首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enhanced Chromosome Mobilizing (ECM) plasmids derived from the IncP-1 plasmid R68 were isolated in Escherichia coli K-12 by the same methods which have given similar plasmids such as R68.45 in Pseudomonas aeruginosa. The chromosome mobilizing properties of such plasmids in E. coli were similar to those of R68.45 but while retaining the ability to transfer to P. aeruginosa they did not mobilize the chromosome of that organism. Restriction enzyme analysis of two such plasmids, pMO163 and pMO168, showed that they both possessed an additional segment of DNA. With pMO163, an addition of 0.8 kb is located near the TnA region and is characterized by the cleavage site pattern SmaI-HpaI-PstI-BamHI. For pMO168, the additional DNA segment is located at a different site, about 4.0 kb anti-clockwise from the EcoRI site. It was also characterized by the sites SmaI-(HpaI-PstI)-BamHI. No sequence homology has been found between the additional segments of either pMO163 or pMO168 and IS21 of R68.45. However homology of these additional segments was found with the E. coli K-12 chromosome suggesting that pMO163 and pMO168 arise by the acquisition of a transposable element from the E. coli K-12 chromosome.  相似文献   

2.
A 4.3 kb EcoRI fragment carrying the gene for cytochrome P450meg, the steroid-15β-monooxygenase from Bacillus megaterium ATCC 13368, was cloned and completely sequenced. The gene codes for a protein of 410 amino acids and was expressed in Escherichia coli and B. subtilis. Protein extracts from the recombinant E. coli strains were able to hydroxylate corticosteroids in the 15β position when supplemented with an extract from a P450- mutant of B. megaterium ATCC 13368 as a source of megaredoxin and megaredoxin reductase. In contrast, 15β-hydroxylation was obtained in vitro and in vivo without the addition of external electron transfer proteins, when cytochrome P450meg was produced in B. subtilis 168. Protein extracts from nonrecombinant B. subtilis 168 could also support the in vitro hydroxylation by cytochrome P450meg produced in E. coli.  相似文献   

3.
Summary The plasmid pBC16 (4.25 kbases), originally isolated from Bacillus cereus, determines tetracycline resistance and can be transformed into competent cells of B. subtilis. A miniplasmid of pBC16 (pBC16-1), 2,7 kb) which has lost an EcoRI fragment of pBC16 retains the replication functions and the tetracycline resistance. This plasmid which carries only one EcoRI site has been joined in vitro to pBS1, a cryptic plasmid previously isolated from B. subtilis and shown to carry also a single EcoRI site (Bernhard et al., 1978). The recombinant plasmid is unstable and dissociates into the plasmid pBS161 (8.2 kb) and the smaller plasmid pBS162 (2.1 kb). Plasmid pBS161 retains the tetracycline resistance. It possesses a single EcoRI site and 6 HindIII sites. The largest HindIII fragment of pBS161 carries the tetracycline resistance gene and the replication function. After circularization in vitro of this fragment a new plasmid, pBS161-1 is generated, which can be used as a HindIII and EcoRI cloning vector in Bacillus subtilis.Hybrid plasmids consisting of the E. coli plasmids pBR322, pWL7 or pAC184 and different HindIII fragments of pBS161 were constructed in vitro. Hybrids containing together with the E. coli plasmid the largest HindIII fragment of pBS161 can replicate in E. coli and B. subtilis. In E. coli only the replicon of the E. coli plasmid part is functioning whereas in B. subtilis replication of the hybrid plasmid is under the control of the Bacillus replicon. The tetracycline resistance of the B. subtilis plasmid is expressed in E. coli, but several antibiotic resistances of the E. coli plasmids (ampicillin, kanamycin and chloramphenicol) are not expressed in B. subtilis. The hybrid plasmids seem to be more unstable in B. subtilis than in E. coli.  相似文献   

4.
Summary We have cloned two genes, nirB +and cysG +which are required for NADH-dependent nitrite reductase to be active, from the 74 min region of the Escherichia coli chromosome. Restriction mapping and complementation analysis establish the gene order crp-nirB-cysG-aroB. Both genes are trans-dominant in merodiploids and, under some conditions, can be expressed independently. The cysG +gene can be expressed from both high and low copy number plasmids carrying a 3.6 kb PstI-EcoRI restriction fragment. Attempts to sub-clone the nirB +gene into pBR322 on a 14.5 kb EcoRI fragment were unsuccessful, but this fragment was readily sub-cloned into and expressed from the low copy number plasmid pLG338 (Stoker et al. 1982). Overproduction of the 88 kDa nitrite reductase apoprotein by strains carrying a functional nirB +gene suggests that nirB is the structural gene for this enzyme.  相似文献   

5.
A newly isolatedPseudomonas plasmid coding for detoxification of the herbicide paraquat (Pqr) was characterized. AnEcoR1-generated fragment derived from the plasmid carrying the Pqr determinant was cloned intoEscherichia coli. Subsequent subclonings, followed by exonuclease III-mediated deletion analysis, localized the Pqr gene(s) to a 1.8-kb segment within a 4.2Pst1 subfragment. The cloning and apparent expression of the Pqr gene(s) inE. coli will enable its structural organization and function to be analyzed in detail.  相似文献   

6.
Summary The structural gene for the enzyme levanase of Bacillus subtilis (SacC) was cloned in Escherichia coli. The cloned gene was mapped by PBS1 transduction near the sacL locus on the B. subtilis chromosome, between leu4 and aroD. Expression of the enzyme was demonstrated both in B. subtilis and in E. coli. The presence of sacC allowed E. coli to grow on sucrose as the sole carbon source. The complete nucleotide sequence of sacC was determined. It includes an open reading frame of 2,031 bp, coding for a protein with calculated molecular weight of 75,866 Da, including a putative signal peptide similar to precursors of secreted proteins found in Bacilli. The apparent molecular weight of purified levanase is 73 kDa. The sacC gene product was characterized in an in vitro system and in a minicellproducing strain of E. coli, confirming the existence of a precursor form of levanase of about 75 kDa. Comparison of the predicted aminoacid sequence of levanase with those of the two other known -D-fructofuranosidases of B. subtilis indicated a homology with sucrase, but not with levansucrase. A stronger homology was detected with the N-terminal region of yeast invertase, suggesting the existence of a common ancestor.  相似文献   

7.
Summary We have cloned the tolC gene of E. coli K-12 into pSF2124 by using transposon Tn10 as the marker to first isolate the relevant DNA fragment. The gene is on a 10.5 kb EcoRI fragment, and Tn5 insertion mutagenesis locates the gene near one end of this EcoRI fragment. An EcoRI-PstI fragment has been subcloned into pBR322 to facilitate further analysis of the gene.Abbreviations Tris Tris (hydroxymethyl) aminomethane - EDTA Ethylenediamine tetra-acetic acid - DOC Sodium deoxycholate - DNA Deoxyribonucleic acid - SDS Sodium dodecyl sulphate - kb kilo base pairs  相似文献   

8.
9.
The cyclomaltodextrinase gene fromBacillus subtilis high-temperature growth transformant H-17 was cloned on separatePstI,BamHI, andEcoRI fragments into the plasmid vector pUC18, but was expressed in an inactive form in the host,Escherichia coli DH5. High level constitutive expression of the gene product was also detrimental to theE. coli host, which led to structural instability of the recombinant plasmid. The cyclomaltodextrinase gene was cloned on a 3-kbEcoRI fragment into the plasmid vector pPL708, and the fragment was structurally maintained in the hostB. subtilis YB886. The cloned gene product was synthesized in an enzymatically active form in theB. subtilis host; however, expression was at a low level. Subcloning of the 3-kbEcoRI fragment into pUC18 and transformation intoE. coli XL1-Blue (FlacIq) indicated that the cyclomaltodextrinase gene was cloned with its own promoter, since expression of the gene occurred in the absence of IPTG. Subcloning of the cyclomaltodextrinase gene downstream from theBacillus temperate phage SPO2 promoter of pPL708 may increase expression of this gene.Florida Agricultural Experiment Station Journal Series No. R-02177  相似文献   

10.
Summary A recombinant cosmid carrying the sucrase gene (sacA) was obtained from a colony bank ofE. coli harboring recombinant cosmids representative of theB. subtilis genome. It was shown that thesacA gene is located in a 2 kbEcoRI fragment and that the cloned sequence is homologous to the corresponding chromosomal DNA fragment. A fragment of 2 kb containing the gene was subcloned in both orientations in the bifunctional vector pHV33 and expression was further looked for inB. subtilis andE. coli. Complementation of asacA mutation was observed in Rec+ and Rec- strains ofB. subtilis. Expression of sucrase was also demonstrated inE.coli, which is normally devoid of this activity, by SDS-polyacrylamide gel electrophoresis, specific immunoprecipitation and assay of the enzyme in crude extracts. The specific activity of the enzyme depended on the orientation of the inserted fragment. The saccharolytic activity was found to be cryptic inE. coli since the presence of the recombinant plasmids did not allow the transport of [U14C] sucrose and the growth of the cells.It was shown also that the recombinant cosmid contained part of the neighboring locus (sacP) which corresponds to a component of the PEP-dependent phosphotransferase system of sucrose transport ofB. subtilis.  相似文献   

11.
A library of Bacillus sphaericus 1593 DNA was constructed in Escherichia coli using pBR322 as vector and screened for clones expressing larvicidal activity against Culex mosquito larvae. Two larvicidal clones were identified and their plasmids characterized by restriction mapping. pAS233 and pAS377 contained inserts of 8.6 and 15 kb which were reduced by subcloning to 3.6 and 4.3 kb, respectively. A peptide of 29 kDa was the single product detected by maxicell expression of pAS377PT, a plasmid subcloned from pAS377. No insert-encoded peptide could be detected for pAS233HA, a subclone of pAS233, although maxicells containing this plasmid encoded larvicidal activity. The insert of pAS377PT was transcribed from a vector promoter whereas the insert of pAS233HA was transcribed from its own promoter and hence its expression in B. subtilis was possible. The insert was ligated to a shuttle vector yielding pSVI which was then used to transform B. subtilis. Recombinant E. coli and B. subtilis clones showed equivalent larvicidal activity of 1–10 μg cell protein per ml. Larvicidal activity was observed during vegetative growth for recombinant B. subtilis even though B. sphaericus 1593 synthesizes its mosquito-toxin only during sporulation.  相似文献   

12.
Summary We provide evidence that a mutation which derepresses an autoregulated system that is located in the vicinity of the basic replicon of R1, stabilizes the ParA- and ParB- miniplasmid of R1 pKN1562, without increasing its copy number. The system, which we have called ParD, maps inside the 1.45-kb PstI-EcoRI fragment that is adjacent to the origin of replication of the plasmid. Two protiens whose expression is coordinated are components of the system. The sequence of the PstI-EcoRI fragment was obtained. The wild-type ParD system determines in cis a basal but detectable stability.  相似文献   

13.
The thiaminase I gene of Bacillus thiaminolyticus was cloned on a 1.6 kb DNA fragment (enzyme molecular weight 42 000), and was expressed in both Escherichia coli and Bacillus subtilis. When a selection drug was absent, the plasmid was maintained stably for approx. 100 generations in wild-type E. coli. Instability of the thiaminase gene was demonstrated in the thiamin pyrophosphate-requiring mutant of E. coli from which the plasmid was deleted rapidly. Wild-type E. coli accumulated the enzyme in its periplasm. A method for the detection of thiaminase I enzyme in SDS-polyacrylamide gel was developed. Thiaminase I of B. thiaminolyticus was found to exist in two sizes, 44 and 42 kDa, among different strains. Moreover, thiaminase of 42 kDa became approximately 41 kDa after a long-term culture, most likely because of the action of proteinases. Thiaminase expressed in E. coli from a thiaminase-positive recombinant plasmid was 42 kDa, and showed the same mobility on SDS-polyacrylamide gele electrophoresis as the enzyme isolated from the young culture of the parent strain of B. thiaminolyticus used for cloning. This value was, therefore, considered to represent intact thiaminase that had escaped from the attack of bacilli proteinases.  相似文献   

14.
Genomic fragments of Bacillus polymyxa derived from separate and complete digestion by EcoRI, HindIII, and BamHI were ligated into the corresponding sites of pBR322, and the resulting chimeric plasmids were transformed into Escherichia coli. Of 6,000 transformants screened, 1 (pBPX-277) produced a clear halo on Remazol brilliant blue xylan plates. The insert in the pBPX-277 recombinant, identified as an 8.0-kilobase BamHI fragment of B. polymyxa, was subsequently subjected to extensive mapping and a series of subclonings into pUC19. A 2.9-kilobase BamHI-EcoRI subfragment was found to code for xylanase activity. Xylanase activity expressed by E. coli harboring the cloned gene was located primarily in the periplasm and corresponded to one of two distinct xylanases produced by B. polymyxa. Xylanase expression by the cloned gene occurred in the absence of xylan and was reduced by glucose and xylose. Southern blot hybridization with the cloned fragment as a probe against complete genomic digests of the bacilli B. polymyxa, B. circulans, and B. subtilis revealed that the cloned xylanase gene was unique to B. polymyxa. The xylanase expressed by the cloned gene had a molecular weight of approximately 48,000 and an isoelectric point of 4.9.  相似文献   

15.
16.
Summary Two different PstI fragments of temperate phage 105 DNA are shown to confer superinfection immunity upon Bacillus subtilis when inserted into the multicopy cloning vector pE194 cop-6. The 2.3 kb PstI fragment I is located almost entirely within EcoRI fragment F and encompasses a region previously known to encode a repressor. The other fragment, PstI-E (4.3 kb) maps inside the EcoRI-B fragment, and allows an explanation of the clear-plaque phenotype of the deletion mutant 105DII:6c. The two regions can be distinguished functionally, since only the PstI fragment I product interacts with a specific 105 promoter-operator site.  相似文献   

17.
The gene encoding sarcosine oxidase from Arthrobacter sp. TE1826 (soxA) was cloned in Escherichia coli by a convenient plate assay. It was located within a 1.7-kbp PstI-EcoRI fragment of the recombinant plasmid pSAOEP3. The purified sarcosine oxidase from the recombinant strain was found to be the same as that from the parental strain. The DNA sequence of soxA was determined, and an open reading frame composed of 389 amino acid residues was found. By Edman degradation of the enzyme, it was revealed that the amino-terminal amino acid (methionine) was eliminated in the parental strain and E. coli. The molecular weight (43,249) of the enzyme was consistent with the result from SDS-polyacrylamide gel electrophoresis. The FAD-binding site was found in the amino-terminal region of sarcosine oxidase by a homology search. The soxA gene was subcloned on a shuttle vector, pHY300PLK, and was expressed in both E. coli and Bacillus subtillis in the absence of an inducer, although the enzyme was induced with sarcosine in the parental strain.  相似文献   

18.
The HinfI restriction and modification genes were cloned on a 3.9-kb PstI fragment inserted into the PstI site of plasmid pBR322. Both genes are confined to an internal 2.3-kb BclI-AvaI subfragment. This subfragment was sequenced. Two large open reading frames (ORF's) are present. ORF1 codes for the methylase [predicted 359 amino acids (aa)] and ORF2 codes for the endonuclease (predicted 262 or 272 aa).  相似文献   

19.
A plasmid containing the glyA gene of Salmonella typhimurium LT2 was constructed in vitro using plasmid pACYC184 as the cloning vector and a λgt7-glyA transducing phage as the source of glyA DNA. The recombinant plasmid (pGS30) contains a 10-kb EcoRI insert fragment. Genetic and biochemical experiments established that the fragment contains a functional glyA gene. From plasmid pGS30 we subcloned a 4.4-kb SalI-EcoRI fragment containing the glyA gene and its neighboring regions (plasmid pGS38). The location and orientation of the glyA gene within the 4.4-kb insert fragment was determined in four ways: (1) comparison of the physical map of the 4.4-kb SalI-EcoRI fragment with the physical map of a 2.6-kb SalI-PvuII fragment that carries the Escherichia coli glyA gene; (2) deletion analysis; (3) transposon Tn5 insertional inactivation experiments; (4) deoxyribonucleic acid sequencing and comparison of the S. typhimurium DNA sequence with the E. coli DNA sequence. A presumptive glyA-encoded polypeptide of Mr 47000 was detected using plasmid pGS38 as template in a minicell system, but not when the glyA gene was inactivated by insertion of a Tn5 element.  相似文献   

20.
The gene coding for xylulokinase has been isolated from the yeast Pachysolen tannophilus by complementation of Escherichia coli xylulokinase (xylB) mutants. Through subcloning, the gene has been localized at one end of a 3.2-kilobase EcoRI-PstI fragment. Expression of the cloned gene was insensitive to glucose inhibition. Furthermore, the cloned gene did not cross-hybridize with E. coli and Saccharomyces cerevisiae xylulokinase genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号