首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Application of on-line sensors (flow calorimeter, fluorescence probe, dissolved oxygen and CO2 probes) was assessed to monitor microbial biomass and physiological state of cells during a biological process. Two systems were studied; diauxic growth of Pseudomonas putida ATCC 11172 on glycerol and phenol, and the aerobic growth of Saccharomyces cerevisiae ATCC 18824 on glucose. The results showed that the cells produced a heat output which could be quantitatively related to the various phases of the growth cycle. The initial stage of enzymatic induction and substrate mobilization during the diauxic growth of P. putida was easily detected, and a clear oscillation phenomenon was observed during enzymatic rearrangement in shifting from phenol to glycerol metabolism. Glucose oxidation in ethanol and then in acetate was also clearly delineated from the growth of S cerevisiae. NADH (fluorescence probe) measurements gave a strong correlation with various biomass indicators such as optical density, dry weight, ATP content and cellular protein. The fluorescence signal appeared to be very sensitive to the quenching effect of the culture medium and of the cells themselves. The fluorescence emitted from the NADH molecules in a culture medium can be reduced from 30–70% depending on the chemical composition and the optical density.  相似文献   

2.
Continuous calorimetry has been applied to monitoring the heat evolution of Saccharomyces cerevisiae grown on d-glucose. The heat evolution, together with the energy and carbon balances, was used to evaluate the energetic efficiency of biomass, by-product biosynthesis, fermentative heat evolution as well as the maintenance energy of S. cerevisiae in ‘aerobic fermentation’ and ‘aerobic respiration’. In aerobic fermentation, under catabolite repression, the fraction of substrate energy converted to heat evolution, maintenance requirement, and biomass decreased with the increase of d-glucose concentration. The fraction of substrate energy converted to ethanol is the highest value and it could contribute up to 70% of the total substrate energy. In aerobic respiration, 43% of the total substrate energy was evolved as heat. While 50% of the total substrate energy was converted into biomass, only 7% of the total substrate energy was used for maintenance functions. The maintenance energy coefficient of S. cerevisiae was determined to be 0.427 MJ kg?1 cell h?1 (0.102 kcal g?1 cell h?1). For the first time, heat evolution together with yield-maintenance energy was used to predict biomass concentration during the fed-batch cultivation of S. cerevisiae.  相似文献   

3.
Low-molecular weight aliphatic acids, furaldehydes and a broad range of different aromatic compounds are known to inhibit the fermentation of lignocellulose hydrolysates by yeasts. In this work, a cocktail of different lignocellulose-derived inhibitors was used to compare the inhibitor resistance of eleven different industrial and laboratory Saccharomyces cerevisiae strains and two Zygosaccharomyces strains. The inhibitor cocktail was composed of two aliphatic acids, formic and acetic acid, two furaldehydes, furfural and 5-hydroxymethylfurfural (HMF), and two aromatic compounds, cinnamic acid and coniferyl aldehyde. Fermentations were performed under oxygen-limited conditions and with different levels (100, 75, 50, 25 and 0%) of the inhibitor cocktail present. The ethanol yield on initial glucose, the volumetric and specific ethanol productivity, the biomass yield and the glucose consumption rates were used as criteria for the performance of the strains. The results revealed major differences in inhibitor resistance between yeast strains within the same species. The ethanol yield of the S. cerevisiae strain that was least affected decreased only with 10% at an inhibitor cocktail concentration of 100%, while the decrease in ethanol yield for the most sensitive S. cerevisiae strain was more than 50% already at an inhibitor cocktail concentration of 25%. Ethanol formation was generally less affected than growth and ethanol yield less than ethanol productivity. The two most resistant strains were an S. cerevisiae strain isolated from a spent sulphite liquor plant and one of the laboratory S. cerevisiae strains. Additional fermentations with either HMF or coniferyl aldehyde revealed that the degree of resistance of different yeast strains was highly dependent on the inhibitor used. A mutant strain of S. cerevisiae displaying enhanced resistance against coniferyl aldehyde compared with the parental strains was identified.  相似文献   

4.
In S. cerevisiae and many other micro-organisms an increase in metabolic efficiency (i.e. ATP yield on carbon) is accompanied by a decrease in growth rate. From a fundamental point of view, studying these yield-rate trade-offs provides insight in for example microbial evolution and cellular regulation. From a biotechnological point of view, increasing the ATP yield on carbon might increase the yield of anabolic products. We here aimed to select S. cerevisiae mutants with an increased biomass yield. Serial propagation of individual cells in water-in-oil emulsions previously enabled the selection of lactococci with increased biomass yields, and adapting this protocol for yeast allowed us to enrich an engineered Crabtree-negative S. cerevisiae strain with a high biomass yield on glucose. When we started the selection with an S. cerevisiae deletion collection, serial propagation in emulsion enriched hxk2Δ and reg1Δ strains with an increased biomass yield on glucose. Surprisingly, a tps1Δ strain was highly abundant in both emulsion- and suspension-propagated populations. In a separate experiment we propagated a chemically mutagenized S. cerevisiae population in emulsion, which resulted in mutants with a higher cell number yield on glucose, but no significantly changed biomass yield. Genome analyses indicate that genes involved in glucose repression and cell cycle processes play a role in the selected phenotypes. The repeated identification of mutations in genes involved in glucose-repression indicates that serial propagation in emulsion is a valuable tool to study metabolic efficiency in S. cerevisiae.  相似文献   

5.
Leishmania tropica promastigotes do not utilize glucose provided in the medium until late log phase. Rapid depletion of glucose from the medium, however, occurs during late log and stationary phases. At about the same time, the cells show maximal rates of glucose uptake as well as peak levels of phosphofructokinase and pyruvate kinase activities. The glucose analog, 2-deoxy-D-glucose inhibits glucose transport. Incorporation of this analog in the growth medium results in inhibition of growth. The hexokinase of L. tropica phosphorylates 2-deoxy-D-glucose. Pyruvate kinase is activated by fructose-1, 6-diphosphate and adenosine monophosphate.  相似文献   

6.
The plasma membrane H+-ATPase activity was determined under various growth conditions using the yeastsSaccharomyces cerevisiae andSchizosaccharomyces pombe. Under early batch-growth conditions in a rich medium, the budding yeastS. cerevisiae ATPase specific activity increased 2-to 3-fold during exponential growth. During late exponential growth, a peak of ATPase activity, followed by a sudden decrease, was observed and termed “growth-arrest control”. The growth arrest phenomenon ofS. cerevisiae could not be related to the acidification of the culture medium or to glucose exhaustion in the medium or to variation of glucose activation of the H+-ATPase. Addition of ammonium to a proline minimum medium also stimulated transiently the ATPase activity ofS. cerevisiae. Specific activity of the fission yeastS. pombe ATPase did not show a similar profile and steadily increased to reach a plateau in stationary growth. Under synchronous mitotic growth conditions, the ATPase activity ofS. cerevisiae increased during the cell division cycle according to the “peak” type cycle, while that ofS. pombe was of the “step” type.  相似文献   

7.
Summary Growth of Saccharomyces cerevisiae was investigated under aerobic conditions in a glucose limited chemostat. The steady state concentrations of cells, glucose and ethanol were measured in dependence of the dilution rate. The growth rate showed a biphasic dependence from the glucose concentration. A shift from respiratory to fermentative metabolism (Crabtree-effect) altering heavily the cell yield and the ethanol yield took place in the range of dilution rates between 0.3 h-1 and 0.5 h-1. Therefore the classical theory of continuous cultures is not applicable on aerobic growth of Saccharomyces cerevisiae under glucose limitation without introducing further premises. On the other hand the steady state cell concentration as a function of the dilution rate fits well the theoretically calculated curves, if cells are cultivated under conditions where only fermentation or respiration is possible.  相似文献   

8.
Mixed culture of Saccharomyces cerevisiae and Acetobacter pasteurianus was carried out for high yield of acetic acid. Acetic acid production process was divided into three stages. The first stage was the growth of S. cerevisiae and ethanol production, fermentation temperature and aeration rate were controlled at 32 °C and 0.2 vvm, respectively. The second stage was the co-culture of S. cerevisiae and A. pasteurianus, fermentation temperature and aeration rate were maintained at 34 °C and 0.4 vvm, respectively. The third stage was the growth of A. pasteurianus and production of acetic acid, fermentation temperature and aeration rate were controlled at 32 °C and 0.2 vvm, respectively. Inoculation volume of A. pasteurianus and S. cerevisiae was 16% and 0.06%, respectively. The average acetic acid concentration was 52.51 g/L under these optimum conditions. To enhance acetic acid production, a glucose feeding strategy was subsequently employed. When initial glucose concentration was 90 g/L and 120 g/L glucose was fed twice during fermentation, acetic acid concentration reached 66.0 g/L.  相似文献   

9.
《Process Biochemistry》2010,45(4):493-499
The main objetive of this work was to evaluate and model the biofilm growth of the Saccharomyces cerevisiae (beticus ssp.) yeast during the biological aging of some types of wines. Thus, we have study how the biofilm growth, the glycerine is consumed and the acetaldehyde is produced, and how this phenomena are affected by the media ethanol concentration (0–17%, v/v), under experimental conditions similar to the industrial ones. In consequence, the growth of the S. cerevisiae (beticus ssp.) biofilm on the surface of the liquid was studied and kinetically modelled. Growth curves were fitted by using general kinetic models that include biomass and substrate inhibition factors. The alcohol content of the medium for the fastest growth rate of biofilm was found to be 4.3%, v/v. The proposed kinetic models for biomass growth, glycerine consumption and acetaldehyde formation fit well with the experimental data.The growth kinetics of S. cerevisiae beticus ssp. in biofilm phase presents a typical discontinuous microbial growth profile (with lag, exponential and stationary phases). The glycerine consumption is directly related to the substrate concentrations (ethanol and glycerine). Finally, the rate of acetaldehyde formation suggests a model associated with the rate of microbial growth, which is modified by a substrate-dependent factor. The suggested model can be used for optimization and control processes of biological aging of wines.  相似文献   

10.
The effect of glucose concentration in the growth medium on the relationship between glycolysis, glycogen accumulation and vancomycin production of Amycolatopsis orientalis was investigated depending on the incubation time. After a lag phase, bacterial growth of A. orientalis began and biomass concentration increased continuously up to 36th or 48th hours while glucose concentration in the culture medium was consumed rapidly in the same time of incubation. In addition, increase in glucose concentrations of the growth medium lead to increase intracellular glucose as well as glycerol levels. Intracellular pyruvate levels increased significantly up to 15 g/L while extracellular pyruvate levels with respect to increases in glucose concentration. A positive correlation between glucose kinase activities and glucose concentration was determined during the incubation period. Pyruvate kinase activity increased up to 15 g/L glucose and 48th hour of incubation. As a glycopeptide antibiotic, vancomycin production increased with the increases in glucose concentrations up to 15 g/L. These results indicated that glycogen accumulation with respect to glucose concentration of the growth medium was concomitant with the sporulation of A. orientalis. When the initial glucose concentration exceeded 15 g/L, pyruvate excretions as well as intracellular glycogen and glycerol productions were supported in spite of repression in vancomycin production of A. orientalis.  相似文献   

11.
Hexokinase II is an enzyme central to glucose metabolism and glucose repression in the yeast Saccharomyces cerevisiae. Deletion of HXK2, the gene which encodes hexokinase II, dramatically changed the physiology of S. cerevisiae. The hxk2-null mutant strain displayed fully oxidative growth at high glucose concentrations in early exponential batch cultures, resulting in an initial absence of fermentative products such as ethanol, a postponed and shortened diauxic shift, and higher biomass yields. Several intracellular changes were associated with the deletion of hexokinase II. The hxk2 mutant had a higher mitochondrial H+-ATPase activity and a lower pyruvate decarboxylase activity, which coincided with an intracellular accumulation of pyruvate in the hxk2 mutant. The concentrations of adenine nucleotides, glucose-6-phosphate, and fructose-6-phosphate are comparable in the wild type and the hxk2 mutant. In contrast, the concentration of fructose-1,6-bisphosphate, an allosteric activator of pyruvate kinase, is clearly lower in the hxk2 mutant than in the wild type. The results suggest a redirection of carbon flux in the hxk2 mutant to the production of biomass as a consequence of reduced glucose repression.  相似文献   

12.
Saccharomyces cerevisiae CBS 426 was grown aerobically and anaerobically in a glucose-limited chemostat. The flows of biomass, glucose, ethanol, carbon dioxide, oxygen, glycerol, and the elemental composition of the biomass were measured. Models for anaerobic and aerobic growth are constructed. Values for YATP and P/O are obtained from continuous culture data for aerobic growth; this YATP value is compared with that obtained from the anaerobic growth results. The ratio between the heat produced and the oxygen consumed increases if more glucose in fermented to ethanol and carbon dioxide. An equation for ?H/?O as a function of the respiratory quotient is given.  相似文献   

13.
Cellular responses of Saccharomyces cerevisiae to high temperatures of up to 42 °C during ethanol fermentation at a high glucose concentration (i.e., 100 g/L) were investigated. Increased temperature correlated with stimulated glucose uptake to produce not only the thermal protectant glycerol but also ethanol and acetic acid. Carbon flux into the tricarboxylic acid (TCA) cycle correlated positively with cultivation temperature. These results indicate that the increased demand for energy (in the form of ATP), most likely caused by multiple stressors, including heat, acetic acid, and ethanol, was matched by both the fermentation and respiration pathways. Notably, acetic acid production was substantially stimulated compared to that of other metabolites during growth at increased temperature. The acetic acid produced in addition to ethanol seemed to subsequently result in adverse effects, leading to increased production of reactive oxygen species. This, in turn, appeared to cause the specific growth rate, and glucose uptake rate reduced leading to a decrease of the specific ethanol production rate far before glucose depletion. These results suggest that adverse effects from heat, acetic acid, ethanol, and oxidative stressors are synergistic, resulting in a decrease of the specific growth rate and ethanol production rate and, hence, are major determinants of cell stability and ethanol fermentation performance of S. cerevisiae at high temperatures. The results are discussed in the context of possible applications.  相似文献   

14.
The yeast Saccharomyces cerevisiae predominantly ferments glucose to ethanol at high external glucose concentrations, irrespective of the presence of oxygen. In contrast, at low external glucose concentrations and in the presence of oxygen, as in a glucose-limited chemostat, no ethanol is produced. The importance of the external glucose concentration suggests a central role for the affinity and maximal transport rates of yeast's glucose transporters in the control of ethanol production. Here we present a series of strains producing functional chimeras between the hexose transporters Hxt1 and Hxt7, each of which has distinct glucose transport characteristics. The strains display a range of decreasing glycolytic rates resulting in a proportional decrease in ethanol production. Using these strains, we show for the first time that at high glucose levels, the glucose uptake capacity of wild-type S. cerevisiae does not control glycolytic flux during exponential batch growth. In contrast, our chimeric Hxt transporters control the rate of glycolysis to a high degree. Strains whose glucose uptake is mediated by these chimeric transporters will undoubtedly provide a powerful tool with which to examine in detail the mechanism underlying the switch between fermentation and respiration in S. cerevisiae and will provide new tools for the control of industrial fermentations.  相似文献   

15.
Dry weight biomass is an important parameter in algaculture. Direct measurement requires weighing milligram quantities of dried biomass, which is problematic for small volume systems containing few cells, such as laboratory studies and high throughput assays in microwell plates. In these cases indirect methods must be used, inducing measurement artefacts which vary in severity with the cell type and conditions employed. Here, we utilise flow cytometry pulse width data for the estimation of cell density and biomass, using Chlorella vulgaris and Chlamydomonas reinhardtii as model algae and compare it to optical density methods. Measurement of cell concentration by flow cytometry was shown to be more sensitive than optical density at 750 nm (OD750) for monitoring culture growth. However, neither cell concentration nor optical density correlates well to biomass when growth conditions vary. Compared to the growth of C. vulgaris in TAP (tris-acetate-phosphate) medium, cells grown in TAP + glucose displayed a slowed cell division rate and a 2-fold increased dry biomass accumulation compared to growth without glucose. This was accompanied by increased cellular volume. Laser scattering characteristics during flow cytometry were used to estimate cell diameters and it was shown that an empirical but nonlinear relationship could be shown between flow cytometric pulse width and dry weight biomass per cell. This relationship could be linearised by the use of hypertonic conditions (1 M NaCl) to dehydrate the cells, as shown by density gradient centrifugation. Flow cytometry for biomass estimation is easy to perform, sensitive and offers more comprehensive information than optical density measurements. In addition, periodic flow cytometry measurements can be used to calibrate OD750 measurements for both convenience and accuracy. This approach is particularly useful for small samples and where cellular characteristics, especially cell size, are expected to vary during growth.  相似文献   

16.
The influence of glucose concentration in nutrient media on the specific growth rate and biomass yield in the course of continuous fermentation ofSaccharomyces cerevisiae was investigated. An increase of glucose content in media decreased the specific growth rate and the biomass yield. Glucose concentration had significant effects on protein and phosphate contents of cells. However, an increased glucose concentration increased the fermentative power ofS. cerevisiae (SJA-method). An increase of the dilution rate decreased the cell concentration in the fermentor. Specific growth rate approached the values of the dilution rate. The best agreement has been obtained at a dilution rate of 0.20/h. This dilution rate proved to be most convenient for the investigated microorganism and cultivation conditions (media composition, pH, aeration intensity and temperature). Biomass yield proved to be decreased by an increase of the dilution rate.  相似文献   

17.
The present study optimized ethanol yield using nickel oxide (NiO) nanoparticles (NPs) as a biocatalyst. Additionally, Saccharomyces cerevisiae BY4743 cell growth and the bioethanol production kinetics were assessed. The Response Surface Methodology (RSM) model showed a coefficient of determination (R2) value of 0.93. The optimized process gave a biomass concentration and ethanol yield of 2.04 g/L and 0.26 g/g (1.03 and 1.19-fold increment compared to the control experiment), respectively. The process kinetic data showed that the inclusion of NiO NPs improved the affinity of S. cerevisiae BY4743 to glucose consumption, carbohydrate and protein accumulation. A significant reduction in volatile fatty acid (VFA) was observed in the presence of NiO NPs. The application of nano biocatalyst in simultaneous saccharification and fermentation of potato peel waste, meaningfully enhanced bioethanol production (>65 %). The study provided major insights into the use of NiO NPs to enhance the bioprocess of ethanol production.  相似文献   

18.
A model for growth and overflow metabolism of Saccharomyces cerevisiae was applied to simulate continuous cultivations in a pH-auxostat. The concentrations of glucose, biomass and ethanol are controlled by the flow ratio r between fresh medium and titrant solution, both of which are pH-regulated. A critical value of r could be derived, below which the culture becomes substrate depleted, resulting in a stop-flow condition with retained biomass but without growth. At r-values slightly above the critical value the pH-auxostat is substrate limited and unstable. Further increase of the r value results in a stable continuous culture growing at wmax. Thus, the pH-auxostat complements the chemostat in the growth range at or close to wmax. Even at wmax conditions, the ethanol concentration can be controlled at a low level.  相似文献   

19.
Changes in trehalose accumulation and in cytochromes during diauxic growth in glucose medium were examined in a normal Saccharomyces cerevisiae strain. While no appreciable disaccharide accumulation occurred during most of the logarithmic phase, a rapid synthesis took place during the final stages. The intrinsic capacity of cells to accumulate trehalose was also determined under nonproliferating conditions, in glucose medium lacking a nitrogen source. Cells harvested at an early growth stage had a much lower trehalose accumulation capacity than cells taken after glucose was exhausted from the culture medium. A high trehalose accumulation capacity could also be obtained at any growth stage by using maltose or galactose as carbon source. Since cells grown under various conditions exhibit a correlated change in cytochrome development and in trehalose accumulation capacity, it was concluded that the level of glucose repression determines the concentration and/or state of activation of the trehalose synthetase-trehalase complex. Independent control of trehalose accumulation capacity and mitochondrial biogenesis by the level of glucose repression was shown in two ways: by demonstrating derepression of trehalose accumulation without development of cytochromes a and c in microaerobic cells, and by showing repression-dependent changes in a cytoplasmic respiration-deficient (ρ?) mutant, which lacked functional mitochondria. Therefore, the capacity of a cell to accumulate trehalose is not regulated solely by the supply of ATP generated by oxidative phosphorylation.  相似文献   

20.
The kinetics of batch fermentation during the growth of S. cerevisiae ATCC 36859 was studied in various glucose/fructose mixtures. It was found that the growth is inhibited equally by glucose and fructose even though fructose is not consumed to any large extent by the yeast under the conditions tested here. The inhibition of growth by the substrate and ethanol is represented by linear equations. These equations were combined with the MONOD expression in order to formulate equations for the biomass growth, glucose and fructose consumption and ethanol production. Parameter estimates were obtained by fitting these equations to batch fermentation data and so developing models which indicate that the growth is completely inhibited when 62 g/l ethanol is produced by the yeast, while glucose consumption and ethanol production continue up to an ethanol concentration of 152 g/l. Products containing a high concentration of fructose are best produced by using a high initial biomass concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号