首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capsular components of the human pathogen Cryptococcus neoformans are transported to the extracellular space and then used for capsule enlargement by distal growth. It is not clear, however, how the glucuronoxylomannan (GXM) fibers are incorporated into the capsule. In the present study, we show that concentration of C. neoformans culture supernatants by ultrafiltration results in the formation of highly viscous films containing pure polysaccharide, providing a novel, nondenaturing, and extremely rapid method to isolate extracellular GXM. The weight-averaged molecular mass of GXM in the film, determined using multiangle laser light scattering, was ninefold smaller than that of GXM purified from culture supernatants by differential precipitation with cetyl trimethyl ammonium bromide (CTAB). Polysaccharides obtained either by ultrafiltration or by CTAB-mediated precipitation showed different reactivities with GXM-specific monoclonal antibodies. Viscosity analysis associated with inductively coupled plasma mass spectrometry and measurements of zeta potential in the presence of different ions implied that polysaccharide aggregation was a consequence of the interaction between the carboxyl groups of glucuronic acid and divalent cations. Consistent with this observation, capsule enlargement in living C. neoformans cells was influenced by Ca(2+) in the culture medium. These results suggest that capsular assembly in C. neoformans results from divalent cation-mediated self-aggregation of extracellularly accumulated GXM molecules.  相似文献   

2.
The major component of capsular material of Cryptococcus neoformans is glucuronoxylomannnan (GXM), a polysaccharide that exhibits potent immunosuppressive properties in vitro and in vivo. The results reported here show that 1) soluble purified GXM induces a prompt, long-lasting, and potent up-regulation of Fas ligand (FasL) on macrophages, 2) the up-regulation of FasL is related to induced synthesis and increased mobilization to the cellular surface, 3) this effect is largely mediated by interaction between GXM and TLR4, 4) FasL up-regulation occurs exclusively in GXM-loaded macrophages, 5) macrophages that show up-regulation of FasL induce apoptosis of activated T cells expressing Fas and Jurkat cells that constitutively express Fas, and 6) anti-Fas Abs rescue T cells from apoptosis induced by GXM. Collectively our results reveal novel aspects of the immunoregulatory properties of GXM and suggest that this nontoxic soluble compound could be used to dampen the immune response, to promote or accelerate the death receptor, and to fix FasL expression in a TLR/ligand-dependent manner. In the present study, we delineate potential new therapeutic applications for GXM that exploit death receptors as key molecular targets in regulating cell-mediated cytotoxicity, immune homeostasis, and the immunopathology of diseases.  相似文献   

3.
During a study of serotyping of Cryptococcus neoformans, we found that the type strain of C. neoformans (CBS 132) was serotype A-D. This strain agglutinated with both factor 7 serum (specific for serotype A) and factor 8 serum (specific for serotype D) in our serotyping system. Therefore, we investigated the chemical structure of the antigenic capsular polysaccharide of this strain. The soluble capsular polysaccharide was obtained from the culture supernatant fluid by precipitation with ethanol. Column chromatography of the polysaccharide on DEAE-cellulose yielded three fractions (F-1 to F-3). The major antigenic activity was found in the F-3 fraction. The results obtained by methylation analysis, controlled Smith degradation-methylation analysis, partial acid hydrolysis, and other structural studies of F-3 polysaccharide indicated that the polysaccharide contains mannose, xylose, and glucuronic acid at a ratio of 7:2:2, and has a backbone of alpha (1-3)-linked D-mannopyranoside residues with a single branch of beta (1-2)-xylose and glucuronic acid. The ratio of mannose residues with or without a branch in the F-3 polysaccharide was 4:3 and its molecular weight calculated from the average of the degree of polymerization was 46,500 daltons. These results indicate that the chemical structure of the capsular polysaccharide of serotype A-D is very similar to those from serotypes A and D, suggesting that small differences in the molar ratio and pattern of linkage of monosaccharides in the branch of the polysaccharides of the three serotypes may be responsible for their different specificities.  相似文献   

4.
The capsule of Cryptococcus neoformans, the principal virulence factor of this fungus, is composed primarily of polysaccharide. The predominant component of the polysaccharide capsule is glucuronoxylomannan (GXM), a compound with potent immunoregulatory properties. GXM is bound and internalized by natural immune cells affecting innate and subsequent adaptive immune response. The cellular pattern recognition receptors involved in GXM binding include toll-like receptor (TLR)4, CD14, TLR2, CD18, Fc gamma receptor II (FcgammaRPi). This multiple cross-linking leads to a suppressive outcome that is arrested and even reversed by protective antibodies to GXM. This review analyzes the immunosuppressive effects induced by capsular material, considering its pattern recognition receptors, and dissects the mechanism of monoclonal antibody shifting to immunoactivation.  相似文献   

5.
UDP glucuronate decarboxylase activity was comparable in encapsulated and non-encapsulated strains of Cryptococcus neoformans, required NAD (Ka = 0.2 mM), and was inhibited by NADH (Ki = 0.1 mM) and UDP xylose.  相似文献   

6.
7.
Several genes are essential for Cryptococcus neoformans capsule synthesis, but their functions are unknown. We examined the localization of glucuronoxylomannan (GXM) in strain B-3501 and in cap59 mutants B-4131 and C536. Wild-type strain B-3501 showed a visible capsule by India ink staining and immunofluorescence with anticapsular monoclonal antibodies (MAbs) 12A1 and 18B7. B-4131, a mutant containing a missense mutation in CAP59, showed no capsule by India ink staining but revealed the presence of capsular polysaccharide on the cell surface by immunofluorescence. The cap59 gene deletion mutant (C536), however, did not show a capsule by either India ink staining or immunofluorescence. Analysis of cell lysates for GXM by enzyme-linked immunosorbent assay revealed GXM in C536 samples. Furthermore, the epitopes recognized by MAbs 12A1, 2D10, 13F1, and 18B7 were each detected in the cytoplasm of all strains by immunogold electron microscopy, although there were differences in location consistent with differences in epitope synthesis and/or transport. In addition, the cells of B-3501 and B-4131, but not those of the cap59 deletant, assimilated raffinose or urea. Hence, the missense mutation of CAP59 in B-4131 partially hampered the trafficking of GXM but allowed the secretion of enzymes involved in hydrolysis of raffinose or urea. Furthermore, the cell diameter and volume for strain C536 are higher than those for strain B-3501 or B-4131 and may suggest the accumulation of cellular material in the cytoplasm. Our results suggest that CAP59 is involved in capsule synthesis by participating in the process of GXM (polysaccharide) export.  相似文献   

8.
Defined Abs to the Cryptococcus neoformans capsular polysaccharide glucuronoxylomannan (GXM) have been shown to be protective against experimental cryptococcosis. This suggests that if a vaccine could induce similar Abs it might protect against infection. However, the potential use of a GXM-based vaccine has been limited by evidence that GXM is a poor immunogen that can induce nonprotective and deleterious, as well as protective, Abs, and that the nature of GXM oligosaccharide epitopes that can elicit a protective response is unknown. In this study, we investigated whether a peptide surrogate for a GXM epitope could induce an Ab response to GXM in mice. The immunogenicity of peptide-protein conjugates produced by linking a peptide mimetic of GXM, P13, to either BSA, P13-BSA, or tetanus toxoid, P13-tetanus toxoid, was examined in BALB/c and CBA/n mice that received four s.c. injections of the conjugates at 14- to 30-day intervals. All mice immunized with conjugate produced IgM and IgG to P13 and GXM. Challenge of conjugate-immunized mice with C. neoformans revealed longer survival and lower serum GXM levels than control mice. These results indicate that 1) P13 is a GXM mimotope and 2) that it induced a protective response against C. neoformans in mice. P13 is the first reported mimotope of a C. neoformans Ag. Therefore, the P13 conjugates are vaccine candidates for C. neoformans and their efficacy in this study suggests that peptide mimotopes selected by protective Abs deserve further consideration as vaccine candidates for encapsulated pathogens.  相似文献   

9.
The capsule of Cryptococcus neoformans is a complex structure whose assembly requires intermolecular interactions to connect its components into an organized structure. In this study, we demonstrated that the wheat germ agglutinin (WGA), which binds to sialic acids and beta-1,4-N-acetylglucosamine (GlcNAc) oligomers, can also bind to cryptococcal capsular structures. Confocal microscopy demonstrated that these structures form round or hooklike projections linking the capsule to the cell wall, as well as capsule-associated structures during yeast budding. Chemical analysis of capsular extracts by gas chromatography coupled to mass spectrometry and high-pH anion-exchange chromatography suggested that the molecules recognized by WGA were firmly associated with the cell wall. Enzymatic treatment, competition assays, and staining with chemically modified WGA revealed that GlcNAc oligomers, but not sialic acids, were the molecules recognized by the lectin. Accordingly, treatment of C. neoformans cells with chitinase released glucuronoxylomannan (GXM) from the cell surface and reduced the capsule size. Chitinase-treated acapsular cells bound soluble GXM in a modified pattern. These results indicate an association of chitin-derived structures with GXM and budding in C. neoformans, which may represent a new mechanism by which the capsular polysaccharide interacts with the cell wall and is rearranged during replication.  相似文献   

10.
11.
The capsule is certainly the most obvious virulence factor for Cryptococcus neoformans. The main capsule constituents are glucuronoxylomannans (GXM). Several studies have focused on the structure and chemistry of the GXM component of the capsule, yet little is known about the genetic basis of the capsule construction. Using a monoclonal antibody specific to a sugar epitope, we isolated a capsule-structure mutant strain and cloned by complementation a gene named CAS1 that codes for a putative membrane protein. Although no sequence homology was found with any known protein in the different databases, protein analysis using the PROPSEARCH software classified Cas1p as a putative glycosyltransferase. Cas1p is a well-conserved evolutionary protein, as we identified one orthologue in the human genome, one in the drosophila genome and four in the plant Arabidopsis thaliana genome. Analysis of the capsule structure after CAS1 deletion showed that it is required for GXM O-acetylation.  相似文献   

12.
Ramus J 《Plant physiology》1974,54(6):945-949
Active transport of exogenous sulfate into log phase cells of Porphyridium aerueineum followed Michaelis-Menten kinetics, and the apparent Km for sulfate transport is approximately 2.5 × 10−6m. Molybdate, also a group VI anion, is a competitive inhibitor of sulfate transport, and the inhibition is freely reversible. Once in the cell, molybdate depresses the rate of sulfate pool utilization by blocking sulfate transfer to polysaccharides destined for secretion to the cell surface. Specifically, molybdate inhibits the formation of adenosine 5′-phosphosulfate and in turn the formation of adenosine 3′-phosphate 5′-phosphosulfate, the activated donor for sulfate transfer reactions. Combined with the previous identification of adenosine 3′-phosphate 5′-phosphosulfate, this is taken as evidence that the adenosine 5′-phosphosulfate/adenosine 3′-phosphate 5′-phosphosulfate enzymatic sequence for sulfate activation and sulfate donor reactions is operating in Porphyridium. Thiosulfate is utilized as effectively as sulfate as both a sulfur source for growth and polysaccharide synthesis.  相似文献   

13.
The human pathogenic fungus Cryptococcus neoformans has a large polysaccharide (PS) capsule and releases copious amounts of PS into cultures and infected tissues. The capsular PS is a major virulence factor that can elicit protective antibody responses. PS recovered from culture supernatants has historically provided an ample and convenient source of material for structural and immunological studies. Two major assumptions in such studies are that the structural features of the exopolysaccharide material faithfully mirror those of capsular PS and that the isolation methods do not change PS properties. However, a comparison of exopolysaccharide made by two isolation techniques with capsular PS stripped from cells with gamma radiation or dimethyl sulfoxide revealed significant differences in glycosyl composition, mass, size, charge, viscosity, circular-dichroism spectra, and reactivity with monoclonal antibodies. Our results strongly suggest that exopolysaccharides and capsular PS are structurally different. A noteworthy finding was that PS made by cetyltrimethylammonium bromide precipitation had a larger mass and a different conformation than PS isolated by concentration and filtration, suggesting that the method most commonly used to purify glucuronoxylomannan alters the PS. Hence, the method used to isolate PS can significantly influence the structural and antigenic properties of the product. Our findings have important implications for current views of the relationship between capsular PS and exopolysaccharides, for the generation of PS preparations suitable for immunological studies, and for the formulation of PS-based vaccines for the prevention of cryptococcosis.  相似文献   

14.
Cadmium adsorption by bacterial capsular polysaccharide coatings   总被引:1,自引:0,他引:1  
Conclusions Excretion of a polysaccharide capsular coating byP.putida provided enhanced cadmium uptake when compared to the noncapsularP.cruciviae. As this advantage is most significant for cadmium concentrations below 2.5 mg/l, levels which are commonly found in waste discharges, it does suggest a potential role for extracellular polysaccharide producers as biosorbents. These encouraging results have led to further work to determine the desorption characteristics, by pH adjustment, ofP.putida along with long term viability after successive cycles of adsorption and desorption.  相似文献   

15.
The major virulence factor of Cryptococcus neoformans is its polysaccharide capsule composed of glucuronoxylomannan (GXM), galactoxylomannan (GalXM) and mannoproteins. A variety of immunomodulating activities have been described for GXM and mannoproteins but little is known about possible interactions of GalXM with the immune system. In the present article, we investigate the effect of purified soluble GalXM on human T lymphocytes. The results indicate that, GalXM (i) can affect selected immune responses; (ii) causes significant impairment of T cell proliferation and increases interferon-gamma and interleukin-10 production; and (iii) induces apoptosis of T lymphocytes through activation of caspase-8 that terminates with fragmentation of DNA. These results are the first to suggest a role for GalXM in C. neoformans virulence by demonstrating that it can target human T cells, and that it may impair the development of an effective specific T cell response.  相似文献   

16.
We studied T-cell immune responses to surface capsular polysaccharide (CPS) of Vibrio cholerae O135 and its protein conjugate. CPS and CPS-bovine serum albumin (BSA) activation and presentation are characterized with induced alterations in expression and upregulation of membrane antigens CD25, CD11b, CD16/32, MHCII and CD45 on blood- and spleen-derived T cells. Expression of the early activation marker CD25 revealed efficient CPS-BSA conjugate activation especially of CD4(+) CD3(+) and CD8(+) CD3(+) cells. Specific CPS-BSA-induced CD25(+) T-cell subsets in blood were observed after the first application, i.e. a 4.2-fold increase of CD4(+) CD25(+) and 7.6-fold increase of CD8(+) CD25(+) vs. preimmune levels was determined. The upregulation of surface antigens MHCII and CD45 involved in antigen presentation and cell activation of CD3(+) cells and their significant reciprocal correlation (R(2) =?0.92) observed only with CPS-BSA conjugate suggested efficient T-cell dependency and presentation. The pattern of accelerated T-cell activation and engagement of T cells as antigen-presenting cells throughout CPS-BSA immunization contrary to CPS alone was also confirmed in CD4(+) /CD8(+) /CD3(+) splenic cells. The results revealed different T-cell antigen presentation and activation following administration of CPS and CPS-BSA conjugates, as supported also by evaluation of CD45, MHCII and CD25 expression on CD19(+) B cells.  相似文献   

17.
Cryptococcus neoformans is a soil-dwelling fungus that causes life-threatening illness in immunocompromised individuals and latently infects many healthy individuals. C. neoformans, unlike other human pathogenic fungi, is surrounded by a polysaccharide capsule that is essential for survival and enables C. neoformans to thwart the mammalian immune system. The capsule is a dynamic structure that undergoes changes in size and rearranges during budding. Here, the latest information and unresolved questions regarding capsule synthesis, structure, assembly, growth and rearrangements are discussed along with the concept that self-assembly is important in capsular dynamics.  相似文献   

18.
目的从新生隐球菌B3501培养上清中分离和纯化荚膜多糖葡萄糖醛酸木糖甘露聚糖(GXM),观察其是否能调节巨噬细胞甘露糖受体MR的表达。方法采用乙醇沉淀荚膜多糖,十六烷基三甲基溴化铵(CTAB)特异性沉淀方法获得GXM,将GXM与巨噬细胞共孵育24 h,Western blot检测MR的表达变化情况。结果获得了毫克级的GXM,巨噬细胞与GXM孵育后甘露糖受体(mannose receptor,MR)的表达没有明显变化。结论新生隐球菌荚膜多糖GXM不影响巨噬细胞甘露糖受体MR的表达。  相似文献   

19.
The effects of capsular polysaccharides, galactoxylomannan (GalXM) and glucuronoxylomannan (GXM), from acapsular (GXM negative) and encapsulate strains of Cryptococcus neoformans were investigated in RAW 264.7 and peritoneal macrophages. Here, we demonstrate that GalXM and GXM induced different cytokines profiles in RAW 264.7 macrophages. GalXM induced production of TNF-alpha, NO and iNOS expression, while GXM predominantly induced TGF-beta secretion. Both GalXM and GXM induced early morphological changes identified as autophagy and late macrophages apoptosis mediated by Fas/FasL interaction, a previously unidentified mechanism of virulence. GalXM was more potent than GXM at induction of Fas/FasL expression and apoptosis on macrophages in vitro and in vivo. These findings uncover a mechanism by which capsular polysaccharides from C. neoformans might compromise host immune responses.  相似文献   

20.
The capsular polysaccharide glucuronoxylomannan (GXM) of Cryptococcus neoformans has been shown to interfere with neutrophil migration. Although several receptors have been implied to mediate this process, the structural perspectives are unknown. Here, we assess the contribution of 6-O-acetylation and xylose substitution of the (1-->3)-alpha-d-mannan backbone of GXM, the variable structural features of GXM, to the interference with neutrophil migration. We compare chemically deacetylated GXM and acetyl- or xylose-deficient GXM from genetically modified strains with wild-type GXM in their ability to inhibit the different phases of neutrophil migration. Additionally, we verify the effects of de-O-acetylation on neutrophil migration in vivo. De-O-acetylation caused a dramatic reduction of the inhibitory capacity of GXM in the in vitro assays for neutrophil chemokinesis, rolling on E-selectin and firm adhesion to endothelium. Genetic removal of xylose only marginally reduced the ability of GXM to reduce firm adhesion. In vivo, chemical deacetylation of GXM significantly reduced its ability to interfere with neutrophil recruitment in a model of myocardial ischemia (65% reduction vs a nonsignificant reduction in tissue myeloperoxidase, respectively). Our findings indicate that 6-O-acetylated mannose of GXM is a crucial motive for the inhibition of neutrophil recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号