首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
This article is concerned with the Bayesian estimation of stochastic rate constants in the context of dynamic models of intracellular processes. The underlying discrete stochastic kinetic model is replaced by a diffusion approximation (or stochastic differential equation approach) where a white noise term models stochastic behavior and the model is identified using equispaced time course data. The estimation framework involves the introduction of m- 1 latent data points between every pair of observations. MCMC methods are then used to sample the posterior distribution of the latent process and the model parameters. The methodology is applied to the estimation of parameters in a prokaryotic autoregulatory gene network.  相似文献   

2.
ABSTRACT: BACKGROUND: A prerequisite for the mechanistic simulation of a biochemical system is detailed knowledge of its kinetic parameters. Despite recent experimental advances, the estimation of unknown parameter values from observed data is still a bottleneck for obtaining accurate simulation results. Many methods exist for parameter estimation in deterministic biochemical systems; methods for discrete stochastic systems are less well developed. Given the probabilistic nature of stochastic biochemical models, a natural approach is to choose parameter values that maximize the probability of the observed data with respect to the unknown parameters, a.k.a. the maximum likelihood parameter estimates (MLEs). MLE computation for all but the simplest models requires the simulation of many system trajectories that are consistent with experimental data. For models with unknown parameters, this presents a computational challenge, as the generation of consistent trajectories can be an extremely rare occurrence. RESULTS: We have developed Monte Carlo Expectation-Maximization with Modified Cross-Entropy Method (MCEM2): an accelerated method for calculating MLEs that combines advances in rare event simulation with a computationally efficient version of the Monte Carlo expectation-maximization (MCEM) algorithm. Our method requires no prior knowledge regarding parameter values, and it automatically provides a multivariate parameter uncertainty estimate. We applied the method to five stochastic systems of increasing complexity, progressing from an analytically tractable pure-birth model to a computationally demanding model of yeast-polarization. Our results demonstrate that MCEM2 substantially accelerates MLE computation on all tested models when compared to a stand-alone version of MCEM. Additionally, we show how our method identifies parameter values for certain classes of models more accurately than two recently proposed computationally efficient methods. CONCLUSIONS: This work provides a novel, accelerated version of a likelihood-based parameter estimation method that can be readily applied to stochastic biochemical systems. In addition, our results suggest opportunities for added efficiency improvements that will further enhance our ability to mechanistically simulate biological processes.  相似文献   

3.
Online estimation of unknown state variables is a key component in the accurate modelling of biological wastewater treatment processes due to a lack of reliable online measurement systems. The extended Kalman filter (EKF) algorithm has been widely applied for wastewater treatment processes. However, the series approximations in the EKF algorithm are not valid, because biological wastewater treatment processes are highly nonlinear with a time-varying characteristic. This work proposes an alternative online estimation approach using the sequential Monte Carlo (SMC) methods for recursive online state estimation of a biological sequencing batch reactor for wastewater treatment. SMC is an algorithm that makes it possible to recursively construct the posterior probability density of the state variables, with respect to all available measurements, through a random exploration of the states by entities called ‘particle’. In this work, the simplified and modified Activated Sludge Model No. 3 with nonlinear biological kinetic models is used as a process model and formulated in a dynamic state-space model applied to the SMC method. The performance of the SMC method for online state estimation applied to a biological sequencing batch reactor with online and offline measured data is encouraging. The results indicate that the SMC method could emerge as a powerful tool for solving online state and parameter estimation problems without any model linearization or restrictive assumptions pertaining to the type of nonlinear models for biological wastewater treatment processes.  相似文献   

4.
5.
《Process Biochemistry》2010,45(6):961-972
Inverse estimation of model parameters via mathematical modeling route, known as inverse modeling (IM), is an attractive alternative approach to the experimental methods. This approach makes use of efficient optimization techniques in the course of solution of an inverse problem with the aid of measured data. In this study, a novel optimization method based on ant colony optimization (ACO), denoted by ACO-IM, is presented for inverse estimation of kinetic and film thickness parameters of biofilm models that describe an experimental fixed bed anaerobic reactor. The proposed optimization method for parameter estimation emulates the fact that ants are capable of finding the shortest path from a food source to their nest by depositing a trial of pheromone during their walk. The efficacy of the ACO-IM for numerical estimation of bio-kinetic parameters is demonstrated through its application for the anaerobic treatment of industry wastewater in a fixed bed biofilm process. The results explain the rigorousness of mathematical models, the form of kinetic and film thickness models and the type of packing to be used with the biofilm process for accurate determination of kinetic and film thickness parameters so as to ensure reliable predictive performance of the biofilm reactor models.  相似文献   

6.
A central challenge in computational modeling of biological systems is the determination of the model parameters. Typically, only a fraction of the parameters (such as kinetic rate constants) are experimentally measured, while the rest are often fitted. The fitting process is usually based on experimental time course measurements of observables, which are used to assign parameter values that minimize some measure of the error between these measurements and the corresponding model prediction. The measurements, which can come from immunoblotting assays, fluorescent markers, etc., tend to be very noisy and taken at a limited number of time points. In this work we present a new approach to the problem of parameter selection of biological models. We show how one can use a dynamic recursive estimator, known as extended Kalman filter, to arrive at estimates of the model parameters. The proposed method follows. First, we use a variation of the Kalman filter that is particularly well suited to biological applications to obtain a first guess for the unknown parameters. Secondly, we employ an a posteriori identifiability test to check the reliability of the estimates. Finally, we solve an optimization problem to refine the first guess in case it should not be accurate enough. The final estimates are guaranteed to be statistically consistent with the measurements. Furthermore, we show how the same tools can be used to discriminate among alternate models of the same biological process. We demonstrate these ideas by applying our methods to two examples, namely a model of the heat shock response in E. coli, and a model of a synthetic gene regulation system. The methods presented are quite general and may be applied to a wide class of biological systems where noisy measurements are used for parameter estimation or model selection.  相似文献   

7.
Petri net-based modeling methods have been used in many research projects to represent biological systems. Among these, the hybrid functional Petri net (HFPN) was developed especially for biological modeling in order to provide biologists with a more intuitive Petri net-based method. In the literature, HFPNs are used to represent kinetic models at the molecular level. We present two models of long-term potentiation previously represented by differential equations which we have transformed into HFPN models: a phenomenological synapse model and a molecular-level model of the CaMKII regulation pathway. Through simulation, we obtained results similar to those of previous studies using these models. Our results open the way to a new type of modeling for systems biology where HFPNs are used to combine different levels of abstraction within one model. This approach can be useful in fully modeling a system at the molecular level when kinetic data is missing or when a full study of a system at the molecular level it is not within the scope of the research.  相似文献   

8.

Background

The investigation of network dynamics is a major issue in systems and synthetic biology. One of the essential steps in a dynamics investigation is the parameter estimation in the model that expresses biological phenomena. Indeed, various techniques for parameter optimization have been devised and implemented in both free and commercial software. While the computational time for parameter estimation has been greatly reduced, due to improvements in calculation algorithms and the advent of high performance computers, the accuracy of parameter estimation has not been addressed.

Results

We propose a new approach for parameter optimization by using differential elimination, to estimate kinetic parameter values with a high degree of accuracy. First, we utilize differential elimination, which is an algebraic approach for rewriting a system of differential equations into another equivalent system, to derive the constraints between kinetic parameters from differential equations. Second, we estimate the kinetic parameters introducing these constraints into an objective function, in addition to the error function of the square difference between the measured and estimated data, in the standard parameter optimization method. To evaluate the ability of our method, we performed a simulation study by using the objective function with and without the newly developed constraints: the parameters in two models of linear and non-linear equations, under the assumption that only one molecule in each model can be measured, were estimated by using a genetic algorithm (GA) and particle swarm optimization (PSO). As a result, the introduction of new constraints was dramatically effective: the GA and PSO with new constraints could successfully estimate the kinetic parameters in the simulated models, with a high degree of accuracy, while the conventional GA and PSO methods without them frequently failed.

Conclusions

The introduction of new constraints in an objective function by using differential elimination resulted in the drastic improvement of the estimation accuracy in parameter optimization methods. The performance of our approach was illustrated by simulations of the parameter optimization for two models of linear and non-linear equations, which included unmeasured molecules, by two types of optimization techniques. As a result, our method is a promising development in parameter optimization.
  相似文献   

9.

Quantitative dynamical models facilitate the understanding of biological processes and the prediction of their dynamics. These models usually comprise unknown parameters, which have to be inferred from experimental data. For quantitative experimental data, there are several methods and software tools available. However, for qualitative data the available approaches are limited and computationally demanding. Here, we consider the optimal scaling method which has been developed in statistics for categorical data and has been applied to dynamical systems. This approach turns qualitative variables into quantitative ones, accounting for constraints on their relation. We derive a reduced formulation for the optimization problem defining the optimal scaling. The reduced formulation possesses the same optimal points as the established formulation but requires less degrees of freedom. Parameter estimation for dynamical models of cellular pathways revealed that the reduced formulation improves the robustness and convergence of optimizers. This resulted in substantially reduced computation times. We implemented the proposed approach in the open-source Python Parameter EStimation TOolbox (pyPESTO) to facilitate reuse and extension. The proposed approach enables efficient parameterization of quantitative dynamical models using qualitative data.

  相似文献   

10.
A common problem in the analyses of upper limb unfettered reaching movements is the estimation of joint torques using inverse dynamics. The inaccuracy in the estimation of joint torques can be caused by the inaccuracy in the acquisition of kinematic variables, body segment parameters (BSPs), and approximation in the biomechanical models. The effect of uncertainty in the estimation of body segment parameters can be especially important in the analysis of movements with high acceleration. A sensitivity analysis was performed to assess the relevance of different sources of inaccuracy in inverse dynamics analysis of a planar arm movement. Eight regression models and one water immersion method for the estimation of BSPs were used to quantify the influence of inertial models on the calculation of joint torques during numerical analysis of unfettered forward arm reaching movements. Thirteen subjects performed 72 forward planar reaches between two targets located on the horizontal plane and aligned with the median plane. Using a planar, double link model for the arm with a floating shoulder, we calculated the normalized joint torque peak and a normalized root mean square (rms) of torque at the shoulder and elbow joints. Statistical analyses quantified the influence of different BSP models on the kinetic variable variance for given uncertainty on the estimation of joint kinematics and biomechanical modeling errors. Our analysis revealed that the choice of BSP estimation method had a particular influence on the normalized rms of joint torques. Moreover, the normalization of kinetic variables to BSPs for a comparison among subjects showed that the interaction between the BSP estimation method and the subject specific somatotype and movement kinematics was a significant source of variance in the kinetic variables. The normalized joint torque peak and the normalized root mean square of joint torque represented valuable parameters to compare the effect of BSP estimation methods on the variance in the population of kinetic variables calculated across a group of subjects with different body types. We found that the variance of the arm segment parameter estimation had more influence on the calculated joint torques than the variance of the kinematics variables. This is due to the low moments of inertia of the upper limb, especially when compared with the leg. Therefore, the results of the inverse dynamics of arm movements are influenced by the choice of BSP estimation method to a greater extent than the results of gait analysis.  相似文献   

11.
Parameter estimation is a critical problem in modeling biological pathways. It is difficult because of the large number of parameters to be estimated and the limited experimental data available. In this paper, we propose a decompositional approach to parameter estimation. It exploits the structure of a large pathway model to break it into smaller components, whose parameters can then be estimated independently. This leads to significant improvements in computational efficiency. We present our approach in the context of Hybrid Functional Petri Net modeling and evolutionary search for parameter value estimation. However, the approach can be easily extended to other modeling frameworks and is independent of the search method used. We have tested our approach on a detailed model of the Akt and MAPK pathways with two known and one hypothesized crosstalk mechanisms. The entire model contains 84 unknown parameters. Our simulation results exhibit good correlation with experimental data, and they yield positive evidence in support of the hypothesized crosstalk between the two pathways.  相似文献   

12.
A method based on Taylor series expansion for estimation of location parameters and variance components of non-linear mixed effects models was considered. An attractive property of the method is the opportunity for an easily implemented algorithm. Estimation of non-linear mixed effects models can be done by common methods for linear mixed effects models, and thus existing programs can be used after small modifications. The applicability of this algorithm in animal breeding was studied with simulation using a Gompertz function growth model in pigs. Two growth data sets were analyzed: a full set containing observations from the entire growing period, and a truncated time trajectory set containing animals slaughtered prematurely, which is common in pig breeding. The results from the 50 simulation replicates with full data set indicate that the linearization approach was capable of estimating the original parameters satisfactorily. However, estimation of the parameters related to adult weight becomes unstable in the case of a truncated data set.  相似文献   

13.
Bayesian lasso for semiparametric structural equation models   总被引:1,自引:0,他引:1  
Guo R  Zhu H  Chow SM  Ibrahim JG 《Biometrics》2012,68(2):567-577
There has been great interest in developing nonlinear structural equation models and associated statistical inference procedures, including estimation and model selection methods. In this paper a general semiparametric structural equation model (SSEM) is developed in which the structural equation is composed of nonparametric functions of exogenous latent variables and fixed covariates on a set of latent endogenous variables. A basis representation is used to approximate these nonparametric functions in the structural equation and the Bayesian Lasso method coupled with a Markov Chain Monte Carlo (MCMC) algorithm is used for simultaneous estimation and model selection. The proposed method is illustrated using a simulation study and data from the Affective Dynamics and Individual Differences (ADID) study. Results demonstrate that our method can accurately estimate the unknown parameters and correctly identify the true underlying model.  相似文献   

14.
Population variability and uncertainty are important features of biological systems that must be considered when developing mathematical models for these systems. In this paper we present probability-based parameter estimation methods that account for such variability and uncertainty. Theoretical results that establish well-posedness and stability for these methods are discussed. A probabilistic parameter estimation technique is then applied to a toxicokinetic model for trichloroethylene using several types of simulated data. Comparison with results obtained using a standard, deterministic parameter estimation method suggests that the probabilistic methods are better able to capture population variability and uncertainty in model parameters.  相似文献   

15.
Mathematical modeling and simulation studies are playing an increasingly important role in helping researchers elucidate how living organisms function in cells. In systems biology, researchers typically tune many parameters manually to achieve simulation results that are consistent with biological knowledge. This severely limits the size and complexity of simulation models built. In order to break this limitation, we propose a computational framework to automatically estimate kinetic parameters for a given network structure. We utilized an online (on-the-fly) model checking technique (which saves resources compared to the offline approach), with a quantitative modeling and simulation architecture named hybrid functional Petri net with extension (HFPNe). We demonstrate the applicability of this framework by the analysis of the underlying model for the neuronal cell fate decision model (ASE fate model) in Caenorhabditis elegans. First, we built a quantitative ASE fate model containing 3327 components emulating nine genetic conditions. Then, using our developed efficient online model checker, MIRACH 1.0, together with parameter estimation, we ran 20-million simulation runs, and were able to locate 57 parameter sets for 23 parameters in the model that are consistent with 45 biological rules extracted from published biological articles without much manual intervention. To evaluate the robustness of these 57 parameter sets, we run another 20 million simulation runs using different magnitudes of noise. Our simulation results concluded that among these models, one model is the most reasonable and robust simulation model owing to the high stability against these stochastic noises. Our simulation results provide interesting biological findings which could be used for future wet-lab experiments.  相似文献   

16.
Summary In order to study and control fermentation processes, indirect on-line measurements and mathematical models can be used. Here an on-line model for fermentation processes is presented. The model is based on atom and partial mass balances as well as on stability equations for the protolytes. The model is given an adaptive form by including transport equations for mass transfer and expressions for the fermentation kinetics. The state of the process can be estimated on-line using the balance component of the model completed with measurement equations for the input and the output flows of the process. Adaptivity is realized by means of on-line estimation of the parameters in the transport and kinetic expressions using recursive regression analysis. On-line estimation of the kinetic and mass transfer parameters makes model-based predictions possible and enables intelligent process control while facilitating testing of the validity of the measurement variables. A practical MS-Windows 3.1 model implementation called FMMS—Fermentation Monitoring and Modeling System is shown. The system makes it easy to configure the operating conditions for a run. It uses Windows dialogs for all set-ups, model configuration parameters, elemental compositions, on-line measurement devices and signal conditioning. Advanced on-line data analysis makes it possible to plot variables against each other for easy comparison. FMMS keeps track of over 100 variables per run. These variables are either measured or estimated by the model. Assay results can also be entered and plotted during fermentation. Thus the model can be verified almost instantly. Historical fermentation runs can be re-analyzed in simulation mode. This makes it possible to examine different signal conditining filters as well as the sensitivity of the model. Combined, the data analysis and the simulation mode make it easy to test and develop model theories and new ideas.  相似文献   

17.
Two primary purposes for mathematical modeling in cell biology are (1) simulation for making predictions of experimental outcomes and (2) parameter estimation for drawing inferences from experimental data about unobserved aspects of biological systems. While the former purpose has become common in the biological sciences, the latter is less common, particularly when studying cellular and subcellular phenomena such as signaling—the focus of the current study. Data are difficult to obtain at this level. Therefore, even models of only modest complexity can contain parameters for which the available data are insufficient for estimation. In the present study, we use a set of published cellular signaling models to address issues related to global parameter identifiability. That is, we address the following question: assuming known time courses for some model variables, which parameters is it theoretically impossible to estimate, even with continuous, noise-free data? Following an introduction to this problem and its relevance, we perform a full identifiability analysis on a set of cellular signaling models using DAISY (Differential Algebra for the Identifiability of SYstems). We use our analysis to bring to light important issues related to parameter identifiability in ordinary differential equation (ODE) models. We contend that this is, as of yet, an under-appreciated issue in biological modeling and, more particularly, cell biology.  相似文献   

18.
This paper proposes an approximative method for maximum likelihood estimation of parameters of Neyman-Scott and similar point processes. It is based on the point pattern resulting from forming all difference points of pairs of points in the window of observation. The intensity function of this constructed point process can be expressed in terms of second-order characteristics of the original process. This opens the way to parameter estimation, if the difference pattern is treated as a non-homogeneous Poisson process. The computational feasibility and accuracy of this approach is examined by means of simulated data. Furthermore, the method is applied to two biological data sets. For these data, various cluster process models are considered and compared with respect to their goodness-of-fit.  相似文献   

19.
Background: The recently emerged technology of methylated RNA immunoprecipitation sequencing (MeRIP-seq) sheds light on the study of RNA epigenetics. This new bioinformatics question calls for effective and robust peaking calling algorithms to detect mRNA methylation sites from MeRIP-seq data. Methods: We propose a Bayesian hierarchical model to detect methylation sites from MeRIP-seq data. Our modeling approach includes several important characteristics. First, it models the zero-inflated and over-dispersed counts by deploying a zero-inflated negative binomial model. Second, it incorporates a hidden Markov model (HMM) to account for the spatial dependency of neighboring read enrichment. Third, our Bayesian inference allows the proposed model to borrow strength in parameter estimation, which greatly improves the model stability when dealing with MeRIP-seq data with a small number of replicates. We use Markov chain Monte Carlo (MCMC) algorithms to simultaneously infer the model parameters in a de novo fashion. The R Shiny demo is available at the authors' website and the R/C++ code is available at https://github.com/liqiwei2000/BaySeqPeak. Results: In simulation studies, the proposed method outperformed the competing methods exomePeak and MeTPeak, especially when an excess of zeros were present in the data. In real MeRIP-seq data analysis, the proposed method identified methylation sites that were more consistent with biological knowledge, and had better spatial resolution compared to the other methods. Conclusions: In this study, we develop a Bayesian hierarchical model to identify methylation peaks in MeRIP-seq data. The proposed method has a competitive edge over existing methods in terms of accuracy, robustness and spatial resolution.  相似文献   

20.
Mechanistic biochemical network models describe the dynamics of intracellular metabolite pools in terms of substance concentrations, stoichiometry and reaction kinetics. Data from stimulus response experiments are currently the most informative source for in-vivo parameter estimation in such models. However, only a part of the parameters of classical enzyme kinetic models can usually be estimated from typical stimulus response data. For this reason, several alternative kinetic formats using different “languages” (e.g. linear, power laws, linlog, generic and convenience) have been proposed to reduce the model complexity. The present contribution takes a rigorous “multi-lingual” approach to data evaluation by translating biochemical network models from one kinetic format into another. For this purpose, a new high-performance algorithm has been developed and tested. Starting with a given model, it replaces as many kinetic terms as possible by alternative expressions while still reproducing the experimental data. Application of the algorithm to a published model for Escherichia coli's sugar metabolism demonstrates the power of the new method. It is shown that model translation is a powerful tool to investigate the information content of stimulus response data and the predictive power of models. Moreover, the local and global approximation capabilities of the models are elucidated and some pitfalls of traditional single model approaches to data evaluation are revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号