首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liquid mixing scale-up in pharmaceutical industry has often been based on empirical approach in spite of tremendous understanding of liquid mixing scale-up in engineering fields. In this work, we attempt to provide a model-based approach to scale-up dissolution process from a 2 l lab-scale vessel to a 4,000 l scale vessel used in manufacturing. Propylparaben was used as a model compound to verify the model predictions for operating conditions at commercial scale that would result in similar dissolution profile as observed in lab scale. Geometric similarity was maintained between both of the scales to ensure similar mixing characteristics. We utilized computational fluid dynamics (CFD) to ensure that the operating conditions at laboratory and commercial scale will result in similar power per unit volume (P/V). Utilizing this simple scale-up criterion of similar P/V across different scales, results obtained indicate fairly good reproducibility of the dissolution profiles between the two scales. Utilization of concepts of design of experiments enabled summarizing scale-up results in statistically meaningful parameters, for example −90% dissolution in lab scale at a given time under certain operating conditions will result in 75–88% at commercial scale with 95% confidence interval when P/V is maintained constant across the two scales. In this work, we have successfully demonstrated that scale-up of solid dissolution can be done using a systematic process of lab-scale experiments followed by simple CFD modeling to predict commercial-scale experimental conditions.  相似文献   

2.
To increase product yields and to ensure consistent product quality, key issues of industrial fermentations, process optimization and scale up are aimed at maintaining optimum and homogenous reaction conditions minimizing microbial stress exposure and enhancing metabolic accuracy. For each individual product, process and facility, suitable strategies have to be elaborated by a comprehensive and detailed process characterization, identification of the most relevant process parameters influencing product yield and quality and their establishment as scale-up parameters to be kept constant as far as possible. Physical variables, which can only be restrictedly kept constant as single parameters, may be combined with other pertinent parameters to appropriate mathematical groups or dimensionless terms. Process characterization is preferably based on real-time or near real-time data collected by in situ and on-line measurements and may be facilitated by supportive approaches and tools like neural network based chemometric data analysis and modelling, clarification of the mixing and stream conditions through computational fluid dynamics and scale-down simulations. However, as fermentation facilities usually are not strictly designed according to scale-up criteria and the process conditions in the culture vessels thus may differ significantly and since any strategy and model can only insufficiently consider and reflect the highly complex interdependence and mutual interaction of fermentation parameters, successful scale up in most cases is not the result of a conclusive and straight-lined experimental strategy, but rather will be the outcome of a separate process development and optimization on each scale. This article gives an overview on the problems typically coming along with fermentation process optimization and scale up, and presents currently applied scale-up strategies while considering future technologies, with emphasis on Escherichia coli as one of the most commonly fermented organisms.  相似文献   

3.
The absence of a systematic scale-up approach for biological conversion of cellulosic biomass to commodity products is a significant bottleneck to realizing the potential benefits offered by such conversion. Motivated by this, we undertook to develop a scale-up approach for conversion of waste paper sludge to ethanol. Physical properties of the system were measured and correlations were developed for their dependence upon cellulose conversion. Just-suspension of solid particles was identified as the scale up criterion based on experiments at lab scale. The impeller speed for just solids suspension at large scale was predicted using computational fluid dynamics simulations. The scale-up strategy was validated by analyzing mixing requirements such as solid–liquid mass transfer under the predicted level of agitation at large scale. The scale-up approach enhances the prediction of reactor performance and helps provide guidelines for the analysis and design of large scale bioreactors based on bench scale experimentation.  相似文献   

4.
Lyophilization is an approach commonly undertaken to formulate drugs that are unstable to be commercialized as ready to use (RTU) solutions. One of the important aspects of commercializing a lyophilized product is to transfer the process parameters that are developed in lab scale lyophilizer to commercial scale without a loss in product quality. This process is often accomplished by costly engineering runs or through an iterative process at the commercial scale. Here, we are highlighting a combination of computational and experimental approach to predict commercial process parameters for the primary drying phase of lyophilization. Heat and mass transfer coefficients are determined experimentally either by manometric temperature measurement (MTM) or sublimation tests and used as inputs for the finite element model (FEM)-based software called PASSAGE, which computes various primary drying parameters such as primary drying time and product temperature. The heat and mass transfer coefficients will vary at different lyophilization scales; hence, we present an approach to use appropriate factors while scaling-up from lab scale to commercial scale. As a result, one can predict commercial scale primary drying time based on these parameters. Additionally, the model-based approach presented in this study provides a process to monitor pharmaceutical product robustness and accidental process deviations during Lyophilization to support commercial supply chain continuity. The approach presented here provides a robust lyophilization scale-up strategy; and because of the simple and minimalistic approach, it will also be less capital intensive path with minimal use of expensive drug substance/active material.  相似文献   

5.
Conclusion In this chapter we have attempted to evaluate the most important parameters which can be useful for the pur-pose of design and scale up. Insect cells and animal cells in general can be grown well in large vessels. However, none of the theories and parameters discussed in this chapter have been validated on a larger scale than laboratory and small pilot reactors. Selection of the most suitable design and scale-up method there-fore needs in particular studies in larger vessels. The Kolmogorov theory and the killing-volume model are in this respect the most promising approaches for the optimal design of large-scale animal-cell bioreactors.  相似文献   

6.
谢江波  刘彤  魏鹏  贾亚敏  骆郴 《生态学报》2007,27(7):2704-2714
以古尔班通古特沙漠南缘莫索湾沙地选取相隔15km的两个200m×200m样地,以建群种心叶驼绒藜(Ceratoides ewersmanniana)及其生境地形为研究对象,应用小波分析定量研究了多尺度上空间格局的推绎以及空间异质性、空间格局依赖于尺度的变化关系。研究发现:小波分析尺度由1(5m)变化到4(20m)时,两个样地小尺度上的异质性和格局被合并到更大的尺度上,当小波分析的尺度大于等于5(25m)时,两个样地的格局变化平稳,对应地形(丘顶、丘坡、丘底)的基频稳定在110m左右,心叶驼绒藜的数量动态变化周期稳定在115~125m之间。结果表明:小波分析对信号整体特征的提取作用实现了小尺度上的信息到大尺度上的聚合。结合小波分析对信号突变点的检测,利用位置方差检验局部空间异质性程度,发现位置方差将大尺度上的格局分解到每个取样小样方,位置方差最大的地点对应的异质性也最强,实现了大尺度上的信息到小尺度上的分解。总结认为应用小波分析可以实现对空间格局的尺度推绎,具有对植被、环境的分布格局以及异质性有双重度量作用,由小波系数以及由其衍生的小波方差、位置方差来实现这种度量,图形表现直观,优越性明显。  相似文献   

7.
‘Scale-up’ is sometimes loosely used to describe an increase in production capacity. The purpose of any scale-up procedure is to reproduce a given process on a larger scale and to achieve a predictable process result. Scale-up may, therefore, be defined as the ‘predictable’ (engineered) increase in production capacity. Ideally, what the scale-up engineer would like to do is simulate and predict the performance of a large-scale reactor (e.g. 5000 l reactor volume) using only data from a bench-top vessel (e.g. 5 l volume). In order to do this equations are required that correlate the performance of a reactor with its size.In this review we will address some of the current trends and approaches currently being pursued to establish the basis for such calculations. Most of the correlations in animal cell culture processes are based on laboratory models alone, and still await confirmation of their utility as practical industrial tools. Although development work of this kind is under way within the industry, commercial constraints impede publication.Neither the validity of the theoretical concepts underlying these models nor the various possible reactor designs will be reviewed. Rather we will address the approaches to establishing the numerical tools needed to determine the required reactor design, its subsequent optimization, scale-up and scale-down procedures.  相似文献   

8.
Robust design of a dead end filtration step and the resulting performance at manufacturing scale relies on laboratory data collected with small filter units. During process development it is important to characterize and understand the filter fouling mechanisms of the process streams so that an accurate assessment can be made of the filter area required at manufacturing scale. Successful scale-up also requires integration of the lab-scale filtration data with an understanding of flow characteristics in the full-scale filtration equipment. A case study is presented on the development and scale-up of a depth filtration step used in a 2nd generation polysaccharide vaccine manufacturing process. The effect of operating parameters on filter performance was experimentally characterized for a diverse set of process streams. Filter capacity was significantly reduced when operating at low fluxes, caused by both low filtration pressure and high stream viscosity. The effect of flux on filter capacity could be explained for a variety of diverse streams by a single mechanistic model of filter fouling. To complement the laboratory filtration data, the fluid flow and distribution characteristics in manufacturing-scale filtration equipment were carefully evaluated. This analysis identified the need for additional scale-up factors to account for non-uniform filter area usage in large-scale filter housings. This understanding proved critical to the final equipment design and depth filtration step definition, resulting in robust process performance at manufacturing scale.  相似文献   

9.
Scale-up is traduced in practice by an increase of the dimensions of the bioreactors, leading to a modification of the time scale and thus of the process dynamics. In the present work, a methodology to study the effect of scale-up on bioreactors hydrodynamics and to put in place scale-down reactors representative of the flow properties encountered in real scales bioreactors is detailed.In order to simplify the analysis, we have proposed the use of a stochastic model which is directly affected by the time scale. Indeed, to run simulations with such models, we have to specify the time taken to achieve a transition Δt. Stochastic models are thus reliable to study scale-up effect on stirred reactors hydrodynamics. In addition, these models permit to have an insight on the internal dynamic of the process.In the case of the circulation process, qualitative aspects have to be taken into account and induce a modification of the flow regions arrangement of the model. The stochastic analysis of large-scale bioreactors permits to propose a translating methodology into a scale-down context. Optimised scale-down reactors can be used further to carry out fermentation tests with the hydrodynamic conditions of the industrial scale. In a general rule, the performances of stochastic model allow to facilitate greatly the analysis of the scale-up effect and the hydrodynamic characteristics of both large-scale and scale-down reactors.  相似文献   

10.
Abstract: CRA has been developing bioleaching for the treatment of low-grade refractory gold resources. In lhe course of dcveloping a biolcach process for a pyrite concentrate at Bougainville Copper Limited (BCL), CRA has confronted the myriad of problems associated with proving a concept at a small scale, to the design of a conceptual flowsheet. A phased programme was initiated to develop the project. Laboratory scale batch studies indicated that the pyrite concentrate was amenable to bacterial leaching and subsequent cyanidatkm gold recovery. Large scale continuous leaching was then performed to delincate the major operating wtriables. In conjunction with this programme, CRA has also been addressing the problem of reactor scale-up. The success of the bioleach process is dependent on the design of large, energy-efficient reactors, with reactor sizes of the order of 1000 m3 contemplated. Results from these scale-up studies are presented in this paper.  相似文献   

11.
Detailed knowledge of mammalian cell culture proliferation kinetics is important to determine fed-batch strategies for industrial bioreactor operations. In particular, predicting the end of exponential proliferation in batch culture is a critical process parameter during culture scale-up. Using automated flow cytometry we show that an increase in the non-viable sub-population in CHO cell culture can predict the onset of stationary phase by approximately 40 h. This enables a completely automated culture scale-up process as well as a reliable and reproducible control of fed-batch additions during culture expansion. It is shown that the automated scale-up results in a significantly higher total cell count in the reactor than manual scale up initiated in stationary growth phase. During individual, subsequent culture expansions, a significant variation in the proliferation rate was observed despite control of bulk culture parameters. Thus, automated flow cytometry is critical to uncovering useful process parameters that enable new control strategies. Such improved process supervision derived from knowledge-based data analysis is central to the FDA's Process Analytical Technology (PAT) initiative and is expected to result in better and higher quality products.  相似文献   

12.
何念鹏  刘聪聪  徐丽  于贵瑞 《生态学报》2020,40(8):2507-2522
功能性状在器官-物种-种群-群落-生态系统水平都具有其特定的适应或功能优化的意义,但目前对功能性状的测定和研究大都局限于器官或物种水平。然而,当前高速发展的宏生态新研究技术和方法(如遥感观测、通量观测、模型模拟)的研究对象都是在生态系统或区域尺度上,如何将传统功能性状与其相连结并服务于生态环境问题和全球变化问题是科学界的一大难题。为了解决传统性状与宏生态研究"尺度不统一"和"量纲不统一"的难题,研究人员最新发展了"生态系统性状(Ecosystem traits, ESTs)"概念体系,并从"理念-数据源-推导方法-应用"等多角度为后续研究提供了可借鉴案例。生态系统性状将传统性状研究从器官水平拓展到了群落和生态系统水平,以单位土地面积为基础构建了传统性状与宏生态研究(或地学研究)的桥梁,开启了性状研究从"器官到群落"、从"经典理论验证到宏观应用"的美好愿景,为多学科交叉提供了新思路。然而,它在方法学和数据源等方面还存在诸多问题与挑战;在此,我们呼吁相关专家从研究方法、概念体系和应用实践上赋予"生态系统性状"更强大的生命力,尤其从动物群落性状和微生物群落性状等角度。本文在深入解读先前生态性状概念体系、理论意义和潜在挑战的基础上,结合最新进展进行了补充,希望通过广泛讨论,完善生态系统性状概念体系,逐步形成"以性状为基础的生态系统生态学"新研究框架,切实推动宏生态研究和区域生态环境问题的解决。  相似文献   

13.
Xie J B  Liu T  Wei P  Jia Y M  Luo C 《农业工程》2007,27(7):2704-2714
Ecological experiments are usually conducted on small scales, but the ecological and environmental issues are usually on large scales. Hence, there is a clear need of scaling. Namely, when we deal with patterns and processes on larger scales, a special connection needs to be established on the small scales that we are familiar with. Here we presented a wavelet analysis method that could build relationships between spatial distribution patterns on different scales. With this method, we also studied how spatial heterogeneity and distribution patterns changed with the scale. We investigated the distribution and the habitat of C. ewersmanniana in two plots (200 m × 200 m; the distance between these two plots is 15 km) at Mosuowan desert. The results demonstrated that spatial heterogeneity and distribution patterns were incorporated into larger scales when the wavelet scale varied from one (5 m) to four (20 m). However, if the wavelet scale was above five (25 m), the spatial distribution patterns varied placidly, the oscillation frequency of landforms stabilized at 110 m, and the dynamic quantity period of C. ewersmanniana stabilized at 115–125 m. We also identified signal mutation points with wavelet analysis and verified the heterogeneity degree of local space with position variance. We found that position variance decomposed the distribution patterns on large scales into small sampling plots, and the position with the largest variance also had the strongest heterogeneity. In a word, the wavelet analysis method could scale-up spatial distribution patterns and habitat heterogeneity. With this method and other methods derived from this one, such as wavelet scale, wavelet variance, position variance and extremely direct-viewing graphs, wavelet analysis could be widely applied in solving the scaling problem in ecological and environmental studies.  相似文献   

14.
The scale-up effects on kinetic parameters and on predictions of a yeast recycle continuous ethanol fermentation model incorporating loss of cell viability were evaluated. The average level of cell viability estimated for large scale was similar to that estimated for small scale, although with a major standard deviation. The values of specific rate of cell viability loss were equal for the two scales. These results were due to the utilization of the same aeration rate for both scales, one of the main factors for cell-viability maintenance. The kinetic parameters were not significantly affected by the scale-up of the fermentation process. Major differences were observed for the maximum specific growth rate and for maximum ethanol concentrations for which, growth and ethanol production are totally inhibited. The scale-up did not result in lack of fit of the mathematical model to the experimental data.  相似文献   

15.
The commonly used scale-up criteria are investigated for their applicability in the case of hydro-ejector reactors. In combination with the liquid jet momentum, which characterizes the hydro-ejector, a scale-up correlation with the oxygen transfer rate as scale-up criterion is proposed, independent of the type of hydro-ejector and the reactor configuration. The results with regard to the power input are compared with those of stirred tank and bubble column. Its competitiveness is at high power per volume input and above all in large scale reactors.  相似文献   

16.
The paper deals with the classical two-sample testing problem for the equality of two populations, one of the most fundamental problems in biomedical experiments and case–control studies. The most familiar alternatives are the difference in location parameters or the difference in scale parameters or in both the parameters of the population density. All the tests designed for classical location or scale or location–scale alternatives assume that there is no change in the shape of the distribution. Some authors also consider the Lehmann-type alternative that addresses the change in shape. Two-sample tests under Lehmann alternative assume that the location and scale parameters are invariant. In real life, when a shift in the distribution occurs, one or more of the location, scale, and shape parameters may change simultaneously. We refer to change of one or more of the three parameters as a versatile alternative. Noting the dearth of literature for the equality two populations against such versatile alternative, we introduce two distribution-free tests based on the Euclidean and Mahalanobis distance. We obtain the asymptotic distributions of the two test statistics and study asymptotic power. We also discuss approximating p-values of the proposed tests in real applications with small samples. We compare the power performance of the two tests with several popular existing distribution-free tests against various fixed alternatives using Monte Carlo. We provide two illustrations based on biomedical experiments. Unlike existing tests which are suitable only in certain situations, proposed tests offer very good power in almost all types of shifts.  相似文献   

17.
Three dimensional particle tracking velocimetry (3-D PTV) was used to characterize the flow fields in the impeller region of three microcarrier reactor vessels. Three typical cell culture bioreactors were chosen: 250 ml small-scale spinner vessels, 3 L bench-scale reactor, and 20 L medium-scale reactor. Conditions studied correspond to the actual operating conditions in industrial setting and were determined based on the current scale-up paradigm: the Kolmogorov eddy length criterion. In this paper we present characterization of hydrodynamics on the basis of flow structures produced because of agitation. Flow structures were determined from 3-D mean velocity results obtained using 3-D PTV. Although the impellers used in 3 L and 20 L reactors were almost identical, the flow structures produced in the two reactors differed considerably. Results indicate that near geometric scale up does not necessarily amount to scale-up of flow patterns and indicates that intensity as well as distribution of energy may vary considerably during such a scale-up.  相似文献   

18.
This article describes the purification and scale-up of ISIS 2302, a 20-mer phosphorothioate oligonucleotide by anion-exchange (AX) chromatography. The key operating parameters were optimized at gram scale and further scaled up to hundred gram. SOURCE 30Q, a high efficiency polymeric chromatographic media was used for both the small and large-scale work. High length-based purity and yield were maintained at scale-up. This purification is one of the largest demonstrations of AX purification of phosphorothioate oligonucleotide.  相似文献   

19.
This article describes the purification and scale-up of ISIS 2302, a 20-mer phosphorothioate oligonucleotide by anion-exchange (AX) chromatography. The key operating parameters were optimized at gram scale and further scaled up to hundred gram. SOURCE 30Q, a high efficiency polymeric chromatographic media was used for both the small and large-scale work. High length-based purity and yield were maintained at scale-up. This purification is one of the largest demonstrations of AX purification of phosphorothioate oligonucleotide.  相似文献   

20.
丝状真菌(Filamentous fungi)的发酵生产通常具有较高的工业应用价值,但其菌体形态是一个区别于其他非丝状菌的一个重要发酵指标。针对目前形态分析的瓶颈,本研究使用琼脂糖凝胶对黑曲霉菌形进行固定,利用平板实现菌球样本的大量制备,并结合图形处理软件自建自动化处理程序,实现了大量准确可靠的菌体形态参数的获得,大大增加了形态数据处理通量及准确度。应用该方法于黑曲霉发酵生产糖化酶过程中不同供氧水平及剪切水平下菌体形态的研究,通过大量形态数据定量阐明了黑曲霉在不同剪切水平下的分区域形态分布特性,为进一步工业过程的形态优化提供了重要的研究方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号