首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Up to now, due to cortical thickness and imaging resolution, it is not possible to derive subject-specific mechanical properties on the 'vertebral shell' from imaging modalities applicable in vivo. As a first step, the goal of this study was to assess the apparent Young's modulus of vertebral cortico-cancellous bone specimens using an inverse method. A total of 22 cortico-cancellous specimens were harvested from 22 vertebral bodies. All specimens were tested in compression until failure. To compute the apparent Young's modulus of the specimen from the inverse method, the boundary conditions of the biomechanical experiments were faithfully reproduced in a finite element model (FEM), and an optimisation routine was used. The results showed a mean of the apparent Young's modulus of 374?±?208?MPa, ranging from 87 to 791?MPa. By computing an apparent Young's modulus of a cortico-cancellous medium, this study gives mechanical data for an FEM of an entire vertebra including an external shell combining both bone tissues.  相似文献   

3.
4.
5.
Cartilage is primarily responsible for maintaining the stability of the large airways; yet very little is known about the mechanical properties of airway cartilage. This work establishes a technique whereby average values for the equilibrium modulus of excised tracheal cartilage rings can be obtained. An apparatus was designed to apply preset deformations to a tracheal segment and to monitor the deforming force. Segments of four human tracheae obtained postmortem and containing three rings were mounted in the apparatus after being stripped of posterior membrane. The load-deformation behavior was analyzed with a model on the basis of thin curved beam theory. Agreement between predicted deformed shapes and those observed was good in three of the four cases and in the case of a short length of longitudinally split rubber tube. The technique is suitable for comparing mechanical properties of cartilage before and after an intervention.  相似文献   

6.
The compressive stiffness of an elastic material is traditionally characterized by its Young's modulus. Young's modulus of articular cartilage can be directly measured using unconfined compression geometry by assuming the cartilage to be homogeneous and isotropic. In isotropic materials, Young's modulus can also be determined acoustically by the measurement of sound speed and density of the material. In the present study, acoustic and mechanical techniques, feasible for in vivo measurements, were investigated to quantify the static and dynamic compressive stiffness of bovine articular cartilage in situ. Ultrasound reflection from the cartilage surface, as well as the dynamic modulus were determined with the recently developed ultrasound indentation instrument and compared with the reference mechanical and ultrasound speed measurements in unconfined compression (n=72). In addition, the applicability of manual creep measurements with the ultrasound indentation instrument was evaluated both experimentally and numerically. Our experimental results indicated that the sound speed could predict 47% and 53% of the variation in the Young's modulus and dynamic modulus of cartilage, respectively. The dynamic modulus, as determined manually with the ultrasound indentation instrument, showed significant linear correlations with the reference Young's modulus (r(2)=0.445, p<0.01, n=70) and dynamic modulus (r(2)=0.779, p<0.01, n=70) of the cartilage. Numerical analyses indicated that the creep measurements, conducted manually with the ultrasound indentation instrument, were sensitive to changes in Young's modulus and permeability of the tissue, and were significantly influenced by the tissue thickness. We conclude that acoustic parameters, i.e. ultrasound speed and reflection, are indicative to the intrinsic mechanical properties of the articular cartilage. Ultrasound indentation instrument, when further developed, provides an applicable tool for the in vivo detection of cartilage mechano-acoustic properties. These techniques could promote the diagnostics of osteoarthrosis.  相似文献   

7.
The Young's modulus of multilayer films containing nanofibrillated cellulose (NFC) and polyethyleneimine (PEI) was determined using the strain-induced elastic buckling instability for mechanical measurements (SIEBIMM) technique. (1) Multilayer films were built up on polydimethylsiloxane substrates using electrostatic layer-by-layer assembly. At 50% relative humidity, SIEBIMM gave a constant Young's modulus of 1.5 ± 0.2 GPa for 35-75 nm thick films. Conversely, in vacuum, the Young's modulus was 10 times larger, at 17.2 ± 1.2 GPa. A slight decrease in buckling wavelength with increasing strain was observed by scanning electron microscopy with in situ compression, and above 10% strain, extensive cracking parallel to the compressive direction occurred. We conclude that whereas PEI acts as a "glue" to hold multiple layers of NFC together, it prevents full development of hydrogen bonding and specific fibril-fibril interactions, and at high humidity, its hygroscopic nature decreases the elastic modulus when compared with pure NFC films.  相似文献   

8.
A numerical-experimental approach has been developed to characterize heel-pad deformation at the material level. Left and right heels of 20 diabetic subjects and 20 nondiabetic subjects matched for age, gender and body mass index were indented using force-controlled ultrasound. Initial tissue thickness and deformation were measured using M-mode ultrasound; indentation forces were recorded simultaneously. An inverse finite-element analysis of the indentation protocol using axisymmetric models adjusted to reflect individual heel thickness was used to extract nonlinear material properties describing the hyperelastic behavior of each heel. Student's t-tests revealed that heel pads of diabetic subjects were not significantly different in initial thickness nor were they stiffer than those from nondiabetic subjects. Another heel-pad model with anatomically realistic surface representations of the calcaneus and soft tissue was developed to estimate peak pressure prediction errors when average rather than individualized material properties were used. Root-mean-square errors of up to 7% were calculated, indicating the importance of subject-specific modeling of the nonlinear elastic behavior of the heel pad. Indentation systems combined with the presented numerical approach can provide this information for further analysis of patient-specific foot pathologies and therapeutic footwear designs.  相似文献   

9.
Feathers are composed of a structure that, whilst being very light, is able to withstand the large aerodynamic forces exerted upon them during flight. To explore the contribution of molecular orientation to feather keratin mechanical properties, we have examined the nanoscopic organisation of the keratin molecules by X-ray diffraction techniques and have confirmed a link between this and the Young's modulus of the feather rachis. Our results indicate that along the rachis length, from calamus to tip, the keratin molecules become more aligned than at the calamus before returning to a state of higher mis-orientation towards the tip of the rachis. We have also confirmed the general trend of increasing Young's modulus with distance along the rachis. Furthermore, we report a distinct difference in the patterns of orientation of beta-keratin in the feathers of flying and flightless birds. The trend for increased modulus along the feathers of volant birds is absent in the flightless ostrich.  相似文献   

10.
The mechanical environment of the chondrocyte is an important factor that influences the maintenance of the articular cartilage extracellular matrix. Previous studies have utilized theoretical models of chondrocytes within articular cartilage to predict the stress-strain and fluid flow environments around the cell, but little is currently known regarding the cellular properties which are required for implementation of these models. The objectives of this study were to characterize the mechanical behavior of primary human chondrocytes and to determine the Young's modulus of chondrocytes from non-osteoarthritic ('normal') and osteoarthritic cartilage. A second goal was to quantify changes in the volume of isolated chondrocytes in response to mechanical deformation. The micropipette aspiration technique was used to measure the deformation of a single chondrocyte into a glass micropipette in response to a prescribed pressure. The results of this study indicate that the human chondrocyte behaves as a viscoelastic solid. No differences were found between the Young's moduli of normal (0.65+/-0.63 kPa, n = 44) and osteoarthritic chondrocytes (0.67+/-0.86 kPa, n = 69, p = 0.93). A significant difference in cell volume was observed immediately and 600 s after complete aspiration of the cell into the pipette (p < 0.001), and the magnitude of this volume change between normal (11+/-11%, n = 40) and osteoarthritic (20+/-11%, n = 41) chondroctyes was significantly different at both time points (p < 0.002). This finding suggests that chondrocytes from osteoarthritic cartilage may have altered volume regulation capabilities in response to mechanical deformation. The mechanical and volumetric properties determined in this study will be of use in analytical and finite element models of chondrocyte-matrix interactions in order to better predict the mechanical environment of the cell in vivo.  相似文献   

11.
A multiphysics model concerning the diffusion and enzyme reaction simultaneously is developed in this paper to characterize the equilibrium behavior of the glucose-sensitive hydrogel, which is called the multi-effect-coupling glucose-stimulus (MECglu) model. The responsive behavior of the hydrogel in the chemo-electro-mechanical coupled energy domains is modeled by the nonlinear coupled partial differential equations. They include the Nernst–Planck equations for the diffusion of mobile species and the enzyme reaction catalyzed by the glucose oxidase and the catalase, the Poisson equation for electric potential, and the mechanical equilibrium equation for finite deformation of the glucose-oxidase-loaded pH-sensitive hydrogel. Numerical simulations demonstrate that the MECglu model can consist well with the published experiment for the practical physiological glucose concentration ranging from 0 to 16.5 mM (300 mg/ml). The effect of Young's modulus of the hydrogel is investigated on the distributive concentrations of reacting and diffusive species and the deformation of the glucose-sensitive hydrogels.  相似文献   

12.
Rats use specialized tactile hairs on their snout, called vibrissae (whiskers), to explore their surroundings. Vibrissae have no sensors along their length, but instead transmit mechanical information to receptors embedded in the follicle at the vibrissa base. The transmission of mechanical information along the vibrissa, and thus the tactile information ultimately received by the nervous system, depends critically on the mechanical properties of the vibrissa. In particular, transmission depends on the bending stiffness of the vibrissa, defined as the product of the area moment of inertia and Young's modulus. To date, Young's modulus of the rat vibrissa has not been measured in a uniaxial tensile test. We performed tensile tests on 22 vibrissae cut into two halves: a tip-segment and a base-segment. The average Young's modulus across all segments was 3.34±1.48GPa. The average modulus of a tip-segment was 3.96±1.60GPa, and the average modulus of a base-segment was 2.90±1.25GPa. Thus, on average, tip-segments had a higher Young's modulus than base-segments. High-resolution images of vibrissae were taken to seek structural correlates of this trend. The fraction of the cross-sectional area occupied by the vibrissa cuticle was found to increase along the vibrissa length, and may be responsible for the increase in Young's modulus near the tip.  相似文献   

13.
14.
Cell motility is locally achieved by the interplay between lamellipodia and filopodia at the protrusion sites. The actin cytoskeleton rearranges from a highly branched short filamentous network to well aligned elongated bundles from lamellipodia to filopodia, respectively. This process is governed predominantly by actin binding proteins, VASP and fascin, at the leading edge of migratory cells. Here we use an Arp2/3-complex dependent bead motility assay to study the effect of fascin both on its own and in the presence of VASP. The Young's modulus of phalloidin stabilized comets grown in the presence of fascin increased linearly with concentration above a 0.5 μM threshold. Inversely, the initial velocity of the comets decreased linearly with fascin concentration above the same threshold. Interestingly, VASP and fascin together increased the Young's modulus of the comets compared to those grown in the presence of only one of the two proteins. This effect was most remarkable at low concentration, below 0.5 and 0.15 μM for fascin and VASP, respectively. Our results showed that fascin and VASP work cooperatively to enhance the Young's modulus of the actin network within the comets.  相似文献   

15.
The deformation micromechanics of bacterial cellulose (BC) and microfibrillated cellulose (MFC) networks have been investigated using Raman spectroscopy. The Raman spectra of both BC and MFC networks exhibit a band initially located at ≈ 1095 cm(-1). We have used the intensity of this band as a function of rotation angle of the specimens to study the cellulose fibril orientation in BC and MFC networks. We have also used the change in this peak's wavenumber position with applied tensile deformation to probe the stress-transfer behavior of these cellulosic materials. The intensity of this Raman band did not change significantly with rotation angle, indicating an in-plane 2D network of fibrils with uniform random orientation; conversely, a highly oriented flax fiber exhibited a marked change in intensity with rotation angle. Experimental data and theoretical analysis shows that the Raman band shift rate arising from deformation of networks under tension is dependent on the angles between the axis of fibrils, the strain axis, the incident laser polarization direction, and the back scattered polarization configurations. From this analysis, the effective moduli of single fibrils of BC and MFC in the networks were estimated to be in the ranges of 79-88 and 29-36 GPa, respectively. It is shown also that for the model to fit the data it is necessary to use a negative Poisson's ratio for MFC networks and BC networks. Discussion of this in-plane "auxetic" behavior is given.  相似文献   

16.
In order to determine the accuracy of measurements of Young's modulus of cancellous bone by conventional compression testing, two independent strain measurements were made simultaneously during non-destructive uniaxial compression to 0.8% strain of rectangular specimens (n = 18). Strain was measured by an extensometer attached to the compression anvils close to the specimen and by an optical system covering the central half of the specimens. Mean Young's modulus determined by the extensometer technique was 689 MPa, but was 871 MPa when determined by the optical technique (mean difference = 182 MPa, SED = 50 MPa, p less than 0.002). Uneven strain distribution due to lack of support of cut vertical trabeculae at the anvil-specimen interface is believed to be causing the underestimation of Young's modulus measured by the extensometer technique. The influence of friction at the specimen-anvil interface was studied by performing a finite element analysis. It is concluded that Young's modulus of specimens of the chosen geometry on average is underestimated by about 20% by conventional compressing testing. The underestimation seems not to be dependent upon specimen density.  相似文献   

17.
We evaluated whether the use of cartilage thickness measurement would improve the ability of the arthroscopic indentation technique to estimate the intrinsic stiffness of articular cartilage. First, cartilage thickness and ultrasound reflection from the surface of bovine humeral head were registered in situ using a high-frequency ultrasound probe. Subsequently, cartilage was indented in situ at the sites of the ultrasound measurements using arthroscopic instruments with plane-ended and spherical-ended indenters. Finally, full-thickness cartilage disks (n=30) were extracted from the indented sites (thickness=799-1654microm) and the equilibrium Young's modulus was determined with a material testing device in unconfined compression geometry. We applied analytical and numerical indentation models for the theoretical correction of experimental indentation measurements. An aspect-ratio (the ratio of indenter radius to cartilage thickness) correction improved the correlation of the indenter force with the equilibrium Young's modulus from r(2)=0.488 to r(2)=0.642-0.648 (n=30) for the plane-ended indenter (diameter=1.000mm, height=0.300mm) and from r(2)=0.654 to r(2)=0.684-0.692 (n=30) for the spherical-ended indenter (diameter=0.500mm, height=0.100mm), depending on the indentation model used for the correction. The linear correlation between the ultrasound reflection and the Young's modulus was r(2)=0.400 (n=30). These results suggest that with large indenters, knowledge of the cartilage thickness improves the reliability of the indentation measurements, especially in pathological situations where cartilage thickness may be significantly lower than normal. Ultrasound measurements also provide diagnostically important information about cartilage thickness as well as knowledge of the integrity of the superficial zone of cartilage.  相似文献   

18.
The effect of differentiation on thetransverse mechanical properties of mammalian myocytes was determinedby using atomic force microscopy. The apparent elastic modulusincreased from 11.5 ± 1.3 kPa for undifferentiated myoblasts to45.3 ± 4.0 kPa after 8 days of differentiation (P < 0.05). The relative contribution of viscosity, as determined fromthe normalized hysteresis area, ranged from 0.13 ± 0.02 to0.21 ± 0.03 and did not change throughout differentiation. Myosinexpression correlated with the apparent elastic modulus, but neithermyosin nor -tubulin were associated with hysteresis. Microtubulesdid not affect mechanical properties because treatment with colchicinedid not alter the apparent elastic modulus or hysteresis. Treatmentwith cytochalasin D or 2,3-butanedione 2-monoxime led to a significantreduction in the apparent elastic modulus but no change in hysteresis.In summary, skeletal muscle cells exhibited viscoelastic behavior thatchanged during differentiation, yielding an increase in the transverseelastic modulus. Major contributors to changes in the transverseelastic modulus during differentiation were actin and myosin.

  相似文献   

19.
A numerical simulation of the Young's modulus pH dependence in a triclinic crystal of hen egg white lysozyme is performed. On the basis of calculation of electrostatic interactions between the molecules in the crystal at different pH values, we obtain the Young's modulus quantity as a function of pH. The analysis is carried out along the main crystal axes as well as along the [011] direction. In the last case, a good agreement between our calculations of Young's modulus pH dependence and the experimental data [V. N. Morosov and T. Ya. Morozova (1981) Biopolymers, Vol. 20, pp. 451–467] is obtained. The calculations show a strong anisotropy of both the absolute value of the electrostatic part of Young's modulus and its pH dependence along different directions. A detailed analysis of the electrostatic potential inside the crystal, as well as the charged group distribution in the contact areas, permit us to find the reason for the anisotropy. It is caused by a nonuniform distribution of the charged residues in the lysozyme molecule and especially by the titration behavior of certain acidic groups. It is also shown that Young's modulus depends on the ionic strength, being anisotropic. The reason is that the cavities are not uniformly distributed within the crystal. They are located predominantly along the c axis. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
The Young's modulus of elasticity, the calcium content and the volume fraction (1-porosity) of 23 tension specimens and 80 bending specimens, taken from compact bone of 18 species of mammal, bird and reptile, were determined. There was a strong positive relationship between Young's modulus and both calcium content and volume fraction. A power law model fits the data better than a linear model. Young's modulus has a roughly cubic relationship with both calcium content and volume fraction. Over 80% of the total variation in Young's modulus in this data set is explained by these two variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号