首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We assessed the effect of short‐term underfeeding on weight and protein mass of splanchnic tissues in adult ewes submitted to a factorial experimental design. In a pre‐experimental period, 18 ewes divided into 2 groups of 9 were fed a second cut of natural grassland hay during 4 weeks at 112 or 38% of their energy maintenance requirements. Three ewes of each group were then fed the same hay during 4 weeks at either low (group L), moderate (group M) or high intake (group H), corresponding to 38, 75 or 112% of their energy maintenance requirements, respectively, then slaughtered. Fresh weight and protein mass of splanchnic organs were measured. No carry‐over effect of the pre‐experimental level of intake on weight and protein mass was observed for any splanchnic organs. Splanchnic tissues contributed at 10.7 and 8.6% to the decrease in live weight for groups M and L, respectively. The decrease in weight of splanchnic tissues (‐15%) was mainly attributed to reticulorumen (‐23%), liver (‐21%), and at a lesser extent small intestine (‐11%). No large change in the mass ratio between mucosa and muscular‐sercsa in both dorsal and ventral sacs occurred in the rumen wall. These results are discussed together with previous published results on long‐term underfed ewes, and suggest that the decrease in energy expenditure in whole animal induced by underfeeding is mainly related to the decrease in splanchnic weight at short‐term, and to the decrease in other tissues at long‐term, splanchnic weight being stabilized.  相似文献   

2.
In a recent paper we examined the morphology of erythrocytes in terms of the mean mean curvature (MMC) of their cell membranes. A computer simulation of these shapes based on the different geometries showed that the MMC increased from the sphero-stomatocyte to the spheroechinocyte via the discocyte. In this work we extend this analysis by using a numerical optimization method based on importance sampling and the principle of adiabatic cooling. The erythrocyte membrane is treated as a single closed fluid lamina exhibiting viscoelastic characteristics. The energy function of the lamina includes the following terms: (i) Curvature-elastic energy terms which depend on both local and global curvature. (ii) A term describing the compression elasticity of the lamina. (iii) A term which depends on the volume of the cell and which is related to the osmotic pressure across the membrane. In the simulation the cell is assumed to have axial symmetry and it can therefore be described by a finite set of conic sections. So far we have been able to obtain an energy minimum corresponding to a discocyte shape using a sphere as the initial configuration. Our results therefore imply that the well-known sequence of erythrocyte shapes could solely be governed by the above mentioned properties of an ideal fluid forming a closed singly connected lamina.  相似文献   

3.
In vitro drug testing requires long‐term maintenance of hepatocyte liver specific functions. Hepatocytes cultured at a higher seeding density in a sandwich configuration exhibit an increased level of liver specific functions when compared to low density cultures due to the better cell to cell contacts that promote long term maintenance of polarity and liver specific functions. However, culturing hepatocytes at high seeding densities in a standard 24‐well plate poses problems in terms of the mass transport of nutrients and oxygen to the cells. In view of this drawback, we have developed a polydimethylsiloxane (PDMS) bioreactor that was able to maintain the long‐term liver specific functions of a hepatocyte sandwich culture at a high seeding density. The bioreactor was fabricated with PDMS, an oxygen permeable material, which allowed direct oxygenation and perfusion to take place simultaneously. The mass transport of oxygen and the level of shear stress acting on the cells were analyzed by computational fluid dynamics (CFD). The combination of both direct oxygenation and perfusion has a synergistic effect on the liver specific function of a high density hepatocyte sandwich culture over a period of 9 days. Biotechnol. Bioeng. 2013; 110: 1663–1673. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
During the oxygen limiting growth of Klebsiella oxytoca, the xylose metabolism may be considered as consisting of three components: conversion to 2,3-butanediol by "fermentation," oxidation to carbon dioxide by respiration, and assimilation to cell mass. The amount of energy required for the assimilation of cell mass is assumed to determine the extent to which the two energy producing reactions occur. The activity of each energy producing pathway is also determined by the availability of oxygen and by the energy yield of each pathway. These relationships can be quantified by equating the ATP required for growth and maintenance to the ATP produced by the energy producing reactions. The resulting equation for butanediol production appears similar to the Luedeking and Piret model where the parameters alpha and beta are related to the maximum cell yield from ATP and the maintenance energy requirement. These parameters were estimated from 14 batch fermentations, and the resulting simulation was used to describe the effects of the oxygen transfer rate and the initial xylose concentration on the yields and rates of the 2,3-butanediol fermentation.  相似文献   

5.
6.
The new model proposed to account for the energy requirement for growth includes both a constant maintenance energy term (m) independent of the specific growth rate and a term (m′) which decreases linearly with increase in specific growth rate and becomes zero at the maximum specific growth rate. The available data for testing the model do not deviate significantly from the relations predicted. Consistent values of the maximum growth yield (Y G) can be derived, irrespective of whether the cultures are energy limited or energy sufficient. Attention is drawn to the possibility that the constant maintenance energy term may be estimated from the maximum specific growth rate.  相似文献   

7.
《BBA》2020,1861(11):148276
In living cells, growth is the result of coupling between substrate catabolism and multiple metabolic processes that take place during net biomass formation and maintenance processes. During growth, both ATP/ADP and NADH/NAD+ molecules play a key role. Cell energy metabolism hence refers to metabolic pathways involved in ATP synthesis linked to NADH turnover. Two main pathways are thus involved in cell energy metabolism: glycolysis/fermentation and oxidative phosphorylation. Glycolysis and mitochondrial oxidative phosphorylation are intertwined through thermodynamic and kinetic constraints that are reviewed herein. Further, our current knowledge of short-term and long term regulation of cell energy metabolism will be reviewed using examples such as the Crabtree and the Warburg effect.  相似文献   

8.
Flooding injury is a major problem in soybean cultivation. A proteomics approach was used to clarify the occurrence of changes in protein expression level and phosphorylation in soybeans under flooding stress. Two-day-old seedlings were flooded for 1 day, proteins were extracted from root tips of the seedlings and digested with trypsin, and their expression levels and phosphorylation states were compared to those of untreated controls using mass spectrometry-based proteomics techniques. Phosphoproteins were enriched using a phosphoprotein purification column prior to digestion and mass spectrometry. The expression of proteins involved in energy production increased as a result of flooding, while expression of proteins involved in protein folding and cell structure maintenance decreased. Flooding induced changes of phosphorylation status of proteins involved in energy generation, protein synthesis and cell structure maintenance. The response to flooding stress may be regulated by both modulation of protein expression and phosphorylation state. Energy-demanding and production-related metabolic pathways may be particularly subject to regulation by changes in protein phosphorylation during flooding.  相似文献   

9.
The major physiological principles involved in mass production of photoautotrophic microalgae outdoors relate to sustained trapping of solar energy in as high an efficiency as possible throughout the year.The tactics that should be employed for this goal include the improvement of suitable species, as well as developing culturing devices and proper management protocol aimed to facilitate efficient exploitation of the supper saturating photon flux densities existing outdoors.The most common system used today in industry for outdoor production of microalgae is the open raceway, in which stirring is provided by a paddle wheel. This mode of production suffers usually from many weaknesses, since it does not permit a satisfactory response to the two major variables that limit productivity outdoors — i.e.- solar irradiance and ambient temperature. Sustained production of algal mass the year round requires constant monitoring of the state of the culture and adjusting imputs accordingly. The readily controllable variables relate to mineral nutrients and carbon balance as well as to turbulent streaming in the culture and to the population density.The drawbacks of the open system relate in essence to the lack of temperature control and the long light-path which dictates maintenance of disadvantageously low cell concentrations. The open raceway thus falls short of the requirements necessary to insure sustained, year round high productivity outdoors.It is thus proposed that in the future, closed reactors may become the major production mode of microalgae outdoors.This paper was presented at the Symposium on Applied Phycology at the Fourth International Phycological Congress, Duke University.  相似文献   

10.
Biomass formation represents one of the most basic aspects of bacterial metabolism. While there is an abundance of information concerning individual reactions that result in cell duplication, there has been surprisingly little information on the bioenergetics of growth. For many years, it was assumed that biomass production (anabolism) was proportional to the amount of ATP which could be derived from energy-yielding pathways (catabolism), but later work showed that the ATP yield (YATP) was not necessarily a constant. Continuous-culture experiments indicated that bacteria utilized ATP for metabolic reactions that were not directly related to growth (maintenance functions). Mathematical derivations showed that maintenance energy appeared to be a growth rate-independent function of the cell mass and time. Later work, however, showed that maintenance energy alone could not account for all the variations in yield. Because only some of the discrepancy could be explained by the secretion of metabolites (overflow metabolism) or the diversion of catabolism to metabolic pathways which produced less ATP, it appeared that energy-excess cultures had mechanisms of spilling energy. Bacteria have the potential to spill excess ATP in futile enzyme cycles, but there has been little proof that such cycles are significant. Recent work indicated that bacteria can also use futile cycles of potassium, ammonia, and protons through the cell membrane to dissipate ATP either directly or indirectly. The utility of energy spilling in bacteria has been a curiosity. The deprivation of energy from potential competitors is at best a teleological explanation that cannot be easily supported by standard theories of natural selection. The priming of intracellular intermediates for future growth or protection of cells from potentially toxic end products (e.g., methylglyoxal) seems a more plausible explanation.  相似文献   

11.
Latently infected cells are a barrier to HIV eradication on therapy due to long half-lives of between 6 and 44 months. The mechanism behind this long term maintenance is unclear although bystander proliferation and asymmetric division have both been put forward for consideration in mathematical models. The latently infected cell reservoir seems to act as an archive for strains of HIV no longer dominant in the blood, such as wild-type virus when the individual is on therapy. This is particularly significant when patients wish to come off medication and wild-type virus re-emerges.We use a two target cell model capable of producing low-level viral load on therapy and include latent cells and two strains of virus, wild-type and drug resistant, to investigate the impact of two possible mechanisms of latent cell reservoir maintenance on strain archiving. We find that although short term (less than a year) archiving of viral strains is possible in a model with no mechanism for reservoir maintenance, both bystander proliferation and asymmetric division of latent cells allow archiving to occur over much longer timescales (2 or more years). We suggest that regardless of the mechanism involved, latent cell reservoir maintenance allows strain archiving to occur. We interpret our results for clinical consideration.  相似文献   

12.
Lactation is the most energetically demanding period in the female mammal's life. We measured maternal energy intake, uncoupling protein 1 (UCP1) content in brown adipose tissue (BAT), serum-leptin concentration, and litter growth in lactating Brandt's voles (Lasiopodomys brandtii) with different litter sizes. Litter mass was positively related to litter size but there was no difference in pup mass at birth. Maternal gross energy intake at peak lactation was positively correlated with litter size and litter mass. Maternal resting metabolic rate (RMR) was positively correlated with litter mass, but not with litter size. No significant differences were detected in body-fat mass, serum-leptin concentration, or UCP1 in lactating voles with different litter sizes. Serum-leptin concentration was negatively correlated with energy intake during lactation. Our data did not support the hypothesis that there is a trade-off in energy allocation between maternal maintenance and offspring growth in lactating Brandt's voles, but support the idea that if the mothers with ten pups should have less energy available for their maintenance than mothers raising fewer pups. Also, leptin is probably not the only factor that induces the high energy intake in mothers with large litter sizes, although it was involved in the regulation of energy intake during lactation.  相似文献   

13.
Effects of energy intake on the estrous cycle of the desert gerbillid, Sundevall's jird (Meriones crassus; 80 g; n=22) were studied. Females were offered either maintenance or below maintenance levels of millet seeds and ad lib. Atriplex halimus leaves and stems; drinking water was not available. Vaginal smears were used to determine sexual stage. We hypothesized that the estrous cycle ceases at low levels of energy intake and commences when sufficient energy is available. Females lost body mass linearly with a decrease in metabolizable energy intake. Estrous cycle averaged 4.46 d at maintenance energy intake but increased to an average of 7.81 d at 70% of maintenance energy intake. A cessation of the cycle occurred at an energy intake below 70% of maintenance requirements, which resulted in a body mass loss of more than 1% per day. More variability in the length of the different stages of the cycle was found with lower levels of energy intake. When offered ad lib. millet seeds and A. halimus (n=14), recovery to the normal cycle was attained within 10 d by 43% of the females and within 16 d by the rest of the females. Recovery time was longest in females that previously had the lowest energy intake. We concluded that the estrous cycle of M. crassus is sensitive to energy intake. With restricted energy intake, the estrous cycle and reproductive activities cease but can be restored with provision of adequate energy. This strategy ensures that reproduction occurs when conditions of food availability and body condition of the females are favorable.  相似文献   

14.
Culture conditions that allow long term growth and maintenance of rat urothelium have been determined using short (3 to 8 days) and long (14 to 60 days) term measurements of cell density and tritiated thymidine incorporation as indices. The basal nutrient medium utilized was a mixture of 199 plus Ham's F 12 (1:1) supplemented with insulin (1 microgram/ml) and hydrocortisone (1 microgram/ml). Long term culture of urothelium seems to require porous collagen. Porous albumin, or plastic dishes thinly coated with albumin, collagen, fibronectin or mixtures thereof, did not support long term maintenance. Serum was required at a concentration of 5%, independent of other additives. Decreasing Ca++ levels below that normally found the basal medium (approximately 1 X 10(-3] to as low as 1 X 10(-4), resulted in increased short term proliferation, but decreased long term maintenance by causing a loss of stratification of the urothelium. Even a slight increase in Ca++ concentration from 1.0 to 1.5 X 10(-3) resulted in an inhibition of proliferation and an increase in the number of large flat cells which subsequently sloughed off in sheets. The deletion of either insulin, hydrocortisone or both, inhibited growth. The addition of epidermal growth factor (EGF) or its homologue, transforming growth factor (TGF-alpha), increased cell proliferation markedly and caused a variable increase in stratification. However, epithelium induced to rapid growth and proliferation with EGF, eventually exhausted its growth potential and died. TGF-beta 1, alone or in combination with either EGF or alpha-TGF, had no additional effect upon urothelial growth. Repeated transfers of urothelium by enzymatic dissociation led to decreased growth and maintenance potential. The data indicates that long term maintenance of stratified urothelium in culture requires a porous collagen substrate and fetal bovine serum together with hormonal requirements and concentrations of Ca++ that neither greatly stimulate nor inhibit growth.  相似文献   

15.
OBJECTIVES: To compare importance of rate of initial weight loss for long term outcome in obese patients and to compare efficacy of two different weight maintenance programmes. DESIGN: Subjects were randomised to either rapid or slow initial weight loss. Completing patients were re-randomised to one year weight maintenance programme of ad lib diet or fixed energy intake diet. Patients were followed up one year later. SETTING: University research department in Copenhagen, Denmark. SUBJECTS: 43 (41 women) obese adults (body mass index 27-40) who were otherwise healthy living in or around Copenhagen. INTERVENTIONS: 8 weeks of low energy diet (2 MJ/day) or 17 weeks of conventional diet (5 MJ/day), both supported by an anorectic compound (ephedrine 20 mg and caffeine 200 mg thrice daily); one year weight maintenance programme of ad lib, low fat, high carbohydrate diet or fixed energy intake diet (< or = 7.8 MJ/day), both with reinforcement sessions 2-3 times monthly. MAIN OUTCOME MEASURES: Mean initial weight loss and proportion of patients maintaining a weight loss of > 5 kg at follow up. RESULTS: Mean initial weight loss was 12.6 kg (95% confidence interval 10.9 to 14.3 kg) in rapid weight loss group and 12.6 (9.9 to 15.3) kg in conventional diet group. Rate of initial weight loss had no effect on weight maintenance after 6 or 12 months of weight maintenance or at follow up. After weight maintenance programme, the ad lib group had maintained 13.2 (8.1 to 18.3) kg of the initial weight loss of 13.5 (11.4 to 15.5) kg, and the fixed energy intake group had maintained 9.7 (6.1 to 13.3) kg of the initial 13.8 (11.8 to 15.7) kg weight loss (group difference 3.5 (-2.4 to 9.3) kg). Regained weight at follow up was greater in fixed energy intake group than in ad lib group (11.3 (7.1 to 15.5) kg v 5.4 (2.3 to 8.6) kg, group difference 5.9 (0.7 to 11.1) kg, P < 0.03). At follow up, 65% of ad lib group and 40% of fixed energy intake group had maintained a weight loss of > 5 kg (P < 0.07). CONCLUSION: Ad lib, low fat, high carbohydrate diet was superior to fixed energy intake for maintaining weight after a major weight loss. The rate of the initial weight loss did not influence long term outcome.  相似文献   

16.
Surgical reduction of luteal tissue to about 20% of its total mass on day 5 pc was found to maintain gestation till term. A high degree of fetal loss was, however, evident. An identical surgical manipulation at the end of maximal luteal maturity, that is, on day 16 pc, resulted in normal maintenance of gestation. Fetal growth and their survival rate were found to be comparable to controls. An exclusive surgical extirpation of corpora lutea, on the other hand, either on day 16, 17, 18 or 19 was found to cause 100% fetal loss by day 23. However, progesterone replacement therapy concurrently with surgical luteal ablation till day 20, or surgical extirpation of the entire luteal mass when shifted on day 20, led the pregnancy to term. Present experimental findings, therefore, suggest that only about 20% of the functionally matured luteal mass until day 20 is essentially enough to maintain an ideal pregnancy status till term.  相似文献   

17.
Body mass has been shown to scale negatively with abundance in a wide range of habitats and ecosystems. It is believed that this relationship has important consequences for the distribution and maintenance of energy in natural communities. Some studies have shown that the relationship between body mass and abundance may be robust to major food web perturbations, fuelling the belief that natural processes may preserve the slope of this relationship and the associated cycling of energy and nutrients. Here, we use data from a long‐term experimental food web manipulation to examine this issue in a semi‐natural environment. Similar communities were developed in large experimental mesocosms over a six month period. Some of the mesocosms were then subjected to species removals, based on the mean strength of their trophic interactions in the communities. In treatments where the strongest interactors were removed, a community‐level trophic cascade occurred. The biomass density of invertebrates increased dramatically in these communities, which led to a suppression of primary production. In spite of these widespread changes in ecosystem functioning, the slope of the relationship between body mass and abundance remained unchanged. This was the case whether average species body mass and abundance or individual organism size spectra were considered. An examination of changes in species composition before and after the experimental manipulations revealed an important mechanism for maintaining the body mass–abundance relationship. The manipulated communities all had a higher species turnover than the intact communities, with the highest turnover in communities that experienced cascading effects. As some species increased in body mass and abundance, new species filled the available size–abundance niches that were created. This maintained the overall body mass–abundance relationship and provided a stabilising structure to these experimental communities.  相似文献   

18.
Mitochondria have long been recognized as cellular energy power houses that also regulate cellular redox signaling to arbitrate cell survival. Recent studies of mitochondria in stem cells (SCs) demonstrate that they have critical roles beyond this traditional view. Embryonic (E) SCs, termed pluripotent for their ability to differentiate into all cell types within an organism, maintain a limited number of morphologically undifferentiated (electron translucent and poorly formed cristae) mitochondria. As these cells differentiate, their mitochondria undergo a tightly choreographed gain of number, mass and morphological complexity. Therefore, mechanisms that regulate mitochondrial growth, localization, division and partition must play active roles in the maintenance of pluripotency and execution of differentiation. Aberrant mitochondrial dynamics are associated with a plethora of human disorders, for which SCs hold curative potential. Hence, a comprehensive understanding of the mechanisms that regulate mitochondrial dynamics and function in SCs and their overall relationship to the maintenance of pluripotency is pivotal for the progression of therapeutic regenerative medicine.  相似文献   

19.
Pluripotent cell development in the mammalian embryo results in the sequential formation of several developmentally distinct populations, inner cell mass, primitive ectoderm, and the primordial germ lineage. Factors within medium conditioned by HepG2 cells (MEDII) have been implicated in the formation and maintenance of primitive ectoderm from inner cell mass cells both in vitro and in vivo. Here we demonstrate that MEDII, but not LIF, is able to support the maintenance and proliferation in culture of pluripotent cells derived from primitive ectoderm formed in vitro or during embryonic development. This distinguishes primitive ectoderm and inner cell mass (ICM) on the basis of cytokine responsiveness and validates the biological activity proposed for factors within MEDII in primitive ectoderm establishment and maintenance. Further, it potentially provides an alternative technology for the isolation of pluripotent cells from the mammalian embryo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号