首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

South American leaf blight (SALB) of rubber has been the main constraint to production in its neotropical centre of origin since commercial plantations were first established. The fungal causal agent was identified and described more than a century ago but its precise placement within the Ascomycota still remains uncertain. Indeed, such is the ambiguity surrounding the pathogen that each of the spore morphs would, according to their present classification, be placed in different ascomycete families: the Microcyclus sexual morph in the Planistromellaceae and the two purported asexual morphs - Fusicladium and Aposphaeria – in the Venturiaceae and Lophiostomataceae, respectively. Given the historical importance of the fungus and the ever-menacing threat that it poses to rubber production in the Palaeotropics – and, thus to the rubber industry and to the global economy – its phylogeny, as well as its biology, should be resolved as a matter of urgency.

Methods and Results

Here, six genomic regions (LSU rRNA, mtSSU, MCM7, EF-1α, Act and ITS) were used for reconstructing the molecular phylogeny of the SALB fungus based on material collected throughout Brazil. The analyses support the classification of the fungus in the family Mycosphaerellaceae s. str. (Capnodiales, Dothideomycetes) and place it firmly within the clade Pseudocercospora s. str., now accepted as one of the distinct genera within Mycosphaerellaceae. The new combination Pseudocercospora ulei is proposed and the life cycle of the fungus is confirmed, based on both experimental and phylogenetic evidence, with the Aposphaeria morph shown to have a spermatial rather than an infective-dispersal function.

Conclusions

Because the phylogeny of the SALB fungus has now been clarified, new insights of its epidemiology and genomics can be gained following comparison with closely-related, better-researched crop pathogens.  相似文献   

3.
Using cultivars which are genetically resistant to South American leaf blight (SALB) caused by the fungus Microcyclus ulei is the only way to plant rubber trees in disease-affected areas. Numerous field observations led to the hypothesis that the resistance of the cultivar Fx2784 to SALB is likely to be monogenic. In this study, we investigated this hypothesis by examining the distribution of the trait in a cross between the resistant cultivar and a susceptible one. The individuals resulting from this cross were planted in field trials in French Guiana and Brazil. The resistance of all the trees was assessed by field observations. Bulk segregant analysis (BSA) using microsatellite markers was performed in French Guiana to determine which markers were genetically linked to resistance, and the results were validated by field observations in Brazil. In both locations, a 1:1 segregation of the resistance trait was observed, thus reinforcing the monogenic hypothesis. BSA showed tight linkage between resistance and the microsatellite markers located in linkage group 2 in the Hevea genome and enabled to pinpoint the resistance locus. The location was confirmed by observations on the trees planted in Brazil. This result should facilitate the use of Fx2784 resistance in future breeding programs for SALB resistance. This is the third major locus conferring resistance to SALB identified in rubber tree (Hevea spp.). These three loci are genetically independent, a favorable situation for genetic improvement of SALB resistance.  相似文献   

4.
《Genomics》2022,114(6):110514
Omphalotus guepiniiformis, a bioluminescent mushroom species, is a source of the potentially valuable anticancer chemical. To provide genome information, we de novo assembled the high-quality O. guepiniiformis genome using two Next-Generation sequencing techniques, PacBio and Illumina sequencing. Our draft O. guepiniiformis genome comprises 42.5 Mbp of sequence with only 80 contigs and an N50 sequence length of over 1 Mbp. There were 15,554 predicted coding genes, and 7693 genes were functionally annotated with Gene Ontology terms. We performed a genomic study focusing on mushroom bioluminescent pathway cluster genes by comparing 17 luminescent and 23 non-luminescent Agaricales species belonging to 23 genera. Synteny analysis of genomic regions near the luminescent pathway cluster genes inferred that the Omphalotus lineage was genus-specific. In summary, our de novo assembled O. guepiniiformis genome provides significant biological insights into this organism, including the evolution of the luciferase gene block, and forms the basis for future analyses.  相似文献   

5.
Leaf disks of 7-day-old Hevea leaves floating on water produced lesions of varying sizes following inoculation with conidia of Microcyclus ulei, the cause of South American leaf blight (SALB) of Hevea. The resistance ratings of 188 Hevea clones classified according to lesion size on leaf disks and to leaf area infected in the field were correlated. Lesion size varied little with small differences in leaf age or inoculum level. Leaves which had been treated with sodium hypochlorite and stored for 3 days could still be infected by desiccated conidia, suggesting that Hevea leaves from South East Asia and conidia of M. ulei from South America could be sent to a central laboratory for rapid screening for resistance to SALB.  相似文献   

6.
《Genomics》2021,113(5):3072-3082
Rubiaceae is the fourth largest and a taxonomically complex family of angiosperms. Many species in this family harbor low reproductive isolation and frequently exhibit inconsistent phenotypic characteristics. Therefore, taxonomic classification and their phylogenetic relationships in the Rubiaceae family is challenging, especially in the genus Leptodermis. Considering the low taxonomic confusion and wide distribution, Leptodermis oblonga is selected as a representative Leptodermis for genome sequencing. The assemblies resulted in 497 Mbp nuclear and 155,100 bp chloroplast genomes, respectively. Using the nuclear genome as a reference, SNPs were called from 37 Leptodermis species or varieties. The phylogenetic tree based on SNPs exhibited high resolution for species delimitation of the complex and well-resolved phylogenetic relationships in the genus. Moreover, 28,987 genes were predicted in the nuclear genome and used for comparative genomics study. As the first chromosomal-level genome of the subfamily Rubioideae in Rubiaceae, it will provide fruitfully evolutionary understanding in the family.  相似文献   

7.
The methylotrophic yeast Pichia pastoris (Komagataella phaffii) CBS7435 is the parental strain of commonly used P. pastoris recombinant protein production hosts making it well suited for improving the understanding of associated genomic features. Here, we present a 9.35 Mbp high-quality genome sequence of P. pastoris CBS7435 established by a combination of 454 and Illumina sequencing. An automatic annotation of the genome sequence yielded 5007 protein-coding genes, 124 tRNAs and 29 rRNAs. Moreover, we report the complete DNA sequence of the first mitochondrial genome of a methylotrophic yeast. Fifteen genes encoding proteins, 2 rRNA and 25 tRNA loci were identified on the 35.7 kbp circular, mitochondrial DNA. Furthermore, the architecture of the putative alpha mating factor protein of P. pastoris CBS7435 turned out to be more complex than the corresponding protein of Saccharomyces cerevisiae.  相似文献   

8.
9.
Understanding the processes by which new diseases are introduced in previously healthy areas is of major interest in elaborating prevention and management policies, as well as in understanding the dynamics of pathogen diversity at large spatial scale. In this study, we aimed to decipher the dispersal processes that have led to the emergence of the plant pathogenic fungus Microcyclus ulei, which is responsible for the South American Leaf Blight (SALB). This fungus has devastated rubber tree plantations across Latin America since the beginning of the twentieth century. As only imprecise historical information is available, the study of population evolutionary history based on population genetics appeared most appropriate. The distribution of genetic diversity in a continental sampling of four countries (Brazil, Ecuador, Guatemala and French Guiana) was studied using a set of 16 microsatellite markers developed specifically for this purpose. A very strong genetic structure was found (Fst=0.70), demonstrating that there has been no regular gene flow between Latin American M. ulei populations. Strong bottlenecks probably occurred at the foundation of each population. The most likely scenario of colonization identified by the Approximate Bayesian Computation (ABC) method implemented in 𝒟ℐ𝒴𝒜ℬ𝒞 suggested two independent sources from the Amazonian endemic area. The Brazilian, Ecuadorian and Guatemalan populations might stem from serial introductions through human-mediated movement of infected plant material from an unsampled source population, whereas the French Guiana population seems to have arisen from an independent colonization event through spore dispersal.  相似文献   

10.

Background

Pseudomonas aeruginosa is an important opportunistic pathogen responsible for many infections in hospitalized and immunocompromised patients. Previous reports estimated that approximately 10% of its 6.6 Mbp genome varies from strain to strain and is therefore referred to as “accessory genome”. Elements within the accessory genome of P. aeruginosa have been associated with differences in virulence and antibiotic resistance. As whole genome sequencing of bacterial strains becomes more widespread and cost-effective, methods to quickly and reliably identify accessory genomic elements in newly sequenced P. aeruginosa genomes will be needed.

Results

We developed a bioinformatic method for identifying the accessory genome of P. aeruginosa. First, the core genome was determined based on sequence conserved among the completed genomes of twelve reference strains using Spine, a software program developed for this purpose. The core genome was 5.84 Mbp in size and contained 5,316 coding sequences. We then developed an in silico genome subtraction program named AGEnt to filter out core genomic sequences from P. aeruginosa whole genomes to identify accessory genomic sequences of these reference strains. This analysis determined that the accessory genome of P. aeruginosa ranged from 6.9-18.0% of the total genome, was enriched for genes associated with mobile elements, and was comprised of a majority of genes with unknown or unclear function. Using these genomes, we showed that AGEnt performed well compared to other publically available programs designed to detect accessory genomic elements. We then demonstrated the utility of the AGEnt program by applying it to the draft genomes of two previously unsequenced P. aeruginosa strains, PA99 and PA103.

Conclusions

The P. aeruginosa genome is rich in accessory genetic material. The AGEnt program accurately identified the accessory genomes of newly sequenced P. aeruginosa strains, even when draft genomes were used. As P. aeruginosa genomes become available at an increasingly rapid pace, this program will be useful in cataloging the expanding accessory genome of this bacterium and in discerning correlations between phenotype and accessory genome makeup. The combination of Spine and AGEnt should be useful in defining the accessory genomes of other bacterial species as well.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-737) contains supplementary material, which is available to authorized users.  相似文献   

11.
12.
13.
Genome size estimates and their evolution can be useful for studying the phylogenetic relationships and taxonomy of a particular group. In the present study, the genome sizes of the three species that comprise the Mycetophylax genus were estimated by flow cytometry (FCM). There was little variation in genome size among them. The mean haploid genome size value of male and female individuals of Mycetophylax morschi was 312.96 Mbp (0.32 pg) and that of Mycetophylax conformis and Mycetophylax simplex females were 312.96 Mbp (0.32 pg) and 381.42 Mbp (0.39 pg), respectively. At first glance, this variation could be related with the heterochromatin content. Our results, together with other previous reports, have contributed to our knowledge about Attini genome size and will be useful to improve the understanding of the evolution of this tribe. It will help select potential model species in Attini for future genomic and sequencing projects.  相似文献   

14.
《Genomics》2023,115(3):110600
The taxonomy of Pseudomonas has been extensively studied, yet the determination of species is currently difficult because of recent taxonomic changes and the lack of complete genomic sequence data. We isolated a bacterium causing a leaf spot disease on hibiscus (Hibiscus rosa-sinensis). Whole genome sequencing revealed similarity to Pseudomonas amygdali pv. tabaci and pv. lachrymans. The genome of this isolate (referred to as P. amygdali 35–1) shared 4987 genes with P. amygdali pv. hibisci, but possessed 204 unique genes and contained gene clusters encoding putative secondary metabolites and copper resistance determinants. We predicted this isolate's type III secretion effector (T3SE) repertoire and identified 64 putative T3SEs, some of which are present in other P. amygdali pv. hibisci strains. Assays showed that the isolate was resistant to copper at a concentration of 1.6 mM. This study provides an improved understanding of the genomic relatedness and diversity of the P. amygdali species.  相似文献   

15.
16.
ABSTRACT

Natural rubber, obtained almost exclusively from the Para rubber tree (Hevea brasiliensis), is a unique biopolymer of strategic importance that, in many of its most significant applications, cannot be replaced by synthetic rubber alternatives. Several pressing motives lead to the search for alternative sources of natural rubber. These include increased evidence of allergenic reactions to Hevea rubber, the danger that the fungal pathogen Microcyclus ulei, causative agent of South American Leaf Blight (SALB), might spread to Southeast Asia, which would severely disrupt rubber production, potential shortages of supply due to increasing demand and changes in land use, and a general trend towards the replacement of petroleum-derived chemicals with renewables. Two plant species have received considerable attention as potential alternative sources of natural rubber: the Mexican shrub Guayule (Parthenium argentatum Gray) and the Russian dandelion (Taraxacum koksaghyz). This review will summarize the current production methods and applications of natural rubber (dry rubber and latex), the threats to the production of natural rubber from the rubber tree, and describe the current knowledge of the production of natural rubber from guayule and Russian dandelion.  相似文献   

17.
The wrasses (Labridae) are one of the most successful and species-rich families of the Perciformes order of teleost fish. Its members display great morphological diversity, and occupy distinct trophic levels in coastal waters and coral reefs. The cleaning behaviour displayed by some wrasses, such as corkwing wrasse (Symphodus melops), is of particular interest for the salmon aquaculture industry to combat and control sea lice infestation as an alternative to chemicals and pharmaceuticals. There are still few genome assemblies available within this fish family for comparative and functional studies, despite the rapid increase in genome resources generated during the past years. Here, we present a highly continuous genome assembly of the corkwing wrasse using PacBio SMRT sequencing (x28.8) followed by error correction with paired-end Illumina data (x132.9). The present genome assembly consists of 5040 contigs (N50?=?461,652?bp) and a total size of 614 Mbp, of which 8.5% of the genome sequence encode known repeated elements. The genome assembly covers 94.21% of highly conserved genes across ray-finned fish species. We find evidence for increased copy numbers specific for corkwing wrasse possibly highlighting diversification and adaptive processes in gene families including N-linked glycosylation (ST8SIA6) and stress response kinases (HIPK1). By comparative analyses, we discover that de novo repeats, often not properly investigated during genome annotation, encode hundreds of immune-related genes. This new genomic resource, together with the ballan wrasse (Labrus bergylta), will allow for in-depth comparative genomics as well as population genetic analyses for the understudied wrasses.  相似文献   

18.
The Staphylococcus carnosus genome has the highest GC content of all sequenced staphylococcal genomes, with 34.6%, and therefore represents a species that is set apart from S. aureus, S. epidermidis, S. saprophyticus, and S. haemolyticus. With only 2.56 Mbp, the genome belongs to a family of smaller staphylococcal genomes, and the ori and ter regions are asymmetrically arranged with the replichores I (1.05 Mbp) and II (1.5 Mbp). The events leading up to this asymmetry probably occurred not that long ago in evolution, as there was not enough time to approach the natural tendency of a physical balance. Unlike the genomes of pathogenic species, the TM300 genome does not contain mobile elements such as plasmids, insertion sequences, transposons, or STAR elements; also, the number of repeat sequences is markedly decreased, suggesting a comparatively high stability of the genome. While most S. aureus genomes contain several prophages and genomic islands, the TM300 genome contains only one prophage, ΦTM300, and one genomic island, νSCA1, which is characterized by a mosaic structure mainly composed of species-specific genes. Most of the metabolic core pathways are present in the genome. Some open reading frames are truncated, which reflects the nutrient-rich environment of the meat starter culture, making some functions dispensable. The genome is well equipped with all functions necessary for the starter culture, such as nitrate/nitrite reduction, various sugar degradation pathways, two catalases, and nine osmoprotection systems. The genome lacks most of the toxins typical of S. aureus as well as genes involved in biofilm formation, underscoring the nonpathogenic status.  相似文献   

19.
Sequence Analysis of the Genome of an Oil-Bearing Tree, Jatropha curcas L.   总被引:2,自引:0,他引:2  
《DNA research》2011,18(1):65-76
The whole genome of Jatropha curcas was sequenced, using a combination of the conventional Sanger method and new-generation multiplex sequencing methods. Total length of the non-redundant sequences thus obtained was 285 858 490 bp consisting of 120 586 contigs and 29 831 singlets. They accounted for ∼95% of the gene-containing regions with the average G + C content was 34.3%. A total of 40 929 complete and partial structures of protein encoding genes have been deduced. Comparison with genes of other plant species indicated that 1529 (4%) of the putative protein-encoding genes are specific to the Euphorbiaceae family. A high degree of microsynteny was observed with the genome of castor bean and, to a lesser extent, with those of soybean and Arabidopsis thaliana. In parallel with genome sequencing, cDNAs derived from leaf and callus tissues were subjected to pyrosequencing, and a total of 21 225 unigene data have been generated. Polymorphism analysis using microsatellite markers developed from the genomic sequence data obtained was performed with 12 J. curcas lines collected from various parts of the world to estimate their genetic diversity. The genomic sequence and accompanying information presented here are expected to serve as valuable resources for the acceleration of fundamental and applied research with J. curcas, especially in the fields of environment-related research such as biofuel production. Further information on the genomic sequences and DNA markers is available at http://www.kazusa.or.jp/jatropha/.  相似文献   

20.
Next-generation sequencing (NGS) technologies are revolutionizing both medical and biological research through generation of massive SNP data sets for identifying heritable genome variation underlying key traits, from rare human diseases to important agronomic phenotypes in crop species. We evaluated the performance of genotyping-by-sequencing (GBS), one of the emerging NGS-based platforms, for genotyping two economically important conifer species, lodgepole pine (Pinus contorta) and white spruce (Picea glauca). Both species have very large genomes (>20,000 Mbp), are highly heterozygous, and lack reference sequences. From a small set (six accessions each) of independent replicated DNA samples and a 48-plex read depth, we obtained ~60,000 SNPs per species. After stringent filtering, we obtained 17,765 and 17,845 high-coverage SNPs without missing data for lodgepole pine and white spruce, respectively. Our results demonstrated that GBS is a robust and suitable method for genotyping conifers. The application of GBS to forest tree breeding and genomic selection is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号