首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron has a central role in bioleaching and biooxidation processes. Fe2+ produced in the dissolution of sulfidic minerals is re-oxidized to Fe3+ mostly by biological action in acid bioleaching processes. To control the concentration of iron in solution, it is important to precipitate the excess as part of the process circuit. In this study, a bioprocess was developed based on a fluidized-bed reactor (FBR) for Fe2+ oxidation coupled with a gravity settler for precipitative removal of ferric iron. Biological iron oxidation and partial removal of iron by precipitation from a barren heap leaching solution was optimized in relation to the performance and retention time (τFBR) of the FBR. The biofilm in the FBR was dominated by Leptospirillum ferriphilum and “Ferromicrobium acidiphilum.” The FBR was operated at pH 2.0 ± 0.2 and at 37 °C. The feed was a barren leach solution following metal recovery, with all iron in the ferrous form. 98–99% of the Fe2+ in the barren heap leaching solution was oxidized in the FBR at loading rates below 10 g Fe2+/L h (τFBR of 1 h). The optimal performance with the oxidation rate of 8.2 g Fe2+/L h was achieved at τFBR of 1 h. Below the τFBR of 1 h the oxygen mass transfer from air to liquid limited the iron oxidation rate. The precipitation of ferric iron ranged from 5% to 40%. The concurrent Fe2+ oxidation and partial precipitative iron removal was maximized at τFBR of 1.5 h, with Fe2+ oxidation rate of 5.1 g Fe2+/L h and Fe3+ precipitation rate of 25 mg Fe3+/L h, which corresponded to 37% iron removal. The precipitates had good settling properties as indicated by the sludge volume indices of 3–15 mL/g but this step needs additional characterization of the properties of the solids and optimization to maximize the precipitation and to manage sludge disposal.  相似文献   

2.
Formation of 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxo-dG) in solutions of free 2′-deoxyguanosine (dG) and calf thymus DNA (DNA) was compared for the diffusion-dependent and localised production of oxygen radicals from phosphate-mediated oxidation of ferrous iron (Fe2+) to ferric iron (Fe3+). The oxidation of Fe2+ to Fe3+ was followed at 304 nm at pH 7.2 under aerobic conditions. Given that the concentration of Fe2+ ≥phosphate concentration, the rate of Fe2+ oxidation was significantly higher in DNA-phosphate as compared for the same concentration of inorganic phosphate. Phosphate catalysed oxidation of ferrous ions in solutions of dG or DNA led through the production of reactive oxygen species to the formation of 8-oxo-dG. The yield of 8-oxo-dG in solutions of dG or DNA correlated positively with the inorganic-/DNA-phosphate concentrations as well as with the concentrations of ferrous ions added. The yield of 8-oxo-dG per unit oxidised Fe2+ were similar for dG and DNA; thus, it differed markedly from radiation-induced 8-oxo-dG, where the yield in DNA was several fold higher.For DNA in solution, the localisation of the phosphate ferrous iron complex relative to the target is an important factor for the yield of 8-oxo-dG. This was supported from the observation that the yield of 8-oxo-dG in solutions of dG was significantly increased over that in DNA only when Fe2+ was oxidised in a high excess of inorganic phosphate (50 mM) and from the lower protection of DNA damage by the radical scavenger (hydroxymethyl)aminomethane (Tris)–HCl.  相似文献   

3.
Modelling of Fe2 + oxidation by Thiobacillus ferrooxidans   总被引:1,自引:0,他引:1  
Summary The kinetics of oxidation of aqueous acidic ferrous sulphate by Thiobacillus ferrooxidans has been studied in a batch reactor. The contribution of cell wall envelopes to the oxidation rate has been shown to be negligible. A model which accounts for the oxidation of Fe2 +, death of bacteria due to Fe3 + poisoning, existence of an optimal pH and precipitation of Fe3 + has been proposed. The model is able to predict the concentration of Fe2 + and pH quite satisfactorily. The predictions of Fe3 + are not so accurate because of simplifying assumptions made about its precipitation. Offprint requests to: R. Kumar  相似文献   

4.
The extreme acid conditions required for scorodite (FeAsO4·2H2O) biomineralization (pH below 1.3) are suboptimal for growth of most thermoacidophilic Archaea. With the objective to develop a continuous process suitable for biomineral production, this research focuses on growth kinetics of thermoacidophilic Archaea at low pH conditions. Ferrous iron oxidation rates were determined in batch-cultures at pH 1.3 and a temperature of 75°C for Acidianus sulfidivorans, Metallosphaera prunea and a mixed Sulfolobus culture. Ferrous iron and CO2 in air were added as sole energy and carbon source. The highest growth rate (0.066 h−1) was found with the mixed Sulfolobus culture. Therefore, this culture was selected for further experiments. Growth was not stimulated by increase of the CO2 concentration or by addition of sulphur as an additional energy source. In a CSTR operated at the suboptimal pH of 1.1, the maximum specific growth rate of the mixed culture was 0.022 h−1, with ferrous iron oxidation rates of 1.5 g L−1 d−1. Compared to pH 1.3, growth rates were strongly reduced but the ferrous iron oxidation rate remained unaffected. Influent ferrous iron concentrations above 6 g L−1 caused instability of Fe2+ oxidation, probably due to product (Fe3+) inhibition. Ferric-containing, nano-sized precipitates of K-jarosite were found on the cell surface. Continuous cultivation stimulated the formation of an exopolysaccharide-like substance. This indicates that biofilm formation may provide a means of biomass retention. Our findings showed that stable continuous cultivation of a mixed iron-oxidizing culture is feasible at the extreme conditions required for continuous biomineral formation.  相似文献   

5.
The microbiological oxidation of ferrous iron in batch and continuous systems has been investigated in relation to uranium extraction from a low-grade ore by Thiobacillus ferrooxidans. The influence of the parameters, agitation, and aeration on oxygen saturation concentration, rate of oxygen mass transfer, and rate of ferrous iron oxidation was demonstrated. The kinetic values, Vmax and K were determined using an adapted Monod equation for different dilution rates and initial concentrations of ferrous iron. The power requirements for initial leaching conditions were also calculated. Uranium extraction as high as 68% has been realized during nine days of treatment. Regrinding the leach residue and its subsequent leaching yielded 87% uranium solubilization.  相似文献   

6.
Kinetic data of ferrous iron oxidation by Thionacillus ferrooxidans were determined. The aim was to remove H2S (<0.5 ppm) from waste gas by a process proposed earlier. Kinetic data necessary for industrial scale-up were investigated in a chemostat airlift reactor (dilution rate 0.02–0.12 h–1; pH 1.3). Due to the low pH, ferric iron precipitation and wall growth could be avoided. The maximum ferrous iron oxidation rate of submersed bacteria was 0.77 g 1–1 h–1, the maximum specific growth rate about 0.12 h–1 and the yield coefficient was found to be 0.007 g g–1 Fe2+. The specific O2 demand of an exponentially growing, ironoxidizing batch culture was 1.33 mg O2 mg–1 biomass h–1. The results indicate that a pH of 1.3 has no negative influence on the kinetics of iron oxidation and growth. Correspondence to: W. Schäfer-Treffenfeldt  相似文献   

7.
PVA-cryogels entrapping about 109 cells of Acidithiobacillus ferrooxidans per ml of gel were prepared by freezing-thawing procedure, and the biooxidation of Fe2+ by immobilized cells was investigated in a 0.365 l packed-bed bioreactor. Fe2+ oxidation fits a plug-flow reaction model well. A maximum oxidation rate of 3.1 g Fe2+ l–1 h–1 was achieved at the dilution rate of 0.4 h–1 or higher, while no obvious precipitate was determined at this time. In addition, cell-immobilized PVA-cryogels packed in bioreactor maintained their oxidative ability for more than two months under non-sterile conditions. Nomenclature: C A0 – Concentration of Fe2+ in feed stream (g l–1) C A – Concentration of Fe2 + in outlet stream (g l– 1) D – Dilution rate of the packed-bed bioreactor (h–1) F – Volumetric flow rate of iron solution (l h–1) F A0 – Mass flow rate of Fe2+ in the feed stream (g h–1) K – Kinetic constant (l l–1 h–1) r A – Oxidation rate of Fe2+ (g l–1 h–1) V – Volume of packed-bed bioreactor (l) X A – Conversion ratio of Fe2+ (%)  相似文献   

8.
Two strains ofLeptospirillum-like bacteria, L6 and L8, have been isolated from a mixed inoculum, also containingThiobacillus ferrooxidans andT. thiooxidans, cultured for one year with a colbaltiferous pyrite as energy substrate in a 100 I continuous bioleaching laboratory unit. Several physiological properties of the strains are described. The vibrio-shaped microorganisms grew at pH values lower than 1.3. Their growth rate was maximum between 2.5 and 8.0 g l1 ferrous iron. The optimal growth temperature was 37.5° C. Ferric iron had a stimulative effect on bacterial development up to 8 g l–1, and growth was as rapid at 14 g l–1 ferric iron as at 8 g l–1. The negative influence of cobalt on the final cell concentration was observed at 0.5 g l–1, but the growth rate was not affected up to 2 g l–1. The G + C content of strains L8 is 55.6 mol%.  相似文献   

9.
Lab‐scale experiments were conducted to investigate the effects of ferrous iron on nutrient removal performance and variations in the microbial community inside aerobic granular sludge for 408 days. Two reactors were simultaneously operated, one without added ferrous iron (SBR1), and one with 10 mg Fe2+ L?1 of added ferrous iron (SBR2). A total of 1 mg Fe2+ L?1 of added ferrous iron was applied to SBR1 starting from the 191st day to observe the resulting variations in the nutrient removal performance and the microbial community. The results show that ammonia‐oxidizing bacteria (AOB) could not oxidize ammonia due to a lack of iron compounds, but they could survive in the aerobic granular sludge. Limited ferrous iron addition encouraged nitrification. Enhanced biological phosphorus removal (EBPR) from both reactors could not be maintained regardless of the amount of ferrous iron that was applied. EBPR was established in both reactors when the concentration of mixed liquor suspended solid (MLSS) and the percentage of Accumulibacteria increased. A total of 10 mg Fe2+ L?1 of added ferrous iron had a relatively adverse effect on the growth of AOB species compared to 1 mg Fe2+ L?1 of added ferrous iron, but it encouraged the growth of Nitrospira sp. and Accumulibacteria, which requires further study. It could be said that the compact and stable structure of aerobic granular sludge preserved AOB and NOB from Fe‐deficient conditions, and wash‐out during the disintegration period. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:716–725, 2017  相似文献   

10.
Dynamic equilibria in iron uptake and release by ferritin   总被引:7,自引:0,他引:7  
The function of ferritins is to store and release ferrous iron. During oxidative iron uptake, ferritin tends to lower Fe2+ concentration, thus competing with Fenton reactions and limiting hydroxy radical generation. When ferritin functions as a releasing iron agent, the oxidative damage is stimulated. The antioxidant versus pro-oxidant functions of ferritin are studied here in the presence of Fe2+, oxygen and reducing agents. The Fe2+-dependent radical damage is measured using supercoiled DNA as a target molecule. The relaxation of supercoiled DNA is quantitatively correlated to the concentration of exogenous Fe2+, providing an indirect assay for free Fe2+. After addition of ferrous iron to ferritin, Fe2+ is actively taken up and asymptotically reaches a stable concentration of 1–5 m. Comparable equilibrium concentrations are found with plant or horse spleen ferritins, or their apoferritins. After addition of ascorbate, iron release is observed using ferrozine as an iron scavenger. Rates of iron release are dependent on ascorbate concentration. They are about 10 times larger with pea ferritin than with horse ferritin. In the absence of ferrozine, the reaction of ascorbate with ferritins produces a wave of radical damage; its amplitude increases with increased ascorbate concentrations with plant ferritin; the damage is weaker with horse ferritin and less dependent on ascorbate concentrations.  相似文献   

11.
《Process Biochemistry》2007,42(3):344-351
A strategy that optimization of medium compositions for maximum biomass followed by feeding of sucrose for maximum polysaccharide synthesis was developed for enhancing polysaccharide production in suspension culture of protocorm-like bodies (PLBs) of Dendrobium huoshanense C.Z. Tang et S.J. Cheng. In growth stage, the original half-strength MS medium was optimized with carbon sources, nitrogen sources and metal ion combinations. The effects of different carbon sources on PLBs growth were remarkable and sucrose at 35 g l−1 was the most suitable. Sole nitrate nitrogen of 30 mmol l−1 was the best for PLBs growth. Metal ions (Ca2+, Fe2+, Mn2+ and Zn2+) showed different influences on PLBs growth. The optimal concentration of Ca2+, Fe2+, Mn2+ and Zn2+ was 4.5 mmol l−1, 0.1 mmol l−1, 0.5 mmol l−1 and 0.06 mmol l−1, respectively. In the optimized medium (sucrose, nitrate, Ca2+, Fe2+, Mn2+ and Zn2+ concentration as described above, the other component concentration seen in half-strength MS), 33.9 g DW l−1 PLBs were harvested after 30 days of culture and biomass increase was improved 245% as compared with that in the original medium. In production stage, polysaccharide synthesis was significantly improved by the feeding sucrose. The maximum polysaccharide production (22 g l−1) was obtained in the case of 50 g l−1 sucrose feeding at day 30 of culture, which was about 109-fold higher than that in the original medium without feeding of sucrose.  相似文献   

12.
Biomining is the use of microorganisms to catalyze metal extraction from sulfide ores. However, the available water in some biomining environments has high chloride concentrations and therefore, chloride toxicity to ferrous oxidizing microorganisms has been investigated. Batch biooxidation of Fe2+ by a Leptospirillum ferriphilum‐dominated culture was completely inhibited by 12 g L?1 chloride. In addition, the effects of chloride on oxidation kinetics in a Fe2+ limited chemostat were studied. Results from the chemostat modeling suggest that the chloride toxicity was attributed to affects on the Fe2+ oxidation system, pH homeostasis, and lowering of the proton motive force. Modeling showed a decrease in the maximum specific growth rate (µmax) and an increase in the substrate constant (Ks) with increasing chloride concentrations, indicating an effect on the Fe2+ oxidation system. The model proposes a lowered maintenance activity when the media was fed with 2–3 g L?1 chloride with a concomitant drastic decrease in the true yield (Ytrue). This model helps to understand the influence of chloride on Fe2+ biooxidation kinetics. Biotechnol. Bioeng. 2010; 106: 422–431. © 2010 Wiley Periodicals, Inc.  相似文献   

13.
The effects of pH, ferrous and ferric ion concentrations on iron oxidation by Thiobacillus ferrooxidans were examined. The initial temperature and bacterial concentration were maintained at 37°C and 2±1×104cells/ml, respectively. The iron oxidation rate increased with increased initial ferrous iron concentration to 4g/l and thereafter decreased. The presence of iron(III) showed a negative effect on the bacterial iron oxidation rate. The increase of pH also showed an increase in the oxidation rate up to pH 1.75. The oxidation rate followed first order kinetics for the parameters studied. A rate equation has been developed.  相似文献   

14.
The effects of pH, ferrous and ferric ion concentrations on iron oxidation by Thiobacillus ferrooxidans were examined. The initial temperature and bacterial concentration were maintained at 37°C and 2±1×104cells/ml, respectively. The iron oxidation rate increased with increased initial ferrous iron concentration to 4g/l and thereafter decreased. The presence of iron(III) showed a negative effect on the bacterial iron oxidation rate. The increase of pH also showed an increase in the oxidation rate up to pH 1.75. The oxidation rate followed first order kinetics for the parameters studied. A rate equation has been developed.  相似文献   

15.
Eight strains of Thiobacillus ferrooxidans (laboratory strains Tf-1 [= ATCC 13661] and Tf-2 [= ATCC 19859] and mine isolates SM-1, SM-2, SM-3, SM-4, SM-5, and SM-8) and three strains of Thiobacillus thiooxidans (laboratory strain Tt [= ATCC 8085] and mine isolates SM-6 and SM-7) were grown on ferrous iron (Fe2+), elemental sulfur (S0), or sulfide ore (Fe, Cu, and Zn). The cells were studied for their aerobic Fe2+ - and S0-oxidizing activities (O2 consumption) and anaerobic S0-oxidizing activity with ferric iron (Fe3+) (Fe2+ formation). Fe2+-grown T. ferrooxidans cells oxidized S0 aerobically at a rate of 2 to 4% of the Fe2+ oxidation rate. The rate of anaerobic S0 oxidation with Fe3+ was equal to the aerobic oxidation rate in SM-1, SM-3, SM-4, and SM-5, but was only one-half or less that in Tf-1, Tf-2, SM-2, and SM-8. Transition from growth on Fe2+ to that on S0 produced cells with relatively undiminished Fe2+ oxidation activities and increased S0 oxidation (both aerobic and anaerobic) activities in Tf-2, SM-4, and SM-5, whereas it produced cells with dramatically reduced Fe2+ oxidation and anaerobic S0 oxidation activities in Tf-1, SM-1, SM-2, SM-3, and SM-8. Growth on ore 1 of metal-leaching Fe2+-grown strains and on ore 2 of all Fe2+-grown strains resulted in very high yields of cells with high Fe2+ and S0 oxidation (both aerobic and anaerobic) activities with similar ratios of various activities. Sulfur-grown Tf-2, SM-1, SM-4, SM-6, SM-7, and SM-8 cultures leached metals from ore 3, and Tf-2 and SM-4 cells recovered showed activity ratios similar to those of other ore-grown cells. It is concluded that all the T. ferrooxidans strains studied have the ability to produce cells with Fe2+ and S0 oxidation and Fe3+ reduction activities, but their levels are influenced by growth substrates and strain differences.  相似文献   

16.
l-Lactate-driven ferric and nitrate reduction was studied in Escherichia coli E4. Ferric iron reduction activity in E. coli E4 was found to be constitutive. Contrary to nitrate, ferric iron could not be used as electron acceptor for growth. Ferric iron reductase activity of 9 nmol Fe2+ mg-1 protein min-1 could not be inhibited by inhibitors for the respiratory chain, like Rotenone, quinacrine, Actinomycin A, or potassium cyanide. Active cells and l-lactate-driven nitrate respiration in E. coli E4 leading to the production of nitrite, was reduced to about 20% of its maximum activity with 5 mM ferric iron, or to about 50% in presence of 5 mM ferrous iron. The inhibition was caused by nitric oxide formed by a purely chemical reduction of nitrite by ferrous iron. Nitric oxide was further chemically reduced by ferrous iron to nitrous oxide. With electron paramagnetic resonance spectroscopy, the presence of a free [Fe2+-NO] complex was shown. In presence of ferrous or ferric iron and l-lactate, nitrate was anaerobically converted to nitric oxide and nitrous oxide by the combined action of E. coli E4 and chemical reduction reactions (chemodenitrification).  相似文献   

17.
The influences of buffers and iron chelators on the rate of autoxidation of Fe2+ were examined in the pH range 6.0–7.4. The catalysis by Fe2+ and Fe3+ of the autoxidation of dithiothreitol was also investigated. In buffers which are non- or poor chelators of iron, 0.25 mM Fe2+, and 0.3 mM dithiothreitol when present with iron, oxidize within minutes at pH 7.4 and 30°C. The stability of each increases as the pH is decreased and more than 90% of each remains after 1 h at pH 6.0. In the presence of buffers or oxy-ligands which preferentially and strongly chelate Fe3+ over Fe2+, Fe2+ autoxidizes rapidly in the pH range 6.0–7.4 while dithiothreitol is protected. Ligands which preferentially bind strongly to Fe2+ stabilize both Fe2+ and dithiothreitol at pH 7.4. Dithiothreitol readily reduces Fe3+ in non-chelating buffers or in the presence of strong chelators of Fe2+, however, the ferrous ions produced are prone to reoxidation at higher pH values. These results show that Fe2+ and dithiothreitol are very susceptible to autoxidation in the neutral pH range, and that the rates are strongly influenced by the presence of chelators of Fe2+ and Fe3+. The rapid autoxidations of these species need to be taken into account when designing and interpreting experiments involving Fe2+ or both dithiothreitol and iron.  相似文献   

18.
The oxidation of ferrous iron (Fe2+) to ferric iron (Fe3+) with dioxygen (O2) by various strains of Thiobacillus ferrooxidans was studied by measuring the rate of O2 consumption at various Fe2+ concentrations and cell concentrations. The apparent Km values for Fe2+ remained constant at different cell concentrations of laboratory strains ATCC 13661 and ATCC 19859 but increased with increasing cell concentrations of mine isolates SM-4 and SM-5. The latter results are explained by the competitive inhibition of the Fe2+-binding site of a cell by other cells in the reaction mixture. Possible mechanisms involving cell surface properties are discussed.  相似文献   

19.
The effect of tannins was investigated on growth and α-amylase (α-1,4-glucan 4-glucanohydrolase, EC 3.2.1.1) production by the edible fungal species Calvatia gigantea, grown in a laboratory-scale fermenter on acorn starch media containing up to 2 g tannins l−1. No inhibition of both growth and amylase excretion was observed when the fungus was cultivated on media containing 40 to 100 times higher tannin concentration than that reported to inhibit microbial growth. Amylase excretion was enhanced when starch was dry sterilized but specific growth rate was higher when starch was wet sterilized. Biomass and amylase production increased with increasing substrate concentration and specific growth rate reached its maximum value at 20 g l−1 starch concentration. The optimum pH of biomass and amylase productionwas 5.0–5.5 and 6.0−6.5 respectively and that of temperature was 29–32 and 29–30°C respectively. Maximum yields of 68 250 U amylase and 0.58–0.60 g biomass g−1 acorn were obtained at optimum growth conditions. A plot of reciprocal growth rate vs. reciprocal starch concentration made it possible to calculate Ks = 0.84 g acorn starch l−1 and μmax = 0.249 h−1.  相似文献   

20.
The influence of temperature, pH, and substrate and product concentrations on the oxidation rate of ferrous iron by biofilm of Thiobacillus ferrooxidans was determined. The experiments were performed in an inverse fluidized-bed biofilm reactor in which the biofilm thickness was kept constant at 80 mum. Oxygen concentration and diffusion through the biofilm did not limit the oxidation rate. The oxidation rate was almost unaffected by temperature between 13 and 38 degrees C, pH between 1.3 and 2.2, ferric iron concentration up to 14 g/L, or ferrous iron concentration from 4 to 13 g/L. The kinetics of the process was described by the Monod equation with respect to the mass of the biofilm and with ferrous ions as the limiting substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号