首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular sensing by gastrointestinal (GI) cells plays a critical role in the control of multiple fundamental functions in digestion and also initiates hormonal and/or neural pathways leading to the regulation of caloric intake, pancreatic insulin secretion, and metabolism. Molecular sensing in the GI tract is also responsible for the detection of ingested harmful drugs and toxins, thereby initiating responses critical for survival. The initial recognition events and mechanism(s) involved remain incompletely understood. The notion to be discussed in this article is that there are important similarities between the chemosensory machinery elucidated in specialized neuroepithelial taste receptor cells of the lingual epithelium and the molecular transducers localized recently in enteroendocrine open GI cells that sense the chemical composition of the luminal contents of the gut.  相似文献   

2.
Food intake is detected by the chemical senses of taste and smell and subsequently by chemosensory cells?in the gastrointestinal tract that link the composition of ingested foods to feedback circuits controlling gut motility/secretion, appetite, and peripheral nutrient disposal. G-protein-coupled receptors responsive to?a range of nutrients and other food components have been identified, and many are localized to intestinal chemosensory cells, eliciting hormonal and neuronal signaling to the brain and periphery. This review examines the role of G-protein-coupled receptors as signaling molecules in the gut, with a particular focus on pathways relevant to appetite and glucose homeostasis.  相似文献   

3.
4.
Sensing potentially beneficial or harmful constituents in the luminal content by specialized cells in the gastrointestinal mucosa is an essential prerequisite for governing digestive processes, initiating protective responses and regulating food intake. Until recently, it was poorly understood how the gastrointestinal tract senses and responds to nutrients and non-nutrients in the diet; however, the enormous progress in unraveling the molecular machinery underlying the responsiveness of gustatory cells in the lingual taste buds to these compounds has been an important starting point for studying intestinal chemosensation. Currently, the field of nutrient sensing in the gastrointestinal tract is evolving rapidly and is benefiting from the deorphanization of previously unliganded G-protein-coupled receptors which respond to important nutrients, such as protein degradation products and free fatty acids as well as from the FACS-assisted isolation of distinct cell populations. This review focuses on mechanisms and principles underlying the chemosensory responsiveness of the alimentary tract. It describes the cell types which might potentially contribute to chemosensation within the gut: cells that can operate as specialized sensors and transducers for luminal factors and which communicate information from the gut lumen by releasing paracrine or endocrine acting messenger molecules. Furthermore, it addresses the current knowledge regarding the expression and localization of molecular elements that may be part of the chemosensory machinery which render some of the mucosal cells responsive to constituents of the luminal content, concentrating on candidate receptors and transporters for sensing nutrients.  相似文献   

5.
Purinergic receptors comprise a family of transmembrane receptors that are activated by extracellular nucleosides and nucleotides. The two major classes of purinergic receptors, P1 and P2, are expressed widely in the gastrointestinal tract as well as immune cells. The purinergic receptors serve a variety of functions from acting as neurotransmitters, to autocoid and paracrine signaling, to cell activation and immune response. Nucleosides and nucleotide agonist of purinergic receptors are released by many cell types in response to specific physiological signals, and their levels are increased during inflammation. In the past decade, the advent of genetic knockout mice and the development of highly potent and selective agonists and antagonists for the purinergic receptors have significantly advanced the understanding of purinergic receptor signaling in health and inflammation. In fact, agonist/antagonists of purinergic receptors are emerging as therapeutic modalities to treat intestinal inflammation. In this article, the distribution of the purinergic receptors in the gastrointestinal tract and their physiological and pathophysiological role in intestinal inflammation will be reviewed.  相似文献   

6.
7.
Proteinases have been shown to act as signaling molecules that are able to send specific signals to cells through the activation of proteinase-activated receptors (PARs). Those receptors which are expressed in a wide variety of cells in the gastrointestinal tract are considered as "emergency" mechanisms, particularly involved in inflammatory responses of the gut. Depending on the cell types of the gut in which PARs are activated, their activation interacts with all aspects of the gut physiology: motility, barrier function, transports, innate immune response, sensory functions, and even proliferation. A growing body of evidences discussed here suggests that these receptors, and the proteinases that activate them, are important mediators of the innate immune response of the gut and could play a major role in chronic inflammatory states of the gut (inflammatory bowel diseases), or infectious diseases.  相似文献   

8.
Somatostatin receptors in the gastrointestinal tract in health and disease.   总被引:2,自引:0,他引:2  
J C Reubi 《The Yale journal of biology and medicine》1992,65(5):493-503; discussion 531-6
The multiple actions of somatostatin are mediated by specific membrane-bound receptors present in all somatostatin target tissues, such as brain, pituitary, pancreas, and gastrointestinal tract. Three different types of tissues in the human gastrointestinal tract express somatostatin receptors: (1) the gastrointestinal mucosa, (2) the peripheral nervous system, and (3) the gut-associated lymphoid tissue, where the receptors are preferentially located in germinal centers. In all these cases, somatostatin binding is of high affinity and specific for bioactive somatostatin analogs. Somatostatin receptors are also expressed in pathological states, particularly in neuroendocrine tumors of the gastrointestinal tract. Ninety percent of the carcinoids and a majority of islet-cell carcinomas, including their metastases, usually have a high density of somatostatin receptors. Only 10 percent of the colorectal carcinomas and none of the exocrine pancreatic carcinomas, however, contain somatostatin receptors. The somatostatin receptors in tumors are identified with in vitro binding methods or with in vivo imaging techniques; the latter allow the precise localization of the tumors and their metastases in the patients. Since somatostatin receptors in gastroenteropancreatic tumors are functional, their identification can be used to assess the therapeutic efficacy of octreotide to inhibit excessive hormone release in the patients.  相似文献   

9.
Surface sensory enteroendocrine cells are established mucosal taste cells that monitor luminal contents and provide an important link in transfer of information from gut epithelium to the central nervous system. Recent studies now show that these cells can also mediate efferent signaling from the brain to the gut. Centrally elicited stimulation of vagal and sympathetic pathways induces release of melatonin, which acts at MT2 receptors to increase mucosal electrolyte secretion. Psychological factors as well mucosal endocrine cell hyperplasia are implicated in functional intestinal disorders. Central nervous influence on the release of transmitters from gut endocrine cells offers an exciting area of future gastrointestinal research with a clinical relevance.  相似文献   

10.
The gastrointestinal tract is a passageway for dietary nutrients, microorganisms and xenobiotics. The gut is home to diverse bacterial communities forming the microbiota. While bacteria and their metabolites maintain gut homeostasis, the host uses innate and adaptive immune mechanisms to cope with the microbiota and luminal environment. In recent years, multiple bi-directional instructive mechanisms between microbiota, luminal content and mucosal immune systems have been uncovered. Indeed, epithelial and immune cell-derived mucosal signals shape microbiota composition, while microbiota and their by-products shape the mucosal immune system. Genetic and environmental perturbations alter gut mucosal responses which impact on microbial ecology structures. On the other hand, changes in microbiota alter intestinal mucosal responses. In this review, we discuss how intestinal epithelial Paneth and goblet cells interact with the microbiota, how environmental and genetic disorders are sensed by endoplasmic reticulum stress and autophagy responses, how specific bacteria, bacterial- and diet-derived products determine the function and activation of the mucosal immune system. We will also discuss the critical role of HDAC activity as a regulator of immune and epithelial cell homeostatic responses.  相似文献   

11.
Glutamate: a truly functional amino acid   总被引:2,自引:0,他引:2  
Glutamate is one of the most abundant of the amino acids. In addition to its role in protein structure, it plays critical roles in nutrition, metabolism and signaling. Post-translational carboxylation of glutamyl residues increases their affinity for calcium and plays a major role in hemostasis. Glutamate is of fundamental importance to amino acid metabolism, yet the great bulk of dietary glutamate is catabolyzed within the intestine. It is necessary for the synthesis of key molecules, such as glutathione and the polyglutamated folate cofactors. It plays a major role in signaling. Within the central nervous system, glutamate is the major excitatory neurotransmitter and its product, GABA, the major inhibitory neurotransmitter. Glutamate interaction with specific taste cells in the tongue is a major component of umami taste. The finding of glutamate receptors throughout the gastrointestinal tract has opened up a new vista in glutamate function. Glutamate is truly a functional amino acid.  相似文献   

12.
The gastrointestinal (GI) tract is a specialized sensory system that detects and responds to constant changes in nutrient- and bacterial-derived intestinal signals, thus contributing to controls of food intake. Chronic exposure to dietary fat causes morphological, physiological and metabolic changes leading to disruptions in the regulatory feeding pathways promoting more efficient fat absorption and utilization, blunted satiation signals and excess adiposity. Accumulating evidence demonstrates that impaired gastrointestinal signals following long-term high fat consumption are, at least partially, responsible for increased caloric intake. This review focuses on the role of dietary fat in modulating oral and post-oral chemosensory signaling elements responsible for lipid detection and responses, including changes in sensitivity to satiation signals, such as GLP-1, PYY and CCK and their impact on food intake and weight gain. Furthermore, the influence of the gut microbiota on mechanisms controlling energy regulation in the face of excessive fat exposure will be explored. The profound influence of dietary fats on altering complex regulatory feeding pathways can result in dysregulation of body weight and development of obesity, while restoration or manipulation of satiation signaling may prove an effective tool in prevention and treatment of obesity.  相似文献   

13.
The gastrointestinal tracts (GIT) of fish and other vertebrates are challenged with a diversity of functional demands caused by changes and differences in dietary inputs and environmental conditions. This contribution reviews how hormonal regulation plays an essential role in modulating the GIT functions of fish to match changes in functional demands. Exemplary is how hormones produced by the GIT, the associated organs (e.g., pancreas), and other sources (e.g., hypothalamus, adrenal cortex, thyroid, gonads) modulate the digestive processes (motility, secretion, and nutrient absorption) in response to dietary inputs. Hormones regulate the other GIT functions of osmoregulation (secretion and absorption of electrolytes and water), immunity, endocrine secretions, metabolism, and the elimination of toxic metabolites and environmental contaminants to match changes in environmental conditions and physiological states. Although the regulatory molecules and associated signaling pathways have been conserved during evolution of the vertebrate GIT, the specific responses often vary among fish with different feeding habits and from different environments, and can differ from those described for mammals.  相似文献   

14.
We demonstrate that poly (A+)RNA isolated from catfish barbels directs the expression of functional amino acid taste receptors in theXenopus oocyte. The activity of these receptors is monitored in ovo by the two electrode voltage clamp technique. Specific conductance changes recorded in response to amino acid stimulation are analogous to those recorded electrophysiologically from intact catfish barbels. These responses exhibit specificity, reproducibility, rapid onset and termination, and desensitization to repetitive stimulation. A functional assay system that encompasses the full complement of transduction events from the ligand-receptor interaction to subsequent conductance changes is necessary to identify molecular components responsible for these events. Our results demonstrate that theXenopus oocyte can be used to characterize and identify clones coding for amino acid taste receptors analogous to its use in studying receptor molecules for other neuroactive compounds.Special issue is dedicated to Dr. Sidney Udenfriend.  相似文献   

15.
Nitric oxide (NO) is a central mediator of various physiological events in the gastrointestinal tract. The influence of the intestinal microflora for NO production in the gut is unknown. Bacteria could contribute to this production either by stimulating the mucosa to produce NO, or they could generate NO themselves. Using germ-free and conventional rats, we measured gaseous NO directly in the gastrointestinal tract and from the luminal contents using a chemiluminescence technique. Mucosal NO production was studied by using an NO synthase (NOS) inhibitor, and to evaluate microbial contribution to the NO generation, nitrate was given to the animals. In conventional rats, luminal NO differed profoundly along the gastrointestinal tract with the greatest concentrations in the stomach [>4,000 parts per billion (ppb)] and cecum (approximately 200 ppb) and lower concentrations in the small intestine and colon (< or =20 ppb). Cecal NO correlated with the levels in incubated luminal contents. NOS inhibition lowered NO levels in the colon, without affecting NO in the stomach and in the cecum. Gastric NO increased greatly after a nitrate load, proving it to be a substrate for NO generation. In germ-free rats, NO was low (< or =30 ppb) throughout the gastrointestinal tract and absent in the incubated luminal contents. NO also remained low after a nitrate load. Our results demonstrate a pivotal role of the intestinal microflora in gastrointestinal NO generation. Distinctly compartmentalized qualitative and quantitative NO levels in conventional and germ-free rats reflect complex host microbial cross talks, possibly making NO a regulator of the intestinal eco system.  相似文献   

16.
17.
Rapid progress in gastroenterology during the first part of the last century has shown that gastrointestinal (GI) function is regulated by neuroendocrine, paracrine and endocrine signals. However, recent advances in chemical sensing, especially in the last decade, have revealed that free l-amino acids (AA), among other nutrients, play a critical role in modifying exocrine and endocrine secretion, modulating protein digestion, metabolism and nutrient utilization, and supporting the integrity and defense of the GI mucosa. Many of the mechanisms by which AAs elicit these functions in the GI has been linked to the traditional concept of hormone release and nervous system activation. But most these effects are not direct. AAs appear to function by binding to a chemical communication system such as G protein-coupled receptors (GPCRs) that activate signaling pathways. These intracellular signals, although their molecular bases are not completely elucidated yet, are the ones responsible for the neuronal activity and release of hormones that in turn regulate GI functions. This review aims to describe the distribution of the known GPCRs from the class 3 superfamily that bind to different kinds of AA, especially from the oropharyngeal cavity to the stomach, what kind of taste qualities they elicit, such as umami, bitter or sweet, and their activity in the GI tract.  相似文献   

18.
The extracellular calcium-sensing receptor (CaR) is a multimodal sensor for several key nutrients, notably Ca2+ ions and L-amino acids, and is expressed abundantly throughout the gastrointestinal tract. While its role as a Ca2+ ion sensor is well recognized, its physiological significance as an L-amino acid sensor and thus, in the gastrointestinal tract, as a sensor of protein ingestion is only now coming to light. This review focuses on the CaR's amino acid sensing properties at both the molecular and cellular levels and considers new and putative physiological roles for the CaR in the amino acid-dependent regulation of gut hormone secretion, epithelial transport, and satiety.  相似文献   

19.
The concept that gut nutrient sensing involves taste receptors has been fueled by recent reports associating the expression of taste receptors and taste-associated signaling molecules in the gut and in gut-derived cell lines with physiological responses induced by known taste stimuli. However, for bitter taste receptors (Tas2rs), direct evidence for their functional role in gut physiology is scarce and their cellular expression pattern remained unknown. We therefore investigated Tas2r expression in mice. RT-PCR experiments assessed the presence of mRNA for Tas2rs and taste signaling molecules in the gut. A gene-targeted mouse strain was established to visualize and identify cell types expressing the bitter receptor Tas2r131. Messenger RNA for various Tas2rs and taste signaling molecules were detected by RT-PCR in the gut. Using our knock-in mouse strain we demonstrate that a subset of colonic goblet cells express Tas2r131. Cells that express this receptor are absent in the upper gut and do not correspond to enteroendocrine and brush cells. Expression in colonic goblet cells is consistent with a role of Tas2rs in defense mechanisms against potentially harmful xenobiotics.  相似文献   

20.
Enteric helminths have a significant impact on the structure, function, and neural control of the gastrointestinal (GI) tract of the host. Interactions between the host's nervous and immune systems redirect activity in neuronal circuits intrinsic to the gut into an alternative repertoire of defensive and adaptive motor programs. Gut inflammation and activation of the enteric neuroimmune axis play integral roles in the dynamic interaction between host and parasite that occurs at the mucosal surface. Three inter-related themes are stressed in this review to underscore the pivotal role that neural control mechanisms play in the host's GI tract functional responses to enteric parasitism. First, we address the discovery that signaling molecules of both parasite and host origin can reorient the dynamic ecology of enteric host-parasite interactions. Second, we explore what has been learned from investigations of altered gut propulsive and secretomotor reflex activities that occur during enteric parasitic infections and the emerging picture derived from these studies that elucidates how nerves help facilitate and orchestrate functional reorganization of the parasitized gut. Third, we provide an overview of the direct impact that enteric parasitism has on nerve cell function and neurotransmission pathways in both the enteric and central nervous systems of the host. In summary, this review highlights and clarifies the complex mechanisms underlying integrative neuroimmunophysiological responses to the presence of both invasive and noninvasive enteric helminths and identifies directions for future research investigations in this highly important but understudied area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号