首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The recovery of phospholipid, ester-linked fatty acids and phospholipid phosphate from the eubacterium Pseudomonas atlantica was shown to be equivalent for the modified Bligh ad Dyer (chloroform/methanol/water) procedure and hexane/isopropanol (HIP) lipid extraction. In addition to its previously suggested lower toxicity, the HIP solvent system allows lipid analyses to be routinely done on chloroform-soluble materials such as Nuclepore polycarbonates, useful for well-defined size fractionation studies of bacterioplankton communities.  相似文献   

2.
Lipidome profile of fluids and tissues is a growing field as the role of lipids as signaling molecules is increasingly understood, relying on an effective and representative extraction of the lipids present. A number of solvent systems suitable for lipid extraction are commonly in use, though no comprehensive investigation of their effectiveness across multiple lipid classes has been carried out. To address this, human LDL from normolipidemic volunteers was used to evaluate five different solvent extraction protocols [Folch, Bligh and Dyer, acidified Bligh and Dyer, methanol (MeOH)-tert-butyl methyl ether (TBME), and hexane-isopropanol] and the extracted lipids were analyzed by LC-MS in a high-resolution instrument equipped with polarity switching. Overall, more than 350 different lipid species from 19 lipid subclasses were identified. Solvent composition had a small effect on the extraction of predominant lipid classes (triacylglycerides, cholesterol esters, and phosphatidylcholines). In contrast, extraction of less abundant lipids (phosphatidylinositols, lyso-lipids, ceramides, and cholesterol sulfates) was greatly influenced by the solvent system used. Overall, the Folch method was most effective for the extraction of a broad range of lipid classes in LDL, although the hexane-isopropanol method was best for apolar lipids and the MeOH-TBME method was suitable for lactosyl ceramides.  相似文献   

3.
A simple small-scale procedure for the sequential extraction of isoprenoid quinones and polar lipids from bacterial cells was developed. Extraction with a biphasic mixture of petroleum ether (b.p. 60–80°C) and methanolic saline gave an upper phase containing isoprenoid quinones. The lower phase, containing the partially extracted organisms, was processed according to the Bligh and Dyer extraction method to give a polar lipid extract. As examples of the procedure, the isoprenoid quinones and polar lipids of Bacillus subtilis, Mycobacterium avium, Pseudomonas diminuta and Streptomyces griseus were extracted and analyzed.  相似文献   

4.
Cyclopentyl methyl ether (CPME) was evaluated for extracting oil or triacylglycerol (TAG) from wet cells of the oleaginous yeast Lipomyces starkeyi. CPME is a greener alternative to chloroform as a potential solvent for oil recovery. A monophasic system of CPME and biphasic system of CPME:water (1:0.7) performed poorly having the lowest TAG extraction efficiency and TAG selectivity compared to other monophasic systems of hexane and chloroform and the biphasic Bligh and Dyer method (chloroform:methanol:water). Biphasic systems of CPME:water:alcohol (methanol/ethanol/1‐propanol) were tested and methanol achieved the best oil extraction efficiency compared to ethanol and 1‐propanol. Different biphasic systems of CPME:methanol:water were tested, the best TAG extraction efficiency and TAG selectivity achieved was 9.9 mg/mL and 64.6%, respectively, using a starting ratio of 1:1.7:0.6 and a final ratio of 1:1:0.8 (CPME:methanol:water). Similar results were achieved for the Bligh and Dyer method (TAG extraction efficiency of 10.2 mg/mL and TAG selectivity of 66.0%) indicating that the biphasic CPME system was comparable. The fatty acid profile remained constant across all the solvent systems tested indicating that choice of solvent was not specific for any certain fatty acid. This study was able to demonstrate that CPME could be used as an alternative solvent for the extraction of oil from the wet biomass of oleaginous yeast. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1096–1103, 2017  相似文献   

5.
This study was conducted to evaluate the lipid fractionation and purification procedures of lipase-catalyzed conversion of neutral lipids to microalgal biodiesel. Microalgae lipids were efficiently recovered and purified by a combined extraction method and crude lipid extracts were separated into neutral lipids, glycolipids, and phospholipids by solid-phase extraction. The high purity of the neutral lipids fraction was confirmed by its low concentration of phosphorous (< 2.0 ppm). Transesterification was catalyzed by immobilized Candida antarctica lipase for 72 h with stepwise addition of methanol. The reaction displayed Michaelis–Menten kinetics and produced high yields of microalgal biodiesel (91.2% in the case of Dunaliella salina) with a high content of unsaturated fatty acids (81.5%). Neutral lipids were converted to biodiesel by three-step transesterification, while the removal of polar lipids maintained the activity of the immobilized lipase by reducing both reaction mixture viscosity and contamination risk.  相似文献   

6.
The total lipids of Pinus halepensis pollen were separated into individual classes of neutral and polar lipids and the components of each class were identified and determined quantitatively. Free fatty acids, waxes and triacylglycerols were found as the main constituents of neutral lipids and phosphatidylcholine and phosphatidylethanolamine of polar lipids. Glycerylether derivatives were detected in neutral and polar lipid fractions. Free and esterified volatile fatty acids were also found in pollen and its neutral lipid fraction.  相似文献   

7.
A comparative evaluation of Bligh and Dyer, Folch, and Cequier-Sánchez methods for quantitative determination of total lipids (TLs) and fatty acids (FAs) was accomplished in selective green (Ulva fasciata), red (Gracilaria corticata), and brown algae (Sargassum tenerrimum) using a full factorial categorical design. Applications of sonication and buffer individually on lipid extraction solvent systems were also evaluated. The FA recoveries obtained from the aforementioned methods were compared with those of direct transesterification (DT) methods to identify the best extraction methods. The experimental design showed that macroalgal matrix, extraction method, and buffer were key determinants for TL and FA recoveries (P ? 0.05), exhibiting significant interactions. But sonication gave erratic results with no interaction with any of the factors investigated. The buffered solvent system of Folch rendered the highest TL yield in U. fasciata and G. corticata while the buffered system of Bligh and Dyer gave the highest yield in S. tenerrimum. DT methods were more convenient and accurate for FA quantification and rendered 1.5–2 times higher yields when compared with the best conventional method, minimizing the use of chlorinated solvents, their cost of analysis, and disposal. The buffered solvent system was found to be the most appropriate for lipid research in macroalgae.  相似文献   

8.
The ability of a number of different solvent systems to extract lipid from a range of plant tissues was compared by measurement of phospholipid, glycolipid, sterol lipid and total acyl lipid content. A chloroform-methanol extraction method based upon the principles of Bligh and Dyer was considered to be the most efficient system for use with the majority of plant tissues. Cereal seeds were anomalous in that water saturated n- butanol was the preferred solvent system due to its superior ability to extract bound lysophospholipids present in large amounts in the endosperm portion of the tissue.  相似文献   

9.
A simple and high-throughput method for determining in situ intracellular neutral lipid accumulation in Chlorella ellipsoidea and Chlorococcum infusionum with flow cytometry and confocal microscopy was established by employing different solvents and a lipophilic dye, Nile red. Seven different organic solvents, acetic acid, dimethyl sulfoxide (DMSO), acetone, methanol, ethanol, n-hexane, and chloroform at different concentrations ranging from 0 to 80% (v/v) were tested. The fluorescence signal for neutral lipids was collected with a 586/42 emission filter (PE-A) and the maximum fluorescence intensity (% grandparent) was measured as 74.01 ± 4.82% for Chlorella and 70.1 ± 5.52% for Chlorococcum at 30% acetic acid (v/v). The statistical analysis of Nile red-stained cells showed a high coefficient of variation (CV), standard deviation (SD), mean, and median values in the acetic acid-based staining method, followed by DMSO, n-hexane and chloroform. Confocal microscopy revealed a high rate of accumulation of cytosolic neutral lipids when stained with Nile red and other organic solvents. Higher lipid accumulation in Fesupplemented conditions was also detected and a maximum lipid content of 57.36 ± 0.41% (4-fold) in Chlorella and 48.20 ± 0.43% (4-fold) in Chlorococcum were measured at 0.001 g/L of ferrous sulfate (FeSO4). High fluorescence intensity (75.16 ± 0.24% in Chlorella and 72.24 ± 1.07% in Chlorococcum) in Fe-treated cells confirmed the efficiency of the staining procedure.  相似文献   

10.
Environmental metabolomics studies employing earthworms as sentinels for soil contamination are numerous, but the instability of the metabolite extracts from these organisms has been minimally addressed. This study evaluated the efficacy of adding a heat-treatment step in two commonly used extraction protocols (Bligh and Dyer and D2O phosphate buffer) as a pre-analytical stabilization method. The resulting metabolic profiles of Eisenia fetida were assessed using principal component analysis and NMR spectral evaluations. The heated Bligh and Dyer extractions produced stabilized profiles with minimal variation of the extracted metabolomic profiles over time, providing a more suitable method for metabolomic analysis of earthworm extracts.  相似文献   

11.
Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics   总被引:3,自引:0,他引:3  
Accurate profiling of lipidomes relies upon the quantitative and unbiased recovery of lipid species from analyzed cells, fluids, or tissues and is usually achieved by two-phase extraction with chloroform. We demonstrated that methyl-tert-butyl ether (MTBE) extraction allows faster and cleaner lipid recovery and is well suited for automated shotgun profiling. Because of MTBE's low density, lipid-containing organic phase forms the upper layer during phase separation, which simplifies its collection and minimizes dripping losses. Nonextractable matrix forms a dense pellet at the bottom of the extraction tube and is easily removed by centrifugation. Rigorous testing demonstrated that the MTBE protocol delivers similar or better recoveries of species of most all major lipid classes compared with the "gold-standard" Folch or Bligh and Dyer recipes.  相似文献   

12.
Many species of microalgae produce greatly enhanced amounts of triacylglycerides (TAGs), the key product for biodiesel production, in response to specific environmental stresses. Improvement of TAG production by microalgae through optimization of growth regimes is of great interest. This relies on understanding microalgal lipid metabolism in relation to stress response in particular the deprivation of nutrients that can induce enhanced TAG synthesis. In this study, a detailed investigation of changes in lipid composition in Chlorella sp. and Nannochloropsis sp. in response to nitrogen deprivation (N-deprivation) was performed to provide novel mechanistic insights into the lipidome during stress. As expected, an increase in TAGs and an overall decrease in polar lipids were observed. However, while most membrane lipid classes (phosphoglycerolipids and glycolipids) were found to decrease, the non-nitrogen containing phosphatidylglycerol levels increased considerably in both algae from initially low levels. Of particular significance, it was observed that the acyl composition of TAGs in Nannochloropsis sp. remain relatively constant, whereas Chlorella sp. showed greater variability following N-deprivation. In both algae the overall fatty acid profiles of the polar lipid classes were largely unaffected by N-deprivation, suggesting a specific FA profile for each compartment is maintained to enable continued function despite considerable reductions in the amount of these lipids. The changes observed in the overall fatty acid profile were due primarily to the decrease in proportion of polar lipids to TAGs. This study provides the most detailed lipidomic information on two different microalgae with utility in biodiesel production and nutraceutical industries and proposes the mechanisms for this rearrangement. This research also highlights the usefulness of the latest MS-based approaches for microalgae lipid research.  相似文献   

13.
The usual Bligh and Dyer method could extract only a small part of the lipids of Methanobacterium thermoautotrophicum. When the water in the solvent was replaced by 5% trichloroacetic acid, the lipid recovery reached the maximum level, which was 6 times higher than that by the former method. The use of HCl (2 M) or disruption of cells was also effective but prolonged extraction with the HCl-containing solvent caused degradation of some phosphoglycolipids. Twenty-three spots of polar lipids were detected on a thin-layer chromatogram of the total lipid. These were 10 phospholipids (18%), 6 aminophospholipids (17%), 3 aminophosphoglycolipids (15%), 2 phosphoglycolipids (31%), and 2 glycolipids (19%). The predominant polar lipids were a highly polar phosphoglycolipid (PGL1, 30%) and a glycolipid (GL1a, 16%). The other major lipids included an aminophospholipid (PNL1a, 9%), and an aminophosphoglycolipid (PNGL1, 7%). The complete structure determination of PNL1a, GL1a, and PNGL1 is described in the accompanying paper. Acetolysis of the total lipids followed by acid methanolysis was required for the complete cleavage of polar head groups, releasing core residues of diphytanyl glycerol diether (C20 diether) and dibiphytanyl diglycerol tetraether (C40 tetraether). A densitometric assay of a thin-layer chromatogram showed that the ratio of C20 diether and C40 tetraether was 1:14. GLC analysis of alkyl chlorides prepared from the total lipid by BCl3 treatment showed that phytanyl (C20), biphytanyl (C40), and unidentified alkyl chains accounted for 10, 83, and 7 mol% of the total alkyl chains, respectively. Strong acid hydrolysis of the macromolecular residue obtained after lipid extraction gave a significant amount of C40 tetraether, which had probably been bound covalently to other substances in the cells.  相似文献   

14.
A comparative study of three detergent-free protein extraction protocols—a differential centrifugal fractionation, a delipidation protocol based on the Bligh and Dyer method, and the trifluoroethanol addition as cosolvent to an aqueous buffer—was performed on white adipose tissue. The performance of the protocols directly compatible with liquid chromatography–electrospray ionization–mass spectrometry (LC–ESI–MS) was evaluated based on the total protein extraction yield and the protein recovery from different functional and cellular compartments. The most suitable method for the extraction of white adipose tissue proteins from a wide range of cellular and structural compartments was the delipidation protocol based on the Bligh and Dyer method.  相似文献   

15.
The remodeling of membrane composition by changes in phospholipid head groups and fatty acids (FA) degree of unsaturation has been associated with the maintenance of membrane homeostasis under stress conditions. Overall lipid levels and the composition of cuticle lipids also influence insect stress resistance and tissue protection. In a previous study, we demonstrated differences in survival, behavior and Cu/Zn superoxide dismutase gene expression between subgroups of Ceratitis capitata flies that had a reversible recovery from chill-coma and those that developed chilling-injury. Here, we analyzed lipid profiles from comparable subgroups of 15 and 30-day-old flies separated according to their recovery time after a chill-coma treatment. Neutral and polar lipid classes of chill-coma subgroups were separated by thin layer chromatography and quantified by densitometry. FA composition of polar lipids of chill-coma subgroups and non-stressed flies was evaluated using gas chromatography coupled to mass spectrometry. Higher amounts of neutral lipids such as triglycerides, diacylglycerol, wax esters, sterol esters and free esters were found in male flies that recovered faster from chill-coma compared to slower flies. A multivariate analysis revealed changes in patterns of storage and cuticle lipids among subgroups both in males and females. FA unsaturation increased after cold exposure, and was higher in thorax of slower subgroups compared to faster subgroups. The changes in neutral lipid patterns and FA composition depended on recovery time, sex, age and body-part, and were not specifically associated with the development of chilling-injury. An analysis of phospholipid classes showed that the phosphatidylcholine to lysophosphatidylcholine ratio (PC/LPC) was significantly higher, or showed a tendency, in subgroups that may have developed chilling-injury compared to those with a reversible recovery from coma.  相似文献   

16.
Phospholipid-derived fatty acids (PLFAs) are commonly used to characterize microbial communities in situ and the phylogenetic positions of newly isolated microorganisms. PLFAs are obtained through separation of phospholipids from glycolipids and neutral lipids using silica column chromatography. We evaluated the performance of this separation method for the first time using direct detection of intact polar lipids (IPLs) with high-performance liquid chromatography–mass spectrometry (HPLC-MS). We show that under either standard or modified conditions, the phospholipid fraction contains not only phospholipids but also other lipid classes such as glycolipids, betaine lipids, and sulfoquinovosyldiacylglycerols. Thus, commonly reported PLFA compositions likely are not derived purely from phospholipids and perhaps may not be representative of fatty acids present in living microbes.  相似文献   

17.
Microalgae oils are considered to be promising alternative sources of omega-3 LC-PUFA. The aim of this work was therefore to evaluate different solvent (mixtures), currently accepted for use in the food industry, for the extraction of lipids from Nannochloropsis gaditana, an omega-3 LC-PUFA-rich microalga. Importantly, not only the total lipid yield but also the lipid class, eicosapentaenoic acid, carotenoid, and sterol yield were investigated. It was shown that the highest yield for each of the components was obtained with dichloromethane/ethanol (1:1). All extracts except the one obtained with dichloromethane/ethanol (1:1) were enriched in neutral lipids and depleted in polar lipids, when compared to the total lipid extract (chloroform/methanol 1:1). Hexane/isopropanol (3:2) seems to be the second best option: it has the advantage of performing better at criteria such as toxicity, but has the disadvantage that almost half of the interesting oil cannot be recovered.  相似文献   

18.
A method for the maximum recovery of prostaglandins from brain tissue with simultaneous recovery of neutral lipids and phospholipids was developed. Hexane:2-propanol was used to extract lipids from bovine brain. This method, which does not require a washing step to remove nonlipid contaminants, was compared to extraction according to Folch et al. [(1957) J. Biol. Chem. 226, 497-509] for efficiency of lipid extraction. Recoveries of prostaglandins were 12-37% greater with hexane:2-propanol than with the Folch extraction procedure with washing. The ratios of cholesterol to lipid phosphorus and absolute phospholipid recoveries were comparable for the two methods. A new elution sequence was devised for separation of lipid classes on silicic acid columns. The elution sequence was chloroform (neutral lipids and free fatty acids), methyl formate (prostaglandins and cerebrosides), acetone (remaining glycolipids), and methanol (phospholipids). Reverse-phase HPLC of the methyl formate fraction was used to separate the prostaglandins. The method permits simultaneous quantitative recovery of prostaglandins and phospholipids (which contain the 20:4(n-6) precursor for prostaglandin synthesis), and therefore allows changes in phospholipid composition and prostaglandin synthesis to be studied in the same tissue sample.  相似文献   

19.
Aims: To compare effective cell disruption methods for lipid extraction from fresh water microalgae. Methods and Results: Chlorella sp., Nostoc sp. and Tolypothrix sp. were isolated from fresh water ponds in and around Gandhigram, Dindigul District, Tamilnadu, India, and used for lipid extraction. Different methods, including autoclaving, bead beating, microwave, sonication and a 10% NaCl solution treatments, were tested to identify the most effective cell disruption method. The total lipids from three microalgal species were extracted using a mixture of chloroform and methanol. Fatty acid composition was detected by gas chromatography (GC). Nostoc sp. and Tolypothrix sp. showed higher oleic acid content of 13·27 mg g?1 dw and 17·75 mg g?1 dw, respectively, whereas Chlorella sp. had high linoleic acid content of 17·61 mg g?1 dw when the cells were disrupted using the sonication method. Conclusions: Finally, the sonication method was found to be the most applicable and efficient method of lipid extraction from microalgae. The highest lipid content was extracted from Chlorella sp. Significance and Impact of the Study: In biodiesel production from microalgae, lipid extraction is a crucial step and important as cell disruption comes in this step. Therefore, the appropriate cell disruption method and device is a key to increase the lipid extraction efficiency.  相似文献   

20.
The purpose of the study reported here was to develop a method for the determination of lipid classes in intestinal fluids, including bile acids (BAs). A solid-phase extraction (SPE) method using C18 and silica columns for the separation of BAs, phospholipids (PLs), and neutral lipids (NLs), including free fatty acids, has been developed and validated. Fed-state small intestinal fluid collected from humans was treated with orlistat to inhibit lipolysis and mixed with acetic acid and methanol before SPE to maximize lipid recoveries. BAs, PLs, and NLs were isolated using lipophilic and polar solvents to promote elution from the SPE columns. The different lipid classes were subsequently analyzed using three separately optimized HPLC methods with evaporative light-scattering detectors. High recoveries (>90%) of all lipids evaluated were observed, with low coefficients of variation (<5%). The HPLC methods developed were highly reproducible and allowed baseline separation of nearly all lipid classes investigated. In conclusion, these methods provide a means of lipid class analysis of NLs, PLs, and BAs in human fed-state small intestinal fluid, with potential use in other fluids from the intestinal tract and animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号