intercept of the P-V curve. We calculated, for both methods, the coefficients of reproducibility (CR) and variation (CV). Vascular sympathetic activity was determined by spectral analysis. VeC(IN) decreased at each rotational step compared with the supine position (P<0.05), whereas VER(OUT) increased. CR of VeC(IN) was higher in the supine position than VER(OUT) but lower during HUT. CV varied between 19% and 25% (VeC(IN)) and between 12% and 21% (VER(OUT)). HUT decreased V(u). The change in VeC(IN) and VER(OUT) correlated with the change in vascular sympathetic activity (r= -0.36, P<0.01, and r=0.48, P<0.01). This is the first study in which a reproducible reduction in VeC(IN) and V(u) and a rise in VER(OUT) during HUT are documented. The alterations in venous characteristics relate to changes in vascular sympathetic activity. 相似文献
15.
Thomas Heldt Eun B Shim Roger D Kamm Roger G Mark 《Journal of applied physiology》2002,92(3):1239-1254
The objective of this study is to develop a model of the cardiovascular system capable of simulating the short-term (< or = 5 min) transient and steady-state hemodynamic responses to head-up tilt and lower body negative pressure. The model consists of a closed-loop lumped-parameter representation of the circulation connected to set-point models of the arterial and cardiopulmonary baroreflexes. Model parameters are largely based on literature values. Model verification was performed by comparing the simulation output under baseline conditions and at different levels of orthostatic stress to sets of population-averaged hemodynamic data reported in the literature. On the basis of experimental evidence, we adjusted some model parameters to simulate experimental data. Orthostatic stress simulations are not statistically different from experimental data (two-sided test of significance with Bonferroni adjustment for multiple comparisons). Transient response characteristics of heart rate to tilt also compare well with reported data. A case study is presented on how the model is intended to be used in the future to investigate the effects of post-spaceflight orthostatic intolerance. 相似文献
16.
Monahan KD Leuenberger UA Ray CA 《American journal of physiology. Heart and circulatory physiology》2007,292(1):H190-H197
Animal studies suggest that acute and chronic aldosterone administration impairs baroreceptor/baroreflex responses. We tested the hypothesis that aldosterone impairs baroreflex control of cardiac period [cardiovagal baroreflex sensitivity (BRS)] and muscle sympathetic nerve activity (MSNA, sympathetic BRS) in humans. Twenty-six young (25 +/- 1 yr old, mean +/- SE) adults were examined in this study. BRS was determined by using the modified Oxford technique (bolus infusion of nitroprusside, followed 60 s later by bolus infusion of phenylephrine) in triplicate before (Pre) and 30-min after (Post) beginning aldosterone (experimental, 12 pmol.kg(-1).min(-1); n = 10 subjects) or saline infusion (control; n = 10). BRS was quantified from the R-R interval-systolic blood pressure (BP) (cardiovagal BRS) and MSNA-diastolic BP (sympathetic BRS) relations. Aldosterone infusion increased serum aldosterone levels approximately fourfold (P < 0.05) and decreased (P < 0.05) cardiovagal (19.0 +/- 2.3 vs. 15.6 +/- 1.7 ms/mmHg Pre and Post, respectively) and sympathetic BRS [-4.4 +/- 0.4 vs. -3.0 +/- 0.4 arbitrary units (AU).beat(-1).mmHg(-1)]. In contrast, neither cardiovagal (19.3 +/- 3.3 vs. 20.2 +/- 3.3 ms/mmHg) nor sympathetic BRS (-3.8 +/- 0.5 vs. -3.6 +/- 0.5 AU.beat(-1).mmHg(-1)) were altered (Pre vs. Post) in the control group. BP, heart rate, and MSNA at rest were similar in experimental and control subjects before and after the intervention. Additionally, neural and cardiovascular responses to a cold pressor test and isometric handgrip to fatigue were unaffected by aldosterone infusion (n = 6 subjects). These data provide direct experimental support for the concept that aldosterone impairs baroreflex function (cardiovagal and sympathetic BRS) in humans. Therefore, aldosterone may be an important determinant/modulator of baroreflex function in humans. 相似文献
17.
Kamiya A Michikami D Fu Q Niimi Y Iwase S Mano T 《Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology》2000,7(2):P177-P178
The purpose of the present study is to examine the changes in the arterial baroreflex control of muscle sympathetic nerve activity (MSNA) after head-down bed rest (HDBR), in relation to orthostatic hypotension after HDBR. Therefore, we performed 60 degrees head-up tilt (HUT) tests before and after 14 days of HDBR, with monitoring MSNA, heart rate and blood pressure. We calculated the gain of the arterial baroreflex control of MSNA, and compared the gains between the subjects who did (defined as the fainters) and those who did not (defined as the nonfainters) become presyncopal in HUT tests after HDBR. 相似文献
18.
Koen D Reesink Evelien Hermeling M Christianne Hoeberigs Robert S Reneman Arnold P G Hoeks 《Journal of applied physiology》2007,102(6):2128-2134
Central blood pressure waveforms contain specific features related to cardiac and arterial function. We investigated posture-related changes in ventriculoarterial hemodynamics by means of carotid artery (CA) pulse wave analysis. ECG, brachial cuff pressure, and common CA diameter waveforms (by M-mode ultrasound) were obtained in 21 healthy volunteers (19-30 yr of age, 10 men and 11 women) in supine and sitting positions. Pulse wave analysis was based on a timing extraction algorithm that automatically detects acceleration maxima in the second derivative of the CA pulse waveform. The algorithm enabled determination of isovolumic contraction period (ICP) and ejection period (EP): ICP=43+/-8 (SD) ms (4-ms precision), and EP=302+/-16 (SD) ms (5-ms precision). Compared with the supine position, in the sitting position diastolic blood pressure (DBP) increased by 7+/-4 mmHg (P<0.001) and R-R interval decreased by 49+/-82 ms (P=0.013), reflecting normal baroreflex response, whereas EP decreased to 267+/-19 ms (P<0.001). Shortening of EP was significantly correlated to earlier arrival of the lower body peripheral reflection wave (r2=0.46, P<0.001). ICP increased by 7+/-7 ms (P<0.001), the ICP-to-EP ratio increased from 14+/-3% (supine) to 19+/-3% (P<0.001) and the DBP-to-ICP ratio decreased by 7% (P=0.023). These results suggest that orthostasis decreases left ventricular output as a result of arterial wave reflections and, presumably, reduced cardiac preload. We conclude that CA ultrasound and pulse wave analysis enable noninvasive quantification of ventriculoarterial responses to changes in posture. 相似文献
19.
Georgios D Mitsis Rong Zhang Benjamin D Levine Vasilis Z Marmarelis 《Journal of applied physiology》2006,101(1):354-366
The effects of orthostatic stress, induced by lower body negative pressure (LBNP), on cerebral hemodynamics were examined in a nonlinear context. Spontaneous fluctuations of beat-to-beat mean arterial blood pressure (MABP) in the finger, mean cerebral blood flow velocity (MCBFV) in the middle cerebral artery, as well as breath-by-breath end-tidal CO2 concentration (P(ET(CO2))) were measured continuously in 10 healthy subjects under resting conditions and during graded LBNP to presyncope. A two-input nonlinear Laguerre-Volterra network model was employed to study the dynamic effects of MABP and P(ET(CO2)) changes, as well as their nonlinear interactions, on MCBFV variations in the very low (VLF; below 0.04 Hz), low (LF; 0.04-0.15 Hz), and high frequency (HF; 0.15-0.30 Hz) ranges. Dynamic cerebral autoregulation was described by the model terms corresponding to MABP, whereas cerebral vasomotor reactivity was described by the model P(ET(CO2)) terms. The nonlinear model terms reduced the output prediction normalized mean square error substantially (by 15-20%) and had a prominent effect in the VLF range, both under resting conditions and during LBNP. Whereas MABP fluctuations dominated in the HF range and played a significant role in the VLF and LF ranges, changes in P(ET(CO2)) accounted for a considerable fraction of the VLF and LF MCBFV variations, especially at high LBNP levels. The magnitude of the linear and nonlinear MABP-MCBFV Volterra kernels increased substantially above -30 mmHg LBNP in the VLF range, implying impaired dynamic autoregulation. In contrast, the magnitude of the P(ET(CO2))-MCBFV kernels reduced during LBNP at all frequencies, suggesting attenuated cerebral vasomotor reactivity under dynamic conditions. We speculate that these changes may reflect a progressively reduced cerebrovascular reserve to compensate for the increasingly unstable systemic circulation during orthostatic stress that could ultimately lead to cerebral hypoperfusion and syncope. 相似文献
20.
Collins HL Augustyniak RA Ansorge EJ O'Leary DS 《American journal of physiology. Heart and circulatory physiology》2001,280(2):H642-H648
The arterial baroreflex mediates changes in arterial pressure via reflex changes in cardiac output (CO) and regional vascular conductance, and the relative roles may change between rest and exercise and across workloads. Therefore, we quantified the contribution of CO and regional vascular conductances to carotid baroreflex-mediated increases in mean arterial pressure (MAP) at rest and during mild to heavy treadmill exercise (3.2 kph; 6.4 kph, 10% grade; and 8 kph, 15% grade). Dogs (n = 8) were chronically instrumented to measure changes in MAP, CO, hindlimb vascular conductance, and renal vascular conductance in response to bilateral carotid occlusion (BCO). At rest and at each workload, BCO caused similar increases in MAP (average 35 +/- 2 mmHg). In response to BCO, neither at rest nor at any workload were there significant increases in CO; therefore, the pressor response occurred via peripheral vasoconstriction. At rest, 10.7 +/- 1.4% of the rise in MAP was due to vasoconstriction in the hindlimb, whereas 4.0 +/- 0.7% was due to renal vasoconstriction. Linear regression analysis revealed that, with increasing workloads, relative contributions of the hindlimb increased and those of the kidney decreased. At the highest workload, the decrease in hindlimb vascular conductance contributed 24.3 +/- 3.4% to the pressor response, whereas the renal contribution decreased to only 1.6 +/- 0.3%. We conclude that the pressor response during BCO was mediated solely by peripheral vasoconstriction. As workload increases, a progressively larger fraction of the pressor response is mediated via vasoconstriction in active skeletal muscle and the contribution of vasoconstriction in inactive beds (e.g., renal) becomes progressively smaller. 相似文献