首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development and Phase 3 testing of the most advanced malaria vaccine, RTS,S/AS01, indicates that malaria vaccine R&D is moving into a new phase. Field trials of several research malaria vaccines have also confirmed that it is possible to impact the host-parasite relationship through vaccine-induced immune responses to multiple antigenic targets using different platforms. Other approaches have been appropriately tested but turned out to be disappointing after clinical evaluation. As the malaria community considers the potential role of a first-generation malaria vaccine in malaria control efforts, it is an apposite time to carefully document terminated and ongoing malaria vaccine research projects so that lessons learned can be applied to increase the chances of success for second-generation malaria vaccines over the next 10 years. The most comprehensive resource of malaria vaccine projects is a spreadsheet compiled by WHO thanks to the input from funding agencies, sponsors and investigators worldwide. This spreadsheet, available from WHO's website, is known as "the rainbow table". By summarizing the published and some unpublished information available for each project on the rainbow table, the most comprehensive review of malaria vaccine projects to be published in the last several years is provided below.  相似文献   

2.
The misery and suffering caused worldwide by infection with the malaria parasite, especially Plasmodium falciparum, has been well documented. Although no licensed vaccine against malaria currently exists, progress has accelerated in recent years towards the goal of developing one. Although the complexity of the malaria parasite has made the malaria vaccine development process tenuous, advances in science and in the vaccine development process as well as increases in funding are encouraging. These advances, coupled with the results of the recent clinical trial of the vaccine candidate RTS,S, have added new vigor to the idea that a malaria vaccine is not only possible but probable.  相似文献   

3.
疟疾肆虐,对全球公共卫生健康提出了严峻的挑战,疫苗作为一个关键性的预防策略,为消除疟疾提供了新的机遇。随着现代科技的高速发展,科学家们针对疟疾疫苗的研究正如火如荼进行着,其中红细胞前期疟疾疫苗、红细胞内期疟疾疫苗、传播阻断疫苗以及多抗原、多表位重组疟疾疫苗和多阶段融合蛋白疟疾疫苗等的相关研究已取得了重大进展。虽目前尚未有任何一种疟疾疫苗获得上市许可,未来作为可以拯救生命的优质、高效的抗疟疫苗或将成为根除疟疾不可替代的工具。  相似文献   

4.
The promising malaria vaccine candidates that have been tested in the field have, so far, yielded disappointing and, at times, conflicting results. Considerable efforts are being made to isolate new immunogenic molecules. However, the fact that most populations in malaria endemic areas are also infected by helminths appears to be overlooked. Helminth-related hyporesponsiveness to tetanus or cholera vaccines, and the interactions between malaria parasites and helminths, raise the possibility that a potent malaria vaccine will not be identified in helminth-infected populations, thus necessitating a change in vaccine trial design.  相似文献   

5.
Although the malaria parasite was discovered more than 120 years ago, it is only during the past 20 years, following the cloning of malaria genes, that we have been able to think rationally about vaccine design and development. Effective vaccines for malaria could interrupt the life cycle of the parasite at different stages in the human host or in the mosquito. The purpose of this review is to outline the challenges we face in developing a vaccine that will limit growth of the parasite during the stage within red blood cells--the stage responsible for all the symptoms and pathology of malaria. More than 15 vaccine trials have either been completed or are in progress, and many more are planned. Success in current trials could lead to a vaccine capable of saving more than 2 million lives per year.  相似文献   

6.
There is no licenced vaccine against any human parasitic disease and Plasmodium falciparum malaria, a major cause of infectious mortality, presents a great challenge to vaccine developers. This has led to the assessment of a wide variety of approaches to malaria vaccine design and development, assisted by the availability of a safe challenge model for small-scale efficacy testing of vaccine candidates. Malaria vaccine development has been at the forefront of assessing many new vaccine technologies including novel adjuvants, vectored prime-boost regimes and the concept of community vaccination to block malaria transmission. Most current vaccine candidates target a single stage of the parasite's life cycle and vaccines against the early pre-erythrocytic stages have shown most success. A protein in adjuvant vaccine, working through antibodies against sporozoites, and viral vector vaccines targeting the intracellular liver-stage parasite with cellular immunity show partial efficacy in humans, and the anti-sporozoite vaccine is currently in phase III trials. However, a more effective malaria vaccine suitable for widespread cost-effective deployment is likely to require a multi-component vaccine targeting more than one life cycle stage. The most attractive near-term approach to develop such a product is to combine existing partially effective pre-erythrocytic vaccine candidates.  相似文献   

7.
The Roll Back Malaria campaign vowed to halve the global burden of malaria in ten years but, midway into that campaign, few new malaria control tools have been introduced, and many established methods appear to be failing with effective chemotherapy being perhaps the most problematic. It has been repeatedly argued that the discovery and implementation of a safe and effective vaccine against malaria is a major priority in the control of the disease. Indeed, many malaria control experts believe that sustainable reductions in malaria control will be nigh on impossible in the absence of such a vaccine. While most would agree that we are still some way from being able to introduce a vaccine, steady progress is being made. We review here some new approaches and developments in vaccine research that were discussed at the Molecular Approaches to Malaria conference held 1-5 February 2004 in Lorne, Australia.  相似文献   

8.
The complex life cycle of the malaria parasite Plasmodium falciparum provides many options for vaccine design. Several new types of vaccine are now being evaluated in clinical trials. Recently, two vaccine candidates that target the pre-erythrocytic stages of the malaria life cycle - a protein particle vaccine with a powerful adjuvant and a prime-boost viral-vector vaccine - have entered Phase II clinical trials in the field and the first has shown partial efficacy in preventing malarial disease in African children. This Review focuses on the potential immunological basis for the encouraging partial protection induced by these vaccines, and it considers ways for developing more effective malaria vaccines.  相似文献   

9.
10.
Malaria vaccine development: current status   总被引:9,自引:0,他引:9  
The development of an effective malaria vaccine represents one of the most important approaches that would provide a cost-effective intervention for addition to currently available malaria control strategies. Here, Howard Engers and Tore Godal review recent advances. Over the past decade there has been considerable progress in the understanding of immune mechanisms involved in conferring protection to malaria and in the identification of vaccine candidate antigens and their genes. Several new vaccines have entered Phase I/II trials recently, new adjuvants have been developed for human use and new approaches, such as DNA vaccines and structural modification of antigens to circumvent some of the strategies the parasite uses to avoid the immune response, are being applied. Thus, from the TDR perspective, global malaria vaccine development is entering a crucial period with unprecedented opportunities.  相似文献   

11.
The lack of immunogenicity of most malaria antigens and the complex immune responses required for achieving protective immunity against this infectious disease have traditionally hampered the development of an efficient human malaria vaccine. The current boom in development of recombinant viral vectors and their use in prime-boost protocols that result in enhanced immune outcomes have increased the number of malaria vaccine candidates that access pre-clinical and clinical trials. In the frontline, adenoviruses and poxviruses seem to be giving the best immunization results in experimental animals and their mutual combination, or their combination with recombinant proteins (formulated in adjuvants and given in sequence or being given as protein/virus admixtures), has been shown to reach unprecedented levels of anti-malaria immunity that predictably will be somehow reproduced in the human setting. However, all this optimism was previously seen in the malaria vaccine development field without many real applicable results to date. We describe here the current state-of-the-art in the field of recombinant adenovirus research for malaria vaccine development, in particular referring to their use in combination with other immunogens in heterologous prime-boost protocols, while trying to simultaneously show our contributions and point of view on this subject.  相似文献   

12.
A safe and effective malaria vaccine would contribute greatly to the control and prevention of the disease. Although a review of global activity in malaria vaccine development does reflect significant activity, progress has remained slow. This article discusses the current vaccine candidates, with emphasis on those in the clinic, and explains the numerous challenges to making and evaluating malaria vaccines, which have resulted in only a few approaches being adopted and repeatedly evaluated. Against a parasite with more than 5200 genes, the lack of definitive knowledge regarding the nature of protective immunity and absence of reliable surrogates of protection are among the key challenges to a rational evaluation and prioritization of candidate vaccines. Pursuing the current R&D strategies may not result in the availability of a vaccine with characteristics suitable to impact significantly on disease morbidity in developing countries. Therefore, it is critical that the main challenges to malaria vaccine development be unambiguously identified and collectively addressed.  相似文献   

13.
Existing control measures have significantly reduced malaria morbidity and mortality in the last two decades, although these reductions are now stalling. Significant efforts have been undertaken to develop malaria vaccines. Recently, extensive progress in malaria vaccine development has been made for Plasmodium falciparum. To date, only the RTS,S/AS01 vaccine has been tested in Phase 3 clinical trials and is now under implementation, despite modest efficacy. Therefore, the development of a malaria transmission-blocking vaccine (TBV) will be essential for malaria elimination. Only a limited number of TBVs have reached pre-clinical or clinical development with several major challenges impeding their development, including low immunogenicity in humans. TBV development efforts against P. vivax, the second major cause of malaria morbidity, lag far behind those for P. falciparum. In this review we summarize the latest progress, challenges and innovations in P. vivax TBV research and discuss how to accelerate its development.  相似文献   

14.
Neither GMP malaria antigens nor GMP vaccines have been compared for efficacy in monkeys and humans. It is too risky to base categorical (go/no go) development decisions on results obtained using partially characterized (non-GMP) antigens, adjuvants that are too toxic for human use or unvalidated primate models. Such practices will lead to serious errors (e.g. failure to identify and stop flawed efforts, rejection of effective vaccine strategies) and unjustifiable delays. Successful malaria vaccine development will emphasize definitive field trials in populations at risk of malaria to define and improve vaccine efficacy.  相似文献   

15.
Vaccines against infectious diseases have had great successes in the history of public health. Major breakthroughs have occurred in the development of vaccine-based interventions against viral and bacterial pathogens through the application of classical vaccine design strategies. In contrast the development of a malaria vaccine has been slow. Plasmodium falciparum malaria affects millions of people with nearly half of the world population at risk of infection. Decades of dedicated research has taught us that developing an effective vaccine will be time consuming, challenging, and expensive. Nevertheless, recent advancements such as the optimization of robust protein synthesis platforms, high-throughput immunoscreening approaches, reverse vaccinology, structural design of immunogens, lymphocyte repertoire sequencing, and the utilization of artificial intelligence, have renewed the prospects of an accelerated discovery of the key antigens in malaria. A deeper understanding of the major factors underlying the immunological and molecular mechanisms of malaria might provide a comprehensive approach to identifying novel and highly efficacious vaccines. In this review we discuss progress in novel antigen discoveries that leverage on the wheat germ cell-free protein synthesis system (WGCFS) to accelerate malaria vaccine development.  相似文献   

16.
Malaria is one of the most frequently occurring infectious diseases worldwide, with almost 1 million deaths and an estimated 243 million clinical cases annually. Several candidate malaria vaccines have reached Phase IIb clinical trials, but results have often been disappointing. As an alternative to these Phase IIb field trials, the efficacy of candidate malaria vaccines can first be assessed through the deliberate exposure of participants to the bites of infectious mosquitoes (sporozoite challenge) or to an inoculum of blood-stage parasites (blood-stage challenge). With an increasing number of malaria vaccine candidates being developed, should human malaria challenge models be more widely used to reduce cost and time investments? This article reviews previous experience with both the sporozoite and blood-stage human malaria challenge models and provides future perspectives for these models in malaria vaccine development.  相似文献   

17.
A safe and effective malaria vaccine will greatly facilitate efforts to control the global spread of malaria. This paper discusses the conceptual framework for developing malaria vaccines and some of the difficulties that the various approaches face. It emphasizes the role of pre-erythrocytic malaria vaccines, which are designed to protect against malaria infection, rather than simply prevent clinical disease. It describes recent encouraging results in human subjects with the RTS,S vaccine, a promising pre-erythrocytic malaria vaccine candidate.  相似文献   

18.
Vaccination is the attempt to mimic certain aspects of an infection for the purpose of causing an immune response that will protect the individual from that infection. Malaria, a disease responsible for immense human suffering, is caused by infection with Plasmodium spp. parasites, which have a very complex life cycle--antigenically unique stages infect different tissues of the body. It is a parasitic disease for which no successful vaccine has been developed so far, despite considerable efforts to develop a subunit vaccine that offers protective immunity. Due to the spread of drug-resistant malaria, efforts to develop an effective vaccine have become increasingly critical. DNA vaccination provides a stable and long-lived source of protein vaccine capable of inducing both antibody- and cell-mediated immune responses to a wide variety of antigens. Injected DNA enters the cells of the host and makes the protein, which triggers the immune response. According to present needs, the flexibility of DNA vaccine technology permits the combination of multiple antigens from both the preerythrocytic and erythrocytic stages of malaria parasite. DNA vaccines with genes coding for different antigenic parts of malaria proteins have been created and presently some of these are undergoing field trials. The results from these trials will help to determine the likelihood of success of this technology in humans. This review presents an update of the studies carried out in malaria using DNA vaccine approach, the challenges, and the future prospects.  相似文献   

19.
To date, the only pre-blood stage vaccine to confer protection against malaria in field trials elicits both antigen-specific antibody and T-cell responses. Recent clinical trials of new heterologous prime-boost malaria vaccine regimens using DNA, fowlpox or MVA, have chiefly elicited T-cell responses that have promisingly reduced hepatic merozoites in challenge trials, but failed to protect in field trials. These encouraging results suggest further augmentation of T-cell responses to pre-blood stage antigens might one day contribute to a highly protective vaccine. We envision that a highly protective pre-erythrocytic vaccine will likely be based upon a heterologous prime-boost regimen that induces both appropriate T-cell responses as well as robust and protracted antibody production.  相似文献   

20.
Vaccination is the attempt to mimic certain aspects of an infection for the purpose of causing an immune response that will protect the individual from that infection. Malaria, a disease responsible for immense human suffering, is caused by infection with Plasmodium spp. parasites, which have a very complex life cycle — antigenically unique stages infect different tissues of the body. It is a parasitic disease for which no successful vaccine has been developed so far, despite considerable efforts to develop a subunit vaccine that offers protective immunity. Due to the spread of drug-resistant malaria, efforts to develop an effective vaccine have become increasingly critical. DNA vaccination provides a stable and long-lived source of protein vaccine capable of inducing both antibody- and cell-mediated immune responses to a wide variety of antigens. Injected DNA enters the cells of the host and makes the protein, which triggers the immune response. According to present needs, the flexibility of DNA vaccine technology permits the combination of multiple antigens from both the preerythrocytic and erythrocytic stages of malaria parasite. DNA vaccines with genes coding for different antigenic parts of malaria proteins have been created and presently some of these are undergoing field trials. The results from these trials will help to determine the likelihood of success of this technology in humans. This review presents an update of the studies carried out in malaria using DNA vaccine approach, the challenges, and the future prospects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号