首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Honey has been used successfully in wound healing for thousands of years. The peptide hormone human epidermal growth factor (hEGF) is also known to have a beneficial effect in various wound healing processes via mechanisms that differ from those for honey. In this study, we show that hEGF can be incorporated into honey via nectar. Plants of Nicotiana langsdorffii × N. sanderae were transformed with the gene for hEGF, equipped with a nectary‐targeted promoter and a signal sequence for secretion to nectar. These plants accumulated hEGF in the nectar. The maximum hEGF concentration recorded with ELISA in these plants is 2.5 ng·ml?1. There is a significant linear relationship (P < 0.001) between hEGF concentration and induction of hEGF‐receptor phosphorylation. Since the flower morphology of these plants did not allow production of honey from their nectar, we used feeding solutions, spiked with synthetic hEGF, to study transfer of this peptide into honey through bee activity. Transfer of hEGF from a feeding solution to honey by bees occurred with retention of the hEGF concentration and the capacity to induce hEGF‐receptor phosphorylation. These observations indicate that plants can function as a production platform for honey containing biologically active peptides, which may enhance wound healing and other biological processes.  相似文献   

2.
Bacillus subtilis has five type I signal peptidases, one of these, SipW, is an archaeal-like peptidase. SipW is expressed in an operon (tapA-sipW-tasA) and is responsible for removing the signal peptide from two proteins: TapA and TasA. It is unclear from the signal peptide sequence of TasA and TapA, why an archaeal-like signal peptidase is required for their processing. Bioinformatic analysis of TasA and TapA indicates that both contain highly similar signal peptide cleavage sites, both predicted to be cleaved by Escherichia coli signal peptidase I, LepB. We show that expressing full length TasA in E. coli is toxic and leads to cell death. To determine if this phenotype is due to the inability of the E. coli LepB to process the TasA signal peptide, we fused the TasA signal peptide and two amino acids of mature TasA (up to P2′) to both maltose binding protein (MBP) and β-lactamase (Bla). We observed a defect in secretion, indicated by an abundance of unprocessed protein with both TasA-MBP and TasA-Bla fusions. A series of mutations in both TasA-MBP and TasA-Bla were made around the junction of the TasA signal peptide and the fusion protein. Both of these studies indicate that residues around the predicted TasA signal sequence cleavage site, particularly the sequence from P3 to P2′, inhibit processing by LepB. The cell death observed when TasA and TasA signal sequence fusion proteins are expressed is likely due to the TasA signal peptide blocking LepB and thereby the general secretion pathway.  相似文献   

3.
Barnase, an extracellular RNAse from Bacillus amyloliquefaciens is secreted post-translationally from B. subtilis. The rate of secretion of barnase from B. subtilis was improved by replacement of the barnase signal peptide with a heterologous signal peptide. However, the barnase signal peptide exported Escherichia coli alkaline phosphatase faster than mature barnase. Heat shock of B. subtilis cells did not significantly alter the export of barnase using the barnase signal peptide. The slow rate of export of barnase from B. subtilis is due to both the signal peptide and the mature protein sequence rather than either alone.  相似文献   

4.
The ups45 gene encodes the major extracellular protein from Lactococcus lactis. The deduced sequence of the 27 residue leader peptide revealed the tripartite characteristics of a signal peptide. This leader peptide directed the efficient secretion of the homologous proteinase (PrtP) in L. lactis, indicating that the putative signal peptide of PrtP can be replaced by the 27 residue Usp45 leader peptide. In addition, the 27 residue leader peptide could be used to secrete the Bacillus stearothermophilus α-amylase, encoded by the amyS gene. Fusion of the usp45 promoter region and various parts of the leader sequence to an amyS gene devoid of its signal sequence, showed that in Escherichia coli the first 19, 20, and 27 residues of the Usp45 leader are able to direct α-amylase secretion. In L. lactis the shorter signal peptides did not result in secretion of α-amylase, providing experimental evidence for the hypothesis that gram-positive bacteria require a longer signal peptide for secretion than gram-negative organisms.  相似文献   

5.
Proteins that are produced for commercial purposes in Bacillus subtilis are commonly secreted via the Sec pathway. Despite its high secretion capacity, the secretion of heterologous proteins via the Sec pathway is often unsuccessful. Alternative secretion routes, like the Tat pathway, are therefore of interest. Two parallel Tat pathways with distinct specificities have previously been discovered in B. subtilis. To explore the application potential of these Tat pathways, several commercially relevant or heterologous model proteins were fused to the signal peptides of the known B. subtilis Tat substrates YwbN and PhoD. Remarkably, the YwbN signal peptide directed secretion of active subtilisin, a typical Sec substrate, via the B. subtilis TatAyCy route. In contrast, the same signal peptide directed Tat-independent secretion of the Bacillus licheniformis α-amylase (AmyL). Moreover, the YwbN signal peptide directed secretion of SufI, an Escherichia coli Tat substrate, in a Tat-independent manner, most likely via Sec. Our results suggest that cytoplasmic protein folding prior to translocation is probably a major determinant of Tat-dependent protein secretion in B. subtilis, as is the case with E. coli. We conclude that future applications for the Tat system of B. subtilis will most likely involve commercially interesting proteins that are Sec incompatible.  相似文献   

6.
The gene encoding the α-amylase from Bacillus licheniformis was cloned, with and without the native signal sequence, and expressed in Escherichia coli, resulting in the production of the recombinant protein in the cytoplasm as insoluble but enzymatically active aggregates. Expression with a low concentration of the inducer at low temperature resulted in the production of the recombinant protein in soluble form in a significantly higher amount. The protein produced with signal sequence was exported to the extracellular medium, whereas there was no export of the protein produced from the gene without the signal sequence. Similarly, the α-amylase activity in the culture medium increased with time after induction in case of the protein produced with signal sequence. Molecular mass determinations by MALDI-TOF mass spectrometry and N-terminal amino acid sequencing of the purified recombinant α-amylase from the extracellular medium revealed that the native signal peptide was cleaved by E. coli signal peptidase between Ala28 and Ala29. It seems possible that the signal peptide of α-amylase from B. licheniformis can be used for the secretion of other recombinant proteins produced using the E. coli expression system.  相似文献   

7.
In this study, a new approach for extracellular production of recombinant α-amylase in Escherichia coli was investigated. A gene encoding a highly efficient raw-starch-digesting α-amylase from Bacillus licheniformis ATCC 9945a was cloned and expressed in E. coli. The gene encoding mature α-amylase was cloned into the pDAss expression vector, and secretion of the gene product was regulated by fusion to the signal peptide of DsbA, a well-characterized E. coli periplasmic protein. E. coli BL21 (DE3) carrying pDAss vector containing amylase gene had approximately 2.5-fold higher volumetric enzyme productivity than the natural system. The recombinant enzyme showed higher efficiency for digesting diverse raw starches when compared with the native enzyme and was similar to commercial α-amylase in its ability to hydrolyze raw starches. The properties of the recombinant enzyme demonstrate the potential of the DsbA signal peptide approach for the secretory production of the fully active, industrially important recombinant enzyme.  相似文献   

8.
Secretion of Escherichia coli penicillin acylase was improved by codon-based random mutagenesis of its signal peptide. The mutagenesis technology was applied to the gene region coding for positions Lys2 to Thr13 (N half) and Ala14 to Leu25 (C half) of the signal peptide. Protein secretion was higher in several signal peptide variants (up to fourfold with respect to the wild-type value).  相似文献   

9.
New secretion vectors containing synthetic signal peptides were constructed to study the periplasmic translocation of green fluorescent protein (GFP) in Escherichia coli. These constructs encode synthetic signal peptides spA and spD fused to the amino terminal end of GFP, and expressed from T7/lac promoter in the BL21DE3 strain by induction with IPTG. The recombinant protein was detected in both the cytoplasmic and periplasmic fractions. Fluorescence analysis revealed that recombinant proteins with signal peptides were not fluorescent, indicating translocation to periplasmic space. In contrast, recombinant proteins without signal peptide were fluorescent. These results indicate that the expressed recombinant proteins were translocated into the periplasm. Therefore, the synthetic signal peptides derived from signal peptides of Bacillus sp. could efficiently secrete the heterologous proteins to the periplasmic space of E. coli.  相似文献   

10.
Asparaginase isozyme II from Escherichia coli is a popular enzyme that has been used as a therapeutic agent against acute lymphoblastic leukemia. Here, fusion tag systems consisting of the pelB signal sequence and various lengths of repeated aspartate tags were devised to highly express and to release active asparaginase isozyme II extracellularly in E. coli. Among several constructs, recombinant asparaginase isozyme II fused with the pelB signal sequence and five aspartate tag was secreted efficiently into culture medium at 34.6 U/mg cell of specific activity. By batch fermentation, recombinant E. coli produced 40.8 U/ml asparaginase isozyme II in the medium. In addition, deletion of the gspDE gene reduced extracellular production of asparaginase isozyme II, indicating that secretion of recombinant asparaginase isozyme II was partially ascribed to the recognition by the general secretion machinery. This tag system composed of the pelB signal peptide, and repeated aspartates can be applied to extracellular production of other recombinant proteins.  相似文献   

11.
Recombinant proteins can be targeted to the Escherichia coli periplasm by fusing them to signal peptides. The popular pET vectors facilitate fusion of target proteins to the PelB signal. A systematic comparison of the PelB signal with native E. coli signal peptides for recombinant protein expression and periplasmic localization is not reported. We chose the Bacillus stearothermophilus maltogenic amylase (MA), an industrial enzyme widely used in the baking and brewing industry, as a model protein and analyzed the competence of seven, codon-optimized, E. coli signal sequences to translocate MA to the E. coli periplasm compared to PelB. MA fusions to three of the signals facilitated enhanced periplasmic localization of MA compared to the PelB fusion. Interestingly, these three fusions showed greatly improved MA yields and between 18- and 50-fold improved amylase activities compared to the PelB fusion. Previously, non-optimal codon usage in native E. coli signal peptide sequences has been reported to be important for protein stability and activity. Our results suggest that E. coli signal peptides with optimal codon usage could also be beneficial for heterologous protein secretion to the periplasm. Moreover, such fusions could even enhance activity rather than diminish it. This effect, to our knowledge has not been previously documented. In addition, the seven vector platform reported here could also be used as a screen to identify the best signal peptide partner for other recombinant targets of interest.  相似文献   

12.
Human recombinant EGF, secreted into the extracellular medium by E. coli cells, was purified by a combination of solid phase extraction and HPLC. Using these techniques, the peptide was purified 122-fold, with a recovery of greater than 75%. The purified hEGF manifested no contaminating protein bands on electrophoretic gels. Amino acid analysis of the purified peptide was identical to that of authentic hEGF.  相似文献   

13.
Summary The ability of the Bacillus subtilis secretion machinery to interact with a heterologous signal peptide was studied using a plant (wheat -amylase) signal peptide. The plant signal peptide was capable of mediating secretion of Escherichia coli alkaline phosphatase and B. amyloliquefaciens levansucrase from B. subtilis. This secretion was dependent on the plant signal peptide, as deletion of five amino acids from the hydrophobic core resulted in a block of secretion. Attempts to improve the efficiency of the plant signal peptide in B. subtilis were made by increasing the length of the hydrophobic core from 10 to 16 residues by insertion of 2, 4, 5 or 6 amino acids. None of the alterations improved the secretion efficiency relative to the wild-type plant signal peptide.  相似文献   

14.
Escherichia coli—the powerhouse for recombinant protein production—is rapidly gaining status as a reliable and efficient host for secretory expression. An improved understanding of protein translocation processes and its mechanisms has inspired and accelerated the development of new tools and applications in this field and, in particular, a more efficient secretion signal. Several important characteristics and requirements are summarised for the design of a more efficient signal peptide for the production of recombinant proteins in E. coli. General approaches and strategies to optimise the signal peptide, including the selection and modification of the signal peptide components, are included. Several challenges in the secretory production of recombinant proteins are discussed, and research approaches designed to meet these challenges are proposed.  相似文献   

15.
Administration of macromolecule compositions in medicine and cosmetics always exhibited low bioavailability due to the limitation of transmembrane transport. Here, human epidermal growth factor (hEGF) was fused with glutathione S-transferase (GST) and Pep-1, the first commercial cell-penetrating peptide, in Escherichia coli. The fusion protein was firstly purified with the affinity chromatography, and then the GST tag was released by TEV protease. Final purification was achieved by the ion exchange chromatography. The biological activities and the transmembrane ability of the obtained products were determined using scratch wound-healing assay, MTT analysis, and immunofluorescence assay. The results showed that both rhEGF and Pep-1-fused hEGF were soluble expressed in E. coli. The fusion of Pep-1 could markedly increase the transmembrane ability of EGF, whereas it did not interfere with the growth-stimulating and migration-promoting functions of hEGF on fibroblasts. This research provided a novel strategy for the transmembrane transport of protein-derived cosmetics or drugs.  相似文献   

16.
Recombinant Escherichia coli JM101 was immobilized with porous polyurethane foam (PUF) particle as supporter matrix for human epidermal growth factor (hEGF) production. Flask culture showed that cell immobilization in PUF can improve cell growth and hEGF expression. A bubble column and a three-phase fluidized bed bioreactor by self-design was further applied to produce hEGF, respectively. The results demonstrated that PUF is a feasible immobilized supporter material with good biocompatibility. Immobilization could also decrease the probability for segregational plasmid loss and overgrowth of plasmid-free cells. Cell density, plasmid stability and hEGF productivity were higher than those without the foam matrix, respectively. hEGF productivity was enhanced from 8.73 mg/l h of free-culture to 11.4 mg/l h of immobilized cultivation.  相似文献   

17.
The type II secretion system (main terminal branch of the general secretion pathway) is used by diverse gram-negative bacteria to secrete extracellular proteins. Proteins secreted by this pathway are synthesized with an N-terminal signal peptide which is removed upon translocation across the inner membrane, but the signals which target the mature proteins for secretion across the outer membrane are unknown. The plant pathogens Erwinia chrysanthemi and Erwinia carotovora secrete several isozymes of pectate lyase (Pel) by the out-encoded type II pathway. However, these two bacteria cannot secrete Pels encoded by heterologously expressed pel genes from the other species, suggesting the existence of species-specific secretion signals within these proteins. The functional cluster of E. chrysanthemi out genes carried on cosmid pCPP2006 enables Escherichia coli to secrete E. chrysanthemi, but not E. carotovora, Pels. We exploited the high sequence similarity between E. chrysanthemi PelC and E. carotovora Pel1 to construct 15 hybrid proteins in which different regions of PelC were replaced with homologous sequences from Pel1. The differential secretion of these hybrid proteins by E. coli(pCPP2006) revealed M118 to D175 and V215 to C329 as regions required for species-specific secretion of PelC. We propose that the primary targeting signal is contained within the external loops formed by G274 to C329 but is dependent on residues in M118 to D170 and V215 to G274 for proper positioning.  相似文献   

18.
A pET based expression system for the production of recombinant human growth hormone (hGH) directed to the Escherichia coli periplasmic space was developed. The pET22b plasmid was used as a template for creating vectors that encode hGH fused to either a pelB or ompA secretion signal under control of the strong bacteriophage T7 promoter. The pelB- and ompA-hGH constructs expressed in BL21 (λDE3)-RIPL E. coli are secreted into the periplasm which facilitates isolation of soluble hGH by selective disruption of the outer membrane. A carboxy-terminal poly-histidine tag enabled purification by Ni2+ affinity chromatography with an average yield of 1.4 mg/L culture of purified hGH, independent of secretion signal. Purified pelB- and ompA-hGH are monomeric based on size exclusion chromatography with an intact mass corresponding to mature hGH indicating proper cleavage of the signal peptide and folding in the periplasm. Both pelB- and ompA-hGH bind the hGH receptor with high affinity and potently stimulate Nb2 cell growth. These results demonstrate that the pET expression system is suitable for the rapid and simple isolation of bioactive, soluble hGH from E. coli.  相似文献   

19.
Escherichia coli hemolysin (HlyA) is secreted by a specific export machinery which recognizes a topogenic secretion signal located at the C-terminal end of HlyA. This signal sequence has been variously defined as comprising from 27 to about 300 amino acids at the C-terminus of HlyA. We have used here a combined genetic and immunological approach to select for C-terminal HlyA peptides that are still secretion-component. A deletion library of HlyA mutant proteins was generated in vitro by successive degradation of hy1A from the 5′ end with exonuclease III. Secretion competence was tested by immunoblotting of the supernatant of each clone with an antiserum raised against a C-terminal portion of hemolysin. It was found that the hemolysin secretion system has no apparent size limitation for HlyA proteins over a range from 1024 to 62 amino acids. The smallest autonomously secretable peptide isolated in this selection procedure consists of the C-terminal 62 amino acids of HlyA. This sequence is shared by all secretion-competent, truncated HlyA proteins, which suggests that secretion of the E.coli hemolysin is strictly post-translational. The capacity of the hemolysin secretion machinery was found to be unsaturated by the steady-state level of its natural HlyA substrate and large amounts of truncated HlyA derivatives could still be secreted in addition to full-length HlyA.  相似文献   

20.
Streptokinase (SK), an extracellular protein from Streptococcus equisimilis, is secreted post-translationally by Escherichia coli using both its native and E. coli-derived transport signals. In this communication we report that cleavage specificity of signal peptidase I, and thus efficiency of secretion, varies in E. coli when SK export is directed by different transport signals. The native (+1) N-terminus of mature SK was retained when it was transported under the control of its own, PelB or LamB signal peptide. However, when translocation of SK was controlled by the OmpA or MalE signal peptide, Ala2 of mature SK was preferred as a cleavage site for the pre-SK processing. Our results indicate that compatibility of the leader peptide with the mature sequences of SK, which fulfils the requirement for a given secondary structure within the cleavage region, is essential for maintaining the correct processing of pre-SK. An OmpA-SK fusion, which results in the deletion of two N-terminal amino acid residues of mature SK, was further studied with respect to the recognition of alternative cleavage site in E. coli. The alanine at +2 in mature SK was changed to glycine or its relative position was changed to +3 by introducing a methionine residue at the +1 position. Both alterations resulted in the correct cleavage of pre-SK at the original OmpA fusion site. In contrast, introduction of an additional alanine at +4, creating three probable cleavage sites (Ala-x-Ala-x-Ala-x-Ala), resulted in the recognition of all three target sites for cleavage, with varying efficiency. The results indicate that the nature of the secondary structure generated at the cleavage junction of pre-SK, resulting from the fusion of different signal peptides, modulates the cleavage specificity of signal peptidase I during extracellular processing of SK. Based on these findings it is proposed that flexibility in the interaction of the active site of signal peptidase I with the cleavage sites of signal peptides may occur when it encounters two or more juxtaposed cleavage sites. Preference for one cleavage site over another, then, may depend on fulfillment of secondary structure requirements in the vicinity of the pre-protein cleavage junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号